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Abstract

The use of plant tissue analysis as a tool for attaining low cyanogenic glucoside levels in

cassava roots, has hardly been investigated. Just as the quality of crops is improved through

the use of plant tissue analysis, the same can probably be done to consistently attain the

lowest possible cyanogenic glucoside levels in cassava roots. High levels of cyanogenic glu-

cosides in consumed fresh cassava roots or in their products have the potential of causing

cyanide intoxication, hence the need to lower them. An experiment was thus conducted to

assess the occurrence of meaningful relationships between plant nutritional status and cya-

nogenic glucoside production in cassava roots. Total hydrogen cyanide (HCN) levels in cas-

sava roots were used to assess cyanogenic glucoside production. Using NPK fertiliser

application to induce changes in plant nutritional status, the main objective of the study was

investigated using the following sub-objectives; (1) to determine the effects of increased

NPK fertiliser application on cassava root HCN levels; (2) and to show the occurrence of

relationships between changes in nutrient levels in plant ‘indicator tissue’ and HCN levels in

cassava roots. The study was a field experiment laid out as a split-plot in a randomized com-

plete block design with three replicates. It was repeated in two consecutive years, with soil

nutrient deficiencies only being corrected in the second year. The varieties Salanga,

Kalinda, Supa and Kiroba were used in the experiment, while the NPK fertiliser treatments

included; a control with no fertiliser applied; a moderate NPK treatment (50 kg N + 10 kg P +

50 kg K /ha); and a high NPK treatment (100 kg N + 25 kg P + 100 kg K /ha). A potassium

only treatment (50 kg K/ha) was also included, but mainly for comparison. The root HCN lev-

els of Salanga, Kalinda and Kiroba were significantly influenced by NPK fertiliser application

in at least one of the two field experiments, while those of Supa remained uninfluenced.

Changes in plant nutritional status in response to fertiliser application were thus shown to

influence cyanogenic glucoside production. The results of the multiple linear regression

analysis for the first field experiment, generally showed that the root HCN levels of some

cassava varieties could have been ‘reduced’ by decreasing concentrations of nitrogen,
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potassium and magnesium in plants, or by improving plant calcium concentrations along

with NPK fertiliser application. However, in the second field experiment (with corrected soil

nutrient deficiencies) the regression analysis generally showed that the root HCN levels of

some cassava varieties could have been ‘reduced’ by improving either one or a combination

of the nutrients phosphorous, zinc and potassium in plants along with NPK fertiliser applica-

tion. Although the results obtained in the two experiments had been contradicting due to

slight differences in how they were conducted, the study had nonetheless demonstrated the

occurrence of meaningful relationships between plant nutritional status and cyanogenic glu-

coside production; confirming the possible use of plant tissue analysis in predicting fertiliser

needs for the consistent attainment of low cyanogenic glucosides in cassava roots.

Introduction

Plant tissue analysis plays an important role in the improvement of crop yields and also in the

enhancement of desirable crop quality characteristics. It has a diagnosis role, where it is used

to confirm or dismiss the presence of limiting nutrients in soils that are highlighted by visual

symptoms on plants; it also has a monitoring role, which ensures that growing crops always

have adequate nutrients for consistent optimal growth; and it lastly has a supporting role,

where it is used along with soil test results to make fertiliser recommendations [1]. The advan-

tage of plant tissue analysis is that it reveals the actual nutritional status of plants, which may at

times tell a different story from what is expected from pre-existing soil nutrient conditions.

The invaluable information given by plant tissue analysis helps growers to quickly and more

accurately identify whether plant nutritional problems emanate from a poor supply of nutri-

ents or from the presence of other growth limiting factors.

Like with many other crops, most research on cassava (Manihot esculenta Crantz) involving

plant tissue analysis, has mainly focused on its use for achieving better plant growth and root

yields [2–5]. The use of plant tissue analysis as a tool for decreasing levels of cyanogenic gluco-

sides in cassava, has hence hardly been investigated. Low cyanogenic glucoside levels are desir-

able in edible parts of cassava for the improvement of a crop quality characteristic related to its

safe consumption. Although feared to be still toxic, total hydrogen cyanide (HCN) levels (a

measure the cyanogenic glucoside content) of less than 50 mg/kg in fresh cassava roots are cur-

rently recommended as safe for consumption [6]. Research on cyanogenic glucosides in cas-

sava has mainly focused on examining the influence of fertiliser application on cyanogenic

glucoside content without linking the observations to plant nutritional status. The results

obtained, particularly with the application of NPK (nitrogen, phosphorous and potassium) fer-

tilisers have been varied; some studies have reported no effects on cassava root cyanogenic glu-

coside contents with NPK fertiliser application [7–9], while others have reported reductions

[9] and one study even suggested the occurrence of increased root cyanogenic glucosides with

NPK fertiliser application [10]. Plant tissue analysis could thus probably help to consistently

produce cassava roots with low cyanogenic glucoside levels, if it can be used to develop fertili-

ser recommendations aimed at decreasing cyanogenic glucosides in cassava roots.

In its supportive role of formulating fertiliser recommendations, plant tissue analysis makes

use of relationships between plant nutritional status and plant growth or yields. Relationships

between plant nutrient concentrations in ‘indicator tissue’ and cyanogenic glucosides in cas-

sava, hence need to be understood if cyanogenic glucoside production is to be effectively con-

trolled with fertiliser application. Nutrient concentrations in plant ‘indicator tissue’ are used
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because they are best correlated to plant growth and yields; they thus give the best representa-

tion of a plants nutritional status. Now, although fertiliser application in cassava production

may be questioned, given the ability of cassava to remain productive under conditions of low

soil fertility, the following arguments may help to justify its use or learning from its use. Firstly,

whether fertilisers are applied or not applied, growing cassava plants are still influenced by soil

nutrient supply which in turn affects plant nutritional status. It is changes in plant nutritional

status that influence metabolic processes in cassava, like those involving the production of cya-

nogenic glucosides. Fertilisers only influence soil nutrient supply and they are used to carefully

control soil nutrient supply. Fertilisers can thus be useful for learning how plant nutritional

status affects cyanogenic glucoside production over a range of soil nutrient conditions. Sec-

ondly, while some may only support fertiliser application for cassava yield improvement, the

applied fertilisers would still affect cyanogenic glucoside production through their effects on

plant nutritional status.

The objective of this study, was to assess the occurrence of meaningful relationships

between plant nutritional status and cyanogenic glucoside production in cassava roots. How-

ever, since the occurrence of relationships between plant nutritional status and cyanogenic

glucoside production can be either highlighted indirectly by the effects of fertiliser application

on cyanogenic glucoside production, or more directly through the evidence of relationships

between changes in plant nutrient concentrations and cyanogenic glucoside production, the

main objective of the study had to be fulfilled using two sub-objectives. Using increased NPK

fertiliser application to induce changes in plant nutritional status, the first sub-objective was

thus to determine the effects of increased NPK fertiliser application on the root HCN levels of

cassava. While the second sub-objective was to show the occurrence of relationships between

changes in nutrient concentrations in plant ‘indicator tissue’ and HCN levels in roots of cas-

sava supplied with increased applications of NPK fertiliser. With this, the first hypothesis

tested was that ‘cassava root HCN levels are not influenced by increased applications of NPK fer-
tiliser’ and the second hypothesis tested was that ‘root HCN levels in cassava supplied with
increased levels of NPK fertiliser are not influenced by changes in nutrient concentrations in indi-
cator tissue.

Materials and methods

The field experiment

Location. A field experiment was conducted to investigate the effects of increased levels of

NPK fertiliser application on root HCN levels and the relationships between nutrient concen-

trations in plant ‘indicator tissue’ and root HCN levels. The experiment had been repeated in

two consecutive years. Different but closely located sites with no fertiliser application history

at Naliendele Agricultural Research Institute (NARI) were used for the field experiment. The

experimental sites were located on the Eastern Makonde Plateau in Mtwara rural district in

Mtwara region of Tanzania. The district lies in the coastal agro-ecological zone 2 (C2) and is

characterised by monomodal rainfall with a short growing season of 3 to 4½ months [11,12].

The rainy season begins in November/December and ends in April/May. The total rainfall in

the district ranges from 800 to 1000 mm/year and has unreliable onset dates, including a char-

acteristic 3 to 4 weeks long mid-season dry period (a seasonal interruption) normally experi-

enced in February [11,13]. The district experiences mean minimum and maximum

temperatures of 19 to 23 oC and 29 to 31 oC, respectively [13] and 79 to 87% relative humidity

[11].

The first field experiment (Year 1) (S 10˚22’56", E 40˚10’00" at 133 m above sea level) was

established in the last week of January 2014 and was ended in the first week of January 2015; it
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was hence carried out for about 11 months. The second field experiment (Year 2) (S 10˚23’03",

E 40˚09’49" at 158 m above sea level) was established in the last week of February 2015 and was

ended in the first week of February 2016; it thus carried out for about 11 months, as well. The

two field experiments were both conducted under rain-fed conditions. The mean monthly

rainfall received and the mean monthly relative humidity and temperatures experienced by

cassava plants during the two growing periods are shown in Fig 1.

Before planting, a 500 g composite soil sample had been collected from each site from a

depth of 0 to 20 cm for soil analysis [https://dx.doi.org/10.17504/protocols.io.x72frqe]. The

soils were analysed for organic carbon (OC), soil reaction (pH), total N, available P, available

K, exchangeable calcium (Ca), exchangeable magnesium (Mg), available sulphur (S), zinc

(Zn), copper (Cu) and iron (Fe) and for their soil texture. The soil analysis procedures were

carried out as follows: pH was determined in H2O using a 1:1 soil to water ratio; OC using the

Walkley and Black method; N by micro-Kjeldahl digestion; P by the Bray No. 1 method; Sul-

phate-S by the calcium phosphate extraction solution; available K, exchangeable Ca and Mg

using 1 N ammonium acetate extracting solution; extractable Zn, Cu and Fe using diethylene-

triaminepentaacetic acid (DTPA); and soil texture by the hydrometer method [14]. Table 1

shows the soil analysis results that were obtained.

The soils from the field experimental sites in Year 1 (85.87% sand, 11.26% clay, 2.87% silt)

and Year 2 (86.37% sand, 11.26% clay, 2.37% silt) were both found to be loamy sands [19].

Soils in Mtwara region are generally classified as Ferralic Cambisols [11]; they are predomi-

nantly sandy and of low soil fertility [20,21].

Experimental design. The field experiment was a 4×4 factorial combination laid out as a

split-plot in a randomized complete block design. Each block was replicated three times. Four

cassava varieties and four fertiliser treatments were used in the experiment. Varieties were

assigned to the main plots, while the fertiliser treatments were assigned to the sub-plots. Out of

the four cassava varieties, one variety was an improved cassava variety called Kiroba, while the

Fig 1. Mean monthly rainfall, relative humidity, and maximum and minimum temperatures during the field experiments.

https://doi.org/10.1371/journal.pone.0228641.g001
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other three were all local cassava varieties and were namely; Supa, Salanga and Kalinda. The

local varieties were collected from Kitangari village (S 10˚39’01", E 39˚20’01") in Newala dis-

trict, which is also located in Mtwara region, whereas Kiroba was collected from NARI. The

stem cuttings for the local cassava varieties had been collected from farmers’ crop fields. Writ-

ten permission to conduct any research activities in relation to the study had initially been

obtained from the regional government administrative offices in Mtwara region before the

local cassava stem cuttings could be collected from farmers. Farmer consent was however only

given verbally. Staff from NARI had assisted with all activities involving cassava stem cutting

collection. All activities at farm level were conducted in the presence of government officers

working from Newala district or with their knowledge.

The fertiliser treatments consisted of a control treatment (N0P0K0) with no applied fertili-

ser; a sole K fertiliser treatment (N0P0K1) with K applied at a rate of 50 kg K/ha; a moderate

NPK fertiliser treatment (N1P1K1) applied at a rate of 50 kg N + 10 kg P + 50 kg K /ha; and a

high NPK fertiliser treatment (N2P2K2) applied at a rate of 100 kg N + 25 kg P + 100 kg K /ha.

The field experiments each had two other NPK fertiliser treatments but these were not

included in the present study, as they did not either supply N, P and K at the same time or

because their rates were not close equal increments of the selected NPK fertiliser treatments.

The sole K fertiliser treatment was only included for comparison, given the well-known reduc-

ing effects of sole K fertiliser application on cyanogenic glucoside production in cassava; it was

however excluded from some key analysis. Urea (CO(NH2)2), triple super phosphate (TSP)

(Ca(H2PO4)2.H2O) and muriate of potash (KCl) were used to supply the N, P and K in the

NPK fertiliser treatments. Urea and KCl were applied in two split applications, while the TSP

was applied in one single application. The TSP was applied at planting together with one-third

of the urea and KCl and the remaining two-thirds of the urea and KCl were applied at 2

months after planting (MAP). The fertiliser was banded near the cassava stem cuttings.

Planting and crop management. Each sub-plot was 6 m × 6 m in size and had a total of

36 plants, with 16 plants in the net (effective) plot. The cassava stem cuttings were planted at

an inclined positon on the flat (no ridges used), using a spacing of 1 m × 1 m (plant population

of 10 000 plants/ha). The field was maintained weed free for the first 3 MAP using hand-hoe

weeding. This was achieved by weeding the field twice, first at just before 2 MAP and then at 3

MAP. A third and fourth weeding had however also been carried out at 6 MAP and between 9

Table 1. Soil chemical characteristics for the field experimental sites in Years 1 and 2.

Parameter Year 1 Year 2 Medium range/Critical level Reference

Value Status Value Status

pH 5.40 m 6.10 m 4.5–7.0 [15]

OC (%) 0.27 vl 0.53 vl 4.0–10.0 [16]

N (%) 0.04 vl 0.05 l 0.20–0.50 [16]

P (mg/kg) 1.49 vl 2.24 l < 4.2 [17]

K (cmol/kg) 0.12 l 0.03 vl 0.15–0.25 [15]

Ca (cmol/kg) 2.25 m 2.51 m 1.0–5.0 [15]

Mg (cmol/kg) 0.12 vl 0.41 m 0.40–1.00 [15]

S (mg/kg) 3.33 l 1.27 l < 6.0 [16]

Zn (mg/kg) 0.16 vl 0.31 vl 1.0–3.0 [18]

Cu (mg/kg) trace vl 0.13 l 0.3–0.8 [18]

Fe (mg/kg) 9.81 h 9.40 h 4.0–6.0 [18]

Where vl, l, m and h stand for very low, low, medium and high levels of each soil chemical characteristic.

https://doi.org/10.1371/journal.pone.0228641.t001
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and 10 MAP. Unlike in Year 2, the field experiment in Year 1 had been carried out without

correcting soil nutrient deficiencies. This was actually because of the delay in getting the soil

analysis results; it however brought out useful insights and was taken as something to learn

from. The effects of NPK fertiliser application were hence examined using two scenarios; with

and without the correction of soil nutrient deficiencies.

The soils at the experimental site in Year 2 were corrected for S, Zn and Cu. Magnesium

sulphate was used to correct the S deficiency; it was applied at a rate of 20 kg S/ha [22] at 2

MAP together with the second application of urea and MOP. The deficiency in Zn was cor-

rected using a 1% foliar solution of a product called YaraVita Zintrac (700 g Zn/L, as ZnO),

while the Cu deficiency was corrected using a 0.05% foliar solution of YaraVita Coptrac (500 g

Cu/L, as CuO). Two foliar applications of Zn and Cu were made; the first at 2 MAP and the

second at 3 MAP. The insecticide Dursban was used to control insect pests; it was mixed with

the foliar fertiliser solutions each time before spraying.

The pot experiment

A pot experiment had also been conducted to get a preliminary analysis of the effects of NPK

fertiliser application on cyanogenic glucoside production in cassava. The pot experiment was

established on the 24th October 2015 and was ended on the 25th January 2016. It was hence car-

ried out for a period of approximately for 3 months. The pot experiment was conducted at

Sokoine University of Agriculture (SUA) (S 6˚51’13", E 37˚39’26") which is located in Moro-

goro district in Morogoro region of Tanzania. It was a 2×4 factorial combination laid out

using the randomised complete block design (RCBD) using five replications. Only two out of

the four varieties used in the field experiment had however been included in the pot experi-

ment; namely the varieties Supa and Salanga. The same fertiliser treatments used in the field

experiment were also used in the pot experiment. They had however been converted to pot

based rates with the amount of nutrients applied expressed in milligrams per kilogram soil.

The fertiliser treatments included; a control treatment (N0P0K0) with no fertiliser applied; a

sole K fertiliser treatment (N0P0K1) with K fertiliser applied at a rate of 25 mg K/kg; a moderate

NPK fertiliser treatment (N1P1K1) applied at a rate of 25 mg N + 5 mg P + 25 mg K /kg; and a

high NPK fertiliser treatment (N2P2K2) applied at a rate of 50 mg N + 13 mg P + 50 mg K /kg.

Previously rooted cassava plantlets (shoots) had been used for the pot experiment and not

20 cm long cassava stem cuttings [https://dx.doi.org/10.17504/protocols.io.z9cf92w]. The use

of rooted cassava plantlets enables the observation of immediate effects from applied fertilisers;

this is because there is no interference from large nutrient reserves in plantlets. Each pot had

been filled with an air-dry mass of soil equivalent to 5 kg of oven-dry soil. The soil used as pot-

ting medium was a loamy sand (86.05% sand, 11.46% clay and 2.49% silt) [19] collected from

Soga village (S 6˚49’54", E 38˚51’49") in Kibaha district. The district is located in the Coast

region of Tanzania. Soils in Kibaha district are also predominantly Ferralic Cambisols with an

inherently low soil fertility [11,23]. The soil had been collected from 10 selected locations on a

farmer’s crop field from a 0 to 20 cm depth [https://dx.doi.org/10.17504/protocols.io.2eygbfw]

[24,25]. The soil had been analysed to reveal nutrient deficiencies; the results of the soil analy-

sis are given in Table 2.

The TSP and KCl had all been added and thoroughly mixed into the soil of each pot before

planting [https://dx.doi.org/10.17504/protocols.io.4engtde]. The urea was however applied in

solution form to already established cassava plants [https://dx.doi.org/10.17504/protocols.io.

4ifgubn] [25]; it was applied in two split applications, with one-third and two-thirds of it being

respectively applied at 2 and 6 weeks after planting (WAP). Deficiencies of Mg and S (Table 2)

had been corrected by applying magnesium sulphate (MgSO4.7H2O) to each pot at a rate of 25
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mg Mg/kg; simultaneously adding S at a rate of 32.5 mg/kg. The MgSO4.7H2O was all applied

before planting together with the TSP and KCl. The deficiency of Zn was corrected using a 1%

solution of YaraVita Zintrac; it was sprayed on cassava plants at 1 and 2 MAP. Insect pests had

also been controlled using the insecticide Dursban. The mean minimum and maximum tem-

peratures in the screen house were respectively 23 and 33˚C. All plants had been kept well-

watered throughout the experiment.

Note that even though the pot experiment was conducted for 3 months, it would be advis-

able to conduct cassava pot experiments for at least 2 months or for more than 3 months. This

is because root development would have already began in plants at about 3 MAP. In the pres-

ent experiment, root development was observed to be uneven with both unfertilised and ferti-

lised plants having roots or no roots produced on them at 3 MAP; this may introduce

experimental variability on some sensitive growth and plant quality characteristics.

Permission had been sought from the district offices in Kibaha district before collecting the

potting soil from the farmer’s field. The permission given was not in written form; a letter

from us requesting for help from the district was however left at the district office and we were

only made to sign the visitor’s book to indicate the purpose of our visit. The district office had

arranged for the soil collection and all activities had been done in their presence and with their

involvement. The farmer had only given verbal consent for his field to be sampled.

Data collected

Cyanogenic glucoside contents of cassava leaves and roots. In order to assess the effects

of NPK fertiliser application on cyanogenic glucoside production, changes in the HCN levels

of cassava leaves and roots (tuber parenchyma) were determined from the pot and field experi-

ments, respectively. In the field experiments, four plants were selected from the net plot of

each sub-plot and three roots were then collected from each plant for the determination of

HCN levels in cassava roots for each treatment [https://dx.doi.org/10.17504/protocols.io.

ydxfs7n] [26]. In the pot experiment leaf sampling had been carried out from five plants. The

first fully-expanded leaf from the top of a cassava plant plus two leaves below it were picked

from each plant during sample collection [https://dx.doi.org/10.17504/protocols.io.2dbga2n]

[26]. Leaf sampling was carried out at 92 days after planting in the early morning hours while

ambient temperatures were still low. The picrate paper method was used to determine the

Table 2. Chemical characteristics of soil used in the pot experiment.

Parameter Pot experiment Medium range/Critical level Reference

Value Status

pH 5.80 m 4.5–7.0 [15]

OC (%) 0.35 vl 4.0–10.0 [16]

N (%) 0.06 vl 0.20–0.50 [16]

P (mg/kg) 3.54 l < 4.2 [17]

K (cmol/kg) 0.14 l 0.15–0.25 [15]

Ca (cmol/kg) 3.04 m 1.0–5.0 [15]

Mg (cmol/kg) 0.08 vl 0.40–1.00 [15]

S (mg/kg) 1.27 l < 6.0 [16]

Zn (mg/kg) 0.82 l 1.0–3.0 [18]

Cu (mg/kg) 0.70 m 0.3–0.8 [18]

Fe (mg/kg) 25.12 vh 4.0–6.0 [18]

Where vl, l, m and h stand for very low, low, medium and high levels of each soil chemical characteristic.

https://doi.org/10.1371/journal.pone.0228641.t002
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HCN levels of cassava roots [https://dx.doi.org/10.17504/protocols.io.2emgbc6] and leaves

[https://dx.doi.org/10.17504/protocols.io.2dxga7n] [27,28]. Spectrophotometer readings for

both leaf and root HCN levels had been determined and used in the analysis. Colour chart

readings had however also been determined and these readings were used for Supa in Year 1,

as its spectrophotometer readings had been affected by the use of a faulty blank. All results

were reported on a fresh weight (fw) basis.

Plant nutrient concentrations and nutritional status. Plant nutrient concentrations had

only been determined in the two field experiments and not in the pot experiment. Relation-

ships between nutrient concentrations in ‘indicator tissue’ and root HCN levels had thus been

based on field data. Nutrient concentrations in the youngest fully expanded leaves (YFEL)

(without petioles) of cassava plants between 3 to 4 MAP are the best indicator tissue for the

assessment of plant nutritional status for cassava [15]. The YFEL’s were thus collected from all

cassava plants in the net plot of each sub-plot at 3 to 4 MAP and placed in khaki paper bags.

The collected leaves still in their paper bags were immediately placed in an air-forced oven and

left to dry to a constant weight at 70 oC. Once dry the leaf samples were finely ground and

mixed in a porcelain mortar with a pestle; care was taken to avoid contamination between

samples. The ground leaves were placed in plastic bags, which were then tightly sealed. Each

plastic bag with its leaf sample was then placed in properly labelled khaki paper bags to keep

them away from light. The leaf samples were stored in a cool dark place in the laboratory until

the time for plant tissue analysis.

Dry ashing had been used to determine nutrient concentrations in the sampled leaves. The

ash obtained for each treatment had been dissolved in 6 N hydrochloric acid (HCl) before

determining concentrations of P, K, Ca, Mg, and Zn in the leaf samples [18]. Total N concen-

trations in the YFEL’s was determined separately using the Kjeldahl method [16]. The nutrient

concentrations that were determined were then rated according to their adequacy for cassava

production to give the nutritional status of the cassava plants under each treatment [22].

Statistical analysis

The effects of NPK fertiliser application on leaf and root HCN levels in the pot and field exper-

iments, were respectively determined using a two-way and three-way Analysis of Variance

(ANOVA) and mean separation was carried out using the Tukey’s test at the 5% probability

level [29]. The HCN responses to fertiliser application had also been mathematically modelled

using regression analysis, in order to explain the observed responses [30]. Multiple linear

regression analysis using the stepwise approach was additionally carried out to show the occur-

rence of relationships between root HCN levels and changes in the nutrient concentrations of

the YFEL’s in response to NPK fertiliser application [31]. The data had been cleaned to remove

outliers and all statistical analyses were carried out using GenStat Edition 14.

Results and discussion

Effects of NPK fertiliser application

The Year by Variety by Fertiliser (Y×V×F) interaction effect from the three-way ANOVA car-

ried out to determine how root HCN levels in the cassava varieties had been influenced by

NPK fertiliser application in the two field experiments was significant (p = 0.018). This showed

differences in how root HCN levels had been influenced in the cassava varieties in Years 1 and

2. The data was thus split by year and a two-way ANOVA was carried out to investigate how

root HCN levels in the cassava varieties had been separately influenced in each year. The tables

obtained for the two-way ANOVA’s are shown in Table 3, together with the table for the two-

way ANOVA for the pot experiment.

Plant tissue analysis as a tool for reducing cassava cyanogenic glucoside content

PLOS ONE | https://doi.org/10.1371/journal.pone.0228641 February 13, 2020 8 / 22

https://dx.doi.org/10.17504/protocols.io.2emgbc6
https://dx.doi.org/10.17504/protocols.io.2dxga7n
https://doi.org/10.1371/journal.pone.0228641


The significant V×F interaction effect (p< 0.001) obtained in each experiment (Table 3)

tells us that at least one cassava variety had responded differently to the effects of NPK fertiliser

application in each experiment. How root HCN levels had been influenced by NPK fertiliser

application in each cassava variety in all three experiments, was hence separately determined

using a one-way ANOVA. The results obtained from all experiments are shown in Table 4,

where it can be seen that fertiliser application had influenced all leaf HCN contents and only

some root HCN contents in the cassava varieties. The occurrence of significant effects is an

indication of the influence of changes in plant nutritional status (induced by NPK fertiliser

application) on cyanogenic glucoside production in the cassava varieties. The effects of fertili-

ser application indirectly confirms the occurrence of relationships between plant nutritional

status and cyanogenic glucoside production in cassava. The observed effects will be discussed

in greater detail in the paragraphs that follow.

Table 4 shows that the leaf HCN levels of both Salanga and Supa had been significantly

influenced by NPK fertiliser application in the pot experiment. However, unlike Salanga, no

significant responses to NPK fertiliser application were correspondingly seen in the root HCN

levels of Supa in any of the two field experiments. This shows that the effects of NPK fertiliser

application on leaf HCN contents in cassava varieties, may not always translate to similar

Table 3. Two-way ANOVA tables for the effects of NPK fertiliser application on leaf HCN levels from the pot experiment and on root HCN levels from the field

experiments in Years 1 and 2.

Source of variation df SS MS F p-value CV (%)

Pot experiment
Block 4 5445.7 1361.4 3.18 20.7

Variety (V) 1 50347.7 50347.7 117.54 < 0.001 ���

Fertiliser (F) 3 55077.2 18359.1 42.86 < 0.001 ���

V×F 3 26566.5 8855.5 20.67 < 0.001 ���

Residual 25 10709.0 428.4

Total 36 140034.0

Field experiment: Year 1
Block 2 115.7 57.9 1.59 12.1

Variety (V) 3 106440.1 35480.0 973.21 < 0.001 ���

Residual 6 218.7 36.5 0.81

Fertiliser (F) 3 7597.7 2532.6 56.09 < 0.001 ���

V×F 9 9412.7 1045.9 23.16 < 0.001 ���

Residual 22 993.3 45.2

Total 45 106343.3

Field experiment: Year 2
Block 2 49.0 24.5 0.06 15.4

Variety (V) 3 108903.2 36301.1 83.91 < 0.001 ���

Residual 6 2595.7 432.6 4.19

Fertiliser (F) 3 728.5 242.8 2.35 0.100 NS

V×F 9 4139.7 460.0 4.46 0.002 ��

Residual 22 2271.4 103.2

Total 45 116032.2

Where; df, SS, MS, F, p-value and CV stand for degree of freedom, sum of squares, mean square, computed F, probability value and coefficient of variation, respectively.

��� Significant at p < 0.001

�� significant at p < 0.01

� significant at p < 0.05 and NS is not significant (p > 0.05).

https://doi.org/10.1371/journal.pone.0228641.t003
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responses in root HCN contents. It should however be noted that the leaf and root HCN levels

in the pot and field experiments had been determined on different plants and plant parts,

which could have contributed to the different results observed for Supa. Cyanogenic glucoside

contents of cassava however additionally reduce with plant age and may only stabilise after 10

to 12 MAP [32,33]. This makes plant age at harvest another possible reason for the different

responses seen between the HCN contents of leaves and roots of Supa (3 and 11 MAP, respec-

tively). On the other hand, similar to the observations made with Salanga in Year 1, another

study also reported significant effects on the HCN contents of leaves and roots of field grown

cassava at 9 MAP in response to NPK fertiliser application; the reported leaf and root HCN

contents were on average 0.54 and 0.51 mg/100g fw (5.4 and 5.1 mg/kg fw), respectively [10].

Focusing on the two field experiments, the root HCN contents of Salanga and Kiroba, had

only been significantly influenced by NPK fertiliser application in Year 1 and not in Year 2,

whereas the root HCN contents of Kalinda had only been significantly influenced by NPK fer-

tiliser application in Year 2 and not in Year 1 (Table 4). As already mentioned, other studies

have similarly reported significant changes in cassava root HCN levels with NPK fertiliser

application [10,34], while some have reported no responses [7,8,35]. It is possible that the non-

response to NPK fertilisers by once responsive varieties had been due to the heavy rains

received right before harvest (Fig 1); cyanogenic glucoside levels in cassava can be influenced

by changes in environmental conditions right before harvest. The correction of soil nutrient

deficiencies in Year 2 and their non-correction in Year 1 is however another possible reason. It

is important to note that Kalinda was the only variety that had its root HCN levels influenced

by NPK fertiliser application in Year 2 and that Supa was the only variety with its root HCN

Table 4. HCN levels in leaves and roots of each variety in the pot and field experiments under the effects of increased NPK fertiliser application.

Variety Fertiliser treatment Pot experiment Field experiment

Year 1 Year 2

Leaf HCN, fw SE Root HCN, fw SE Root HCN, fw SE

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Salanga N0P0K0 100.0bc 10.0 108.7c 7.3 142.4a 10.4

N0P0K1 66.9c 7.0 99.0c 4.5 131.7a 12.4

N1P1K1 141.9b 13.7 147.3b 7.7 132.5a 22.5

N2P2K2 233.6a 18.2 188.8a 2.0 175.6a 11.8

Kailnda† N0P0K0 - - 30.2a 0.0 32.0b 3.6

N0P0K1 - - 22.3a 2.4 47.4a 3.2

N1P1K1 - - 44.0a 6.4 53.2a 7.6

N2P2K2 - - 37.3a 2.4 39.8ab 0.8

Supa N0P0K0 47.8c 9.2 17.3a 2.7 17.7a 2.2

N0P0K1 54.4bc 3.7 12.0a 1.0 20.7a 1.9

N1P1K1 74.6ab 3.6 16.7a 0.7 18.4a 2.2

N2P2K2 84.9a 7.9 16.3a 1.5 22.8a 2.1

Kiroba† N0P0K0 - - 32.7b 1.9 54.4a 4.1

N0P0K1 - - 32.3b 3.8 63.1a 6.4

N1P1K1 - - 31.7b 0.3 55.0a 6.5

N2P2K2 - - 54.0a 2.0 51.2a 1.9

†Kalinda and Kiroba were not included in the pot experiment. For each variety, means in the same column followed by the same lowercase letter are not significantly

different at p < 0.05 using the Tukey’s test. Leaf and root HCN levels were determined on a fresh weight (fw) basis. SE is the standard error of the mean. Where; N0P0K0

= no fertiliser, N0P0K1 = 50 kg K/ha, N1P1K1 = 50 kg N + 10 kg P + 50 kg K /ha and N2P2K2 = 100 kg N + 25 kg P + 100 kg K /ha for the field experiments or their

equivalent rates in mg/kg for the pot experiment.

https://doi.org/10.1371/journal.pone.0228641.t004
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content not influenced by NPK fertiliser application in both years. Fertiliser application may

thus influence plant nutritional status in cassava varieties differently even under similar envi-

ronmental conditions; resulting in varied effects on cyanogenic glucoside production.

From Table 4 it can additionally be seen that increased applications of NPK fertiliser, had

resulted in heightened leaf HCN levels in both Salanga and Supa in the pot experiment.

Increased NPK fertiliser application had likewise resulted in heightened HCN levels in roots of

Salanga and Kiroba in the field experiment in Year 1. NPK fertiliser application had also

heightened the root HCN levels of Kalinda in Year 2 but as revealed in the quadratic regression

equation in Fig 2, the HCN levels of Kalinda had reached their highest limit with moderate

applications of NPK fertiliser, with increased applications of NPK fertiliser only reducing its

root HCN levels. It is however important to note that the ANOVA results in Table 4 showed

no significant differences between the root HCN levels attained with moderate and high appli-

cations of NPK fertiliser in Kalinda. In contrast to Kalinda, the regression equations obtained

for the effects of NPK fertiliser application on the root HCN levels of Kiroba and Salanga in

Year 1 were both linear, showing that root HCN levels in the two varieties had not reached

their highest (or lowest) limit with the applied NPK fertilisers (Fig 2). The regression equations

obtained for the effects of NPK fertiliser application on the leaf HCN levels of Salanga and

Supa, were also linear (Fig 3) and had thus not reached their highest (or lowest) limit with the

applied NPK fertilisers, as well.

In contrast to the findings of the present study, other studies have often reported reductions

in the HCN content of cassava with NPK fertiliser application (N, P and K supplied simulta-

neously) [36]. In one such study, root HCN levels of cassava were reported to reduce from

107.05 mg/kg fw when unfertilised to 77.49 mg/kg fw with high applications of NPK fertiliser

at a rate of 100 kg N + 100 kg P2O5 + 100 kg K2O /ha (100 kg N + 44 kg P + 83 kg K /ha) [34].

Fig 2. Models of HCN responses to increased NPK fertiliser application for each cassava variety in the field experiments in

Years 1 and 2. Note that an ordinal scale was used to represent the fertiliser treatments and that; 0 = (N0P0K0), 1 = N1P1K1 and

2 = N2P2K2. Where; N0P0K0 = no fertiliser; N1P1K1 = 50 kg N + 10 kg P + 50 kg K /ha; N2P2K2 = 100 kg N + 25 kg P + 100 kg K /ha.

Note that the sole K treatment (N0P0K1) has not been included in these analyses.

https://doi.org/10.1371/journal.pone.0228641.g002

Plant tissue analysis as a tool for reducing cassava cyanogenic glucoside content

PLOS ONE | https://doi.org/10.1371/journal.pone.0228641 February 13, 2020 11 / 22

https://doi.org/10.1371/journal.pone.0228641.g002
https://doi.org/10.1371/journal.pone.0228641


In another such study, root HCN levels in cassava were reported to be 64.2 mg/kg on a dry

weight (dw) basis under unfertilised conditions but had significantly reduced to 56.0 mg/kg

dw with the application of NPK fertiliser at a rate of 60 kg N + 26 kg P + 50 kg K /ha [37].

Moderate applications of NPK fertiliser at a rate of 50 kg N + 21 kg P + 41 kg K /ha, were also

reported to reduce HCN levels in cassava roots from 189 to 148 mg/kg fw, in yet another study

[38].

Despite NPK fertilisers having an increasing effects on the HCN contents of cassava varie-

ties in the present study, moderate applications of NPK fertiliser (50 kg N + 10 kg P + 50 kg K

/ha) had mainly brought about lower HCN levels in leaves and roots in contrast to high appli-

cations of NPK fertiliser (100 kg N + 25 kg P + 100 kg K /ha) (Table 4). In Kiroba, moderate

levels of NPK fertiliser were just as effective at reducing root HCN levels as sole K application

in Year 1. As previously mentioned, sole K fertiliser application is often reported to have

reducing effects on the HCN content of cassava [39,40]. However, just as observed in the pres-

ent study when no effects were seen with NPK fertiliser application (Table 4), some studies

have also reported no effects on root HCN contents with sole K fertiliser application [41].

Leaving Salanga and Kiroba unfertilised also proved to be at times just as effective as sole K fer-

tiliser application at reducing leaf and/or root HCN levels in these cassava varieties. In Year 2,

it was however seen that leaving Kalinda unfertilised was just as advantageous at reducing root

HCN levels as high applications of NPK fertiliser. High applications of NPK fertiliser could

thus be still useful for reducing the root HCN contents of these cassava varieties.

Correlations between HCN levels in leaves and roots and between HCN

levels of roots in Years 1 and 2

The leaf HCN levels of Salanga were significantly and positively correlated to the root HCN

levels of this variety in both Year 1 (r = 0.795, p = 0.003) and Year 2 (r = 0.639, p = 0.034). The

positive correlation coefficients show that the HCN contents of the leaves and roots of Salanga
had both increased with increased applications of NPK fertiliser, although not significantly for

root HCN contents in Year 2 (Table 4). On the contrary, the leaf HCN levels of Supa had

shown no association with the root HCN levels it had obtained in Year 1 (r = 0.033, p = 0.920)

and in Year 2 (r = 0.513, p = 0.088). Cyanogenic glucoside production was hence differently

influenced in the leaves and roots of Supa. In agreement with these findings, one study also

confirmed that not all varieties have significant correlations between their leaf and root HCN

levels [42]. In another study, a significant positive correlation (r = 0.66, p = 0.0034) was also

Fig 3. Models of HCN responses to increased NPK fertiliser application for each cassava variety in the pot experiment. Note that

an ordinal scale was used to represent the fertiliser treatments and that; 0 = (N0P0K0), 1 = N1P1K1 and 2 = N2P2K2. Where; N0P0K0 =

no fertiliser; N1P1K1 = 25 mg N + 5 mg P + 25 mg K /kg; N2P2K2 = 50 mg N + 13 mg P + 50 mg K /kg. Note that the sole K treatment

(N0P0K1) has not been included in these analyses.

https://doi.org/10.1371/journal.pone.0228641.g003
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reported between HCN contents in roots and leaves across four cultivars; the trend was how-

ever not consistent across all the sites where the experiment had been conducted [43]. Differ-

ences in environmental conditions hence also influence whether significant correlations are

seen between the HCN contents of leaves and roots of cassava varieties. Non-significant rela-

tionships between HCN levels of leaves and roots were however expected, due to the different

ages of cassava plants at leaf and root harvest.

Correlations between root HCN levels of cassava varieties in Year 1 with those obtained in

Year 2 were however all not significant (Table 5), confirming that the response to NPK fertili-

ser application by each cassava variety had been completely different in the two field experi-

ments. Differences in soil environmental conditions due to the correction and non-correction

of soil nutrient deficiencies was a probable contributing factor for the absence of relationships

between root HCN contents in Years 1 and 2.

Relationships between changes in plant nutrient concentrations and root

HCN levels

The results of the multiple linear regression analysis carried out to draw out relationships

between plant nutrient concentrations in the YFEL’s and the root HCN levels of each cassava

variety in the field experiments in Years 1 and 2 are shown in Table 6. It is important to mention

that the sole K treatment was excluded from the multiple linear regression analysis. The results

hence show relationships with increased levels of NPK fertiliser application; from non-applied

to the addition of moderate and finally high rates of NPK fertiliser. The significant relationships

revealed by the regression analysis show that cyanogenic glucoside production was dependent

on changes in plant nutritional status (Table 6); confirming the occurrence of relationships

between plant nutritional status and cyanogenic glucoside production. The relationships are

evidence of the strong dependency that plants have on their nutrient concentrations for the bio-

synthesis of quality determining organic compounds [44], like cyanogenic glucosides.

From Table 6 it can generally be seen that the root HCN contents of each cassava variety in

the two field experiments, were likely to be influenced by different changes in their plant nutri-

ent concentrations. As previously mentioned, the uncorrected nutrient deficiencies in Year 1

and the high rainfall received right before harvest in Year 2 might have brought about the

observed differences in how root HCN contents were influenced in the two field experiments.

In Table 6 it can as well be seen that the likely effects of changes in plant nutritional status on

root HCN contents was not going to be restricted to varieties that had their root HCN contents

significantly influenced by NPK fertiliser application (Table 4). It can further be seen that

some varieties that had their root HCN contents influenced by NPK fertiliser application were

not going to be further influenced by any changes in plant nutritional status. The results will

now be discussed in greater detail below. Note that constant reference will also be made to the

ANOVA results in Table 4.

Table 5. Correlations between the HCN levels in roots of each variety in Years 1 and 2.

Variety r p-value

Salanga 0.596 0.069 NS

Kalinda 0.103 0.777 NS

Supa -0.229 0.473 NS

Kiroba -0.407 0.190 NS

��� Significant at p < 0.001, �� significant at p < 0.01, � significant at p < 0.05 and NS is not significant (p > 0.05)

using the Pearson correlation (two-tailed). Where r is the correlation coefficient.

https://doi.org/10.1371/journal.pone.0228641.t005
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The results of the multiple linear regression analysis shows that with the applied NPK ferti-

lisers, a 1% increase in plant Ca concentrations in Year 1 would have helped reduce the root

HCN levels of Salanga and Supa by 4975.00 and 115.20 times, respectively (Table 6). The very

deficient plant Ca concentrations in Salanga and Supa (Table 7) support the increased demand

for Ca. Calcium was in fact the most severely deficient plant nutrient in all the cassava varieties

in Year 1, despite the soil at the experimental site in Year 1 having had adequate levels of Ca

(Table 1). Root HCN levels of Kalinda and Kiroba were however unaffected by low plant Ca

concentrations, probably because of their better adaptation to low concentrations of Ca. Cas-

sava has been reported to have an outstanding ability to grow under growth limiting condi-

tions of severe deficiencies of Ca in soils [45] and hence probably with severe deficiencies of

Ca in plants. The uptake of Ca in all the varieties in Year 1, was probably limited by nutrient

imbalances introduced by the non-correction of Mg, S, Zn and Cu in soils as the supply of N,

P and K was increased. Calcium (and Mg) uptake is reported to be depressed by large additions

of K fertilisers (like KCl) and ammonium-N containing fertilisers (like urea) to soils [46,47].

Regardless of not having been influenced by NPK fertiliser application in Year 1 (Table 4),

the root HCN levels of Supa could thus have been reduced (and probably significantly) by

increasing the concentrations of Ca in its plants. The root HCN contents of Salanga that had

been increased by NPK fertiliser application, would also have been reduced if only the concen-

tration of Ca had been increased in plants along with additions of NPK fertiliser. Improving

Ca absorption would have helped alleviate nutrient stress due to low Ca concentrations in

plants; consequently reducing the root HCN contents of the two cassava varieties. Increased

applications of Ca through additions of up to 2000 kg/ha of lime (CaO) on acidic soils, were

reported to be beneficial for decreasing root HCN levels in cassava from 54.8 to 40.8 mg/kg fw

[48]. The HCN reducing effects of Ca could have resulted from improved concentrations of

Ca in cassava plants.

Once again, but this time with Kiroba in Year 1, the multiple linear regression analysis had

revealed that while keeping plant K and Mg concentrations unchanged, a 1% increase of N in

plants, would have increased root HCN levels of Kiroba by 13.23 times (Table 6). Whereas,

while keeping plant N and Mg concentrations the same, a 1% increase of K in plants, would

Table 6. Results of the multiple linear regression analysis showing relationships between nutrient concentrations in the YFEL’s and the root HCN levels of cassava

varieties in the two field experiments.

Field experiment Variety Nutrient B t p-value R2

Year 1 Salanga Ca -4975.00 -2.67 0.056 NS 0.742

Kalinda† - - - - -

Supa Ca -115.20 -3.02 0.023 � 0.733

Kiroba N 13.23 7.53 < 0.001 ��� 0.967

K 26.66 5.12 0.004 ��

Mg 613.00 3.75 0.013 �

Year 2 Salanga† - - - - -

Kalinda P -105.50 -2.13 0.087 NS 0.812

Zn -0.955 -2.88 0.035 �

Supa† - - - - -

Kiroba K -42.4 -2.97 0.021 � 0.703

†Where a dash (-) indicates that no nutrient had a significant relationship with the root HCN content for that cassava variety.

��� Significant at p < 0.001

�� significant at p < 0.01

� significant at p < 0.05 and NS is not significant (p > 0.05). Note that the sole K treatment was excluded from the multiple linear regression analysis.

https://doi.org/10.1371/journal.pone.0228641.t006
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have increased the root HCN levels of Kiroba by 26.66 times. Still with Kiroba in Year 1, how-

ever this time while keeping plant concentrations of N and K unchanged, a 1% percent

increase of Mg in plants, would have increased the root HCN levels of Kiroba by 613.00 times.

The results indicate that increased concentrations of N, K and Mg in plants, would have had

negative effects on cyanogenic glucoside production in roots of Kiroba in Year 1. The root

HCN levels of Kiroba that were increased by NPK fertiliser application (Table 4), could hence

have been much higher in Year 1 if concentrations of N, K and Mg had been further increased

in plants. Higher concentrations of N in plants were going to be the single most main contrib-

utor of increased root HCN levels in Kiroba, followed by higher concentrations of K and then

by higher concentrations of Mg in plants (Table 6).

It is easy to see why higher concentrations of N in plants could have increased the root

HCN levels of Kiroba in Year 1 and this is because the concentration of N in plants had already

reached high levels with the applied N fertilisers (Table 7). Higher concentrations of N in Kir-
oba plants, would hence have increased plant N concentrations to toxic levels which would

have resulted in plant stress and consequently into higher root HCN levels. Kiroba was actually

the only variety in which plant N concentrations had reached high levels with the applied NPK

fertilisers in Year 1. An improved supply of N in soils is often reported to have increasing

effects on cyanogenic glucoside production in cassava, particularly when it is supplied in high

amounts and as the main nutrient in fertilisers [49,50]. Toxic levels of K could also have been

easily reached in Kiroba in Year 1, if the concentration of K had been further increased in

plants. Kiroba had high concentrations of K, but so did the other cassava varieties (Table 7).

Table 7. Nutrient concentrations in the youngest fully expanded leaves of cassava varieties under each NPK treatment in Year 1.

Variety Fertiliser treatment N P K Ca Mg Zn

(%) Status‡ (%)⁑ Status (%) Status (%) Status (%) Status (ppm) Status

Salanga N0P0K0 4.37 d 0.39 s 2.15 h 0.05 vd 0.21 d 40.63 s

N0P0K1 3.99 vd 0.35 d 2.04 h 0.05 vd 0.21 d 40.13 s

N1P1K1 5.58 s 0.42 s 2.11 h 0.04 vd 0.20 d 31.88 d

N2P2K2 5.67 s 0.52 h 2.25 h 0.04 vd 0.21 d 34.05 l

CV (%) 13.3 13.9 17.0 6.8 5.2 12.5
Kalinda N0P0K0 3.96 vd 0.49 s 2.15 h 0.04 vd 0.20 d 44.88 s

N0P0K1 3.84 vd 0.45 s 2.10 h 0.04 vd 0.22 d 46.13 s

N1P1K1 5.61 s 0.43 s 2.33 h 0.03 vd 0.21 d 41.38 s

N2P2K2 6.03 h 0.46 s 2.36 h 0.03 vd 0.20 d 39.38 s

CV (%) 5.1 20.9 9.3 16.2 2.4 6.1
Supa N0P0K0 3.56 vd 0.38 l 2.06 h 0.09 vd 0.22 d 42.38 s

N0P0K1 3.63 vd 0.37 l 2.16 h 0.08 vd 0.21 d 48.92 s

N1P1K1 4.50 d 0.32 d 2.28 h 0.07 vd 0.21 d 35.88 s

N2P2K2 4.74 d 0.38 l 2.15 h 0.06 vd 0.20 d 37.38 s

CV (%) 3.5 11.4 7.9 13.9 8.9 18.5
Kiroba N0P0K0 4.04 vd 0.40 s 2.18 h 0.04 vd 0.18 d 39.88 s

N0P0K1 3.75 vd 0.40 s 2.09 h 0.05 vd 0.18 d 36.38 s

N1P1K1 4.51 d 0.36 d 2.12 h 0.04 vd 0.18 d 26.38 d

N2P2K2 5.20 s 0.38 s 2.31 h 0.04 vd 0.19 d 32.13 l

CV (%) 3.8 15.0 2.5 15.9 4.4 9.8

‡Where vd, d, l, s, h and t stand for very deficient, deficient, low, sufficient, high and toxic plant nutrient concentrations.
⁑Some values may appear similar due to rounding-off, but are different, hence their different plant nutritional status. CV is the coefficient of variation. Where; N0P0K0 =

no fertiliser, N0P0K1 = 50 kg K/ha, N1P1K1 = 50 kg N + 10 kg P + 50 kg K /ha and N2P2K2 = 100 kg N + 25 kg P + 100 kg K /ha.

https://doi.org/10.1371/journal.pone.0228641.t007
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Cyanogenic glucoside production in Kiroba, was hence probably most sensitive to high con-

centrations of plant K. As previously mentioned, the increased supply of K in soils and proba-

bly increased concentrations of K in plants, is often reported to reduce root HCN levels in

cassava. Contrary to this, the present study shows that increased concentrations of K in cassava

plants through additions of K fertilisers, could also have increasing effects on root HCN con-

tents. Similar to the results of the present study, increased levels of K (0.03 to 1.9 cmol/kg) in

soils, and probably in plants, were also observed to increase with root bitterness (and thus root

HCN levels) in cassava [51]. Increased bitterness of cassava roots is often positively correlated

to root HCN levels [52].

Moving to Mg, with its concentrations in plants having been less than adequate in Kiroba
in Year 1, it was expected that increasing concentrations of Mg in plants would be beneficial

for reducing root HCN levels. It is therefore not clear why improved plant Mg concentrations

would have increased root HCN levels in Kiroba. A possible explanation is that increased plant

concentrations of Mg in Kiroba, would have induced antagonistic nutrient interactions, like

those preventing the absorption of other needed nutrients, particularly those that were inade-

quate in plants, like Ca. The close relationship that plant Mg concentrations have with the sup-

ply of Ca (and K) in soils [46], makes this a possible contributing factor. This reason, again

points out to the effects of introduced nutrient imbalances in the field experiment in Year 1.

However, another possible reason is that although rated as deficient, plant Mg concentrations

could probably have been adequate for Kiroba, if it has an ability of utilising minimal levels of

Mg. This can however be only confirmed by using plant Mg requirements specifically devel-

oped for Kiroba in this growing environment. An improved supply of Mg in soils has been

reported to have reducing effects on cassava root HCN levels [34], similar to the effects of the

increased supply of K in soils. On the hand, similar to the findings of the present study,

increased soil pH (4.40 to 6.96), which was significantly positively associated with increased

levels of Mg (r = 0.548, p-value < 0.001; ranging from 0.02 to 0.76 cmol/kg) and K (r = 0.343,

p-value < 0.001; ranging from 0.02 to 0.32 cmol/kg) in soils, was reported to likely increase the

occurrence of high root HCN levels in cassava produced in Mtwara region [21]. The concen-

trations of Mg in Kiroba could hence have been simply adequate or even high given their levels

in soils (Table 1).

The significant results of the multiple linear regression analysis in Year 2, cannot be ade-

quately discussed without first describing the changes that occurred to the nutrient concentra-

tions of the YFEL’s as a result of NPK fertiliser application. The nutrient concentrations

obtained in the YFEL’s in Year 2 are shown in Table 8, where it can be seen that N and Zn

were the only nutrients that were mainly adequate in all cassava varieties. Nitrogen was ade-

quate even in unfertilised plants, implying that the adequate levels of N in plants had been

mainly been brought about by the correction of soil nutrient deficiencies. The occurrence of

several nutrient deficiencies in plants (as shown in Table 8), despite their adequate supply,

however points out to the occurrence of a ‘dilution effect’ [53]. A ‘dilution effect’ occurs when

plants undergo rapid dry matter production that exceeds the rate of nutrient accumulation

[53]. When factors that lead to a ‘dilution effect’ occur at the time of tissue sampling for plant

analysis, it results in nutrient concentrations appearing to be lower than their actual levels in

plants.

A ‘dilution effect’ occurs when a growth limiting factor is removed; similar to what was

observed in the present study when soil nutrient deficiencies were corrected (Table 8). Most

nutrients were thus adequate in plants in Year 2 and this was confirmed by their better growth,

in contrast to the growth of plants in Year 1 (Table 9). It can thus be concluded that the differ-

ences between the results obtained in the two field experiments had been mainly due to the

uncorrected nutrient differences in Year 1. This does not however rule out any effects that
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could have been introduced by the heavy rains experienced right before harvest in Year 2. The

results of the multiple linear regression analysis were however not affected by the ‘dilution

effect’, as they had still retained their trends. They are hence still reliable and shall now be dis-

cussed in detail in the paragraphs that follow.

The results of the multiple linear regression analysis in Table 6, shows that there were no

significant relationships between the root HCN contents and plant nutrient concentrations of

Salanga and Supa in Year 2; implying that no further changes in the nutritional status of plants

of these varieties were needed to change their root HCN contents with the applied NPK fertili-

sers. The plant nutritional status of these varieties was hence in equilibrium with the rate at

Table 8. Nutrient concentrations in the youngest fully expanded leaves of cassava varieties under each NPK treatment in Year 2.

Variety Fertiliser treatment N P K Ca Mg Zn

(%) Status‡ (%) Status (%) Status (%) Status (%) Status (ppm) Status

Salanga N0P0K0 5.35 s 0.28 d 1.00 d 0.30 d 0.17 d 47.74 s

N0P0K1 5.47 s 0.29 d 1.00 d 0.31 d 0.17 d 46.64 s

N1P1K1 5.55 s 0.29 d 0.97 d 0.26 d 0.17 d 42.24 s

N2P2K2 5.88 h 0.34 d 1.07 d 0.28 d 0.16 d 35.64 s

CV (%) 8.8 14.7 13.1 12.5 8.6 16.0
Kalinda N0P0K0 5.14 s 0.29 d 1.15 d 0.31 d 0.19 d 52.14 s

N0P0K1 5.07 l 0.27 d 1.08 d 0.33 d 0.18 d 49.94 s

N1P1K1 5.15 s 0.27 d 1.17 d 0.32 d 0.16 d 41.14 s

N2P2K2 5.52 s 0.32 d 1.23 d 0.33 d 0.17 d 44.44 s

CV (%) 5.2 8.3 9.8 5.8 14.6 14.9
Supa N0P0K0 5.04 l 0.28 d 1.06 d 0.29 d 0.16 d 38.94 s

N0P0K1 5.05 l 0.26 d 1.04 d 0.30 d 0.16 d 40.04 s

N1P1K1 5.37 s 0.32 d 1.16 d 0.26 d 0.16 d 35.64 s

N2P2K2 5.51 s 0.32 d 1.15 d 0.28 d 0.15 d 33.44 l

CV (%) 3.8 8.4 10.2 12.8 4.4 15.9
Kiroba N0P0K0 5.30 s 0.27 d 1.08 d 0.32 d 0.14 vd 43.34 s

N0P0K1 5.25 s 0.29 d 1.14 s 0.31 d 0.15 d 40.04 s

N1P1K1 5.43 s 0.28 d 1.13 d 0.29 d 0.15 vd 27.94 d

N2P2K2 5.61 s 0.26 d 1.02 d 0.33 d 0.15 d 35.64 s

CV (%) 2.4 16.0 7.9 7.1 5.4 16.3

‡Where vd, d, l, s, h and t stand for very deficient, deficient, low, sufficient, high and toxic plant nutrient concentrations. CV is the coefficient of variation. Where;

N0P0K0 = no fertiliser, N0P0K1 = 50 kg K/ha, N1P1K1 = 50 kg N + 10 kg P + 50 kg K /ha and N2P2K2 = 100 kg N + 25 kg P + 100 kg K /ha.

https://doi.org/10.1371/journal.pone.0228641.t008

Table 9. Mean root dry matter contents, plant heights and stem diameters for each cassava variety at 11 MAP in Years 1 and 2.

Variety Year 1 Year 2

Plant height Stem diameter Root DM‡ content Plant height Stem diameter Root DM content

(cm) (cm) (%) (cm) (cm) (cm)

Salanga 212.5 2.1 27.4 292.0 2.4 22.6

Kalinda 168.6 1.9 27.4 280.0 2.3 29.4

Supa 156.2 1.8 28.5 292.4 2.4 33.1

Kiroba 132.0 1.6 28.3 225.8 2.2 32.0

CV (%) 15.6 11.9 5.7 11.7 9.7 9.6

‡Where DM stands for dry matter.

https://doi.org/10.1371/journal.pone.0228641.t009
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which they were producing cyanogenic glucosides. No significant relationships between root

HCN contents and plant nutrient concentrations were also seen in Kalinda in Year 1. Back to

Year 2, only Kalinda and Kiroba had significant relationships between their plant nutrient con-

centrations and root HCN levels. The regression analysis showed that while keeping plant Zn

concentrations unchanged, a 1% increase in plant P concentrations would have reduced the

root HCN levels of Kalinda by 105.50 times. In addition, with plant P concentrations being

kept the same, a 1% increase in Zn would have reduced the root HCN levels of Kalinda by

0.955 times. The root HCN levels of Kalinda shown in Table 4 could hence have been much

lower, if only the concentrations of P and Zn had been further increased in plants along with

the applied NPK fertilisers. Increasing plant concentrations of Zn in Kalinda was slightly more

critical for getting the root HCN levels of this variety reduced than increasing concentrations

of P.

An improved supply of Zn in soils was reported to have reducing effects on the root HCN

contents of cassava [48], on the other hand an improved supply of P in soils was reported to

have no influence on the root HCN contents of cassava [50]. Increments of P and Zn had prob-

ably simultaneously occurred in plants with the improved supply of P and Zn in soils, in both

studies. The present study reveals that P can also influence cyanogenic glucoside production in

cassava, just like Zn. The better nutrition in Year 2 appeared to increase the demand for P and

Zn in Kalinda, beyond their supplied amounts. Thus, in order to increase concentrations of P

and Zn in Kalinda to their required levels; P should have been applied at a rate greater than 25

kg/ha and Zn should have instead been applied to soils at a rate of 10 to 20 kg/ha and not by

foliar application [22]. Cassava has been reported to have a high demand for P [45], which

could explain the increased demand for P by Kalinda. It is however unclear, why higher con-

centrations of Zn in plants could have helped reduce root HCN levels in Kalinda when Zn

appeared to be mainly sufficient (Table 8). The deficiency of Zn in Kalinda could have how-

ever been masked by the Zn foliar applications, which could have only provided temporary

relief from the deficiency. A possible explanation for the higher demand for Zn by Kalinda,

could be its slightly higher variety specific demand for Zn (and P) but this can only be con-

firmed by using established plant nutritional requirements for Kalinda in this growing

environment.

For Kiroba, increasing K in plants by 1% would have reduced root HCN levels by 42.4

times in Year 2 (Table 6). Kiroba appeared to have a higher demand for K in Year 2, which was

again probably due to the better plant nutrition in the second field experiment. Although no

significant effects had been seen with NPK fertiliser application in Year 2 for Kiroba (Table 4),

the results of the multiple linear regression analysis showed that higher concentrations of K in

plants along with NPK fertiliser application, could have helped lower (probably significantly)

the root HCN levels obtained for this variety. Higher rates of K than what was applied (more

than 100 kg K/ha) were hence probably needed to attain lower root HCN contents in Kiroba.

Increasing the nutritional status of K in plants, would hence have had opposite effects on the

root HCN content of Kiroba in the two field experiments. In Year 1, less plant K was needed

to lower root HCN levels in Kiroba, while more K was needed to achieve this same effect in

Year 2.

Conclusions

Despite the differences between the results obtained in the two field experiments, due to the

correction and non-correction of soil nutrient deficiencies, the study had still managed to

demonstrate the occurrence of meaningful relationships between plant nutritional status and

cyanogenic glucoside production in cassava roots. This was firstly shown through the observed
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effects of NPK fertiliser application on the root HCN contents of various cassava varieties,

which indirectly confirmed a response to changes in plant nutritional status, hence giving evi-

dence of relationships between plant nutritional status and cyanogenic glucoside production;

and it was secondly directly shown through the relationships observed between changes in

nutrient concentrations of ‘indicator tissue’ and root HCN levels of various cassava varieties.

The occurrence of meaningful relationships between plant nutritional status and cyanogenic

glucoside production hence demonstrated that plant tissue analysis can be a useful tool for pre-

dicting fertiliser needs for the production of cassava roots with low cyanogenic glucoside

contents.

The relationships qualify as being meaningful because of their close similarity with relation-

ships that exist between plant nutritional status and plant growth or yields. For instance, very

high and deficient plant nutrient concentrations both gave negative (increasing) effects on cya-

nogenic glucoside production, much like the negative (reducing) effects they have on plant

growth and yields. In addition, much like what is observed with plant growth and yields, cya-

nogenic glucoside production also varies amongst various cassava varieties and under different

growing environments. Different graphical response models (curves) representing relation-

ships between plant nutrient concentrations and root HCN contents, are hence expected for

different cassava varieties and in different growing environments, much like what is also seen

with yields and plant growth.

While the use of fertilisers may not be economical for most farmers, the use of plant tissue

analysis can still play a role in aiding the identification of cassava varieties that can be grown

by farmers for safe consumption right at harvest. The root HCN contents of such varieties

should only be minimally affected by changes in plant nutritional status; enabling them to con-

sistently maintain low HCN contents. Furthermore, to fully exploit the benefits of plant tissue

analysis, plant nutrient requirements that achieve both high yields and reduced cyanogenic

glucoside levels in cassava need to be developed, given the importance of both characteristics

for food and nutrition security.
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