• Contact Us
    • Send Feedback
    • Login
    View Item 
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Whole Repository
    CollectionsIssue DateRegionCountryHubAffiliationAuthorsTitlesSubject
    This Sub-collection
    Issue DateRegionCountryHubAffiliationAuthorsTitlesSubject

    My Account

    Login

    Welcome to the International Institute of Tropical Agriculture Research Repository

    What would you like to view today?

    Residue fractionation and decomposition: the significance of the active fraction

    Thumbnail
    Date
    1994
    Author
    Vanlauwe, Bernard
    Dendooven, L.
    Merckx, R.
    Type
    Journal Article
    Metadata
    Show full item record
    Abstract
    This paper describes an incubation experiment with homogeneously 14C labeled maize-straw and its insoluble fraction. The role of the soluble fraction in the decomposition process was assessed, using three independently measured characteristics: (1) fractionation of the maize-straw, resulting in kinetically different fractions; (2) microbial biomass C and its 14C activity determined by a fumigation extraction method, and (3) the 14C activity of the released CO2-C. The fumigation extraction method was proved to be useful from 9 days after the application of the maize-straw onwards. The fractionation method yielded a soluble (48%), a (hemi) cellulosic (47%), and a lignin fraction (1%). Nine days after addition of either the complete residue or its insoluble fraction, the microbial biomass C increased from 53 to 337 and 217 mg C kg-1 dry soil, respectively. Similar values were maintained up to day 40. The large increase in microbial activity was accompanied by a N-immobilization of 65 and 29 mg N Kg-1 dry soil for the maize-straw treatment and its insoluble fraction, respectively, resulting in biomass C/N values of 5.5 and 5.6 A genuine priming effect (10 and 7% of the total CO2-C production) on the mineralization of native soil organic C was caused by an increase in decomposition of the native C rather than by an increase in turnover of the microbial biomass in the soil amended with maize straw. The soluble fraction caused a 'priming effect' on the decomposition of the less decomposable cell-wall fraction. Calculations by nonlinear regression confirmed this observation.
    Permanent link to this item
    https://hdl.handle.net/20.500.12478/5584
    IITA Subjects
    Food Security; Maize; Soil Fertility
    Agrovoc Terms
    Maize; Yields; Decomposition; Soil
    Regions
    Africa; Acp; West Africa; Europe
    Countries
    Nigeria; Belgium; United Kingdom
    Collections
    • Journal and Journal Articles4136
    copyright © 2019  IITASpace. All rights reserved.
    IITA | Open Access Repository