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Abstract—Adoption of CA in smallholder farmers in Africa is 

(s)low partly due to poor spatial targeting. Mapping the crop 

yield from different CA systems across space and time can 

reveal their spatial recommendation domains. Integration of 

machine learning (ML) and free remotely sensed big data have 

opened huge opportunities for data-driven insights into 

complex problems in agriculture. The objective of this study 

was to estimate the spatial-temporal variations of maize grain 

yields from 13-year multi-location on-farm trials implemented 

across four countries in southern Africa. The agronomic data 

from the long-term CA trials is used together with gridded 

biophysical and socio-economic variables. A spatially explicit 

random forest (RF) algorithm was developed. Spatial variation 

of yield advantage or loss from CA practices was compared 

with conventional tillage practices (CP) during seasons with 

above and below-normal precipitation. The out-of-bag 

accuracy of the RF model was R2 = 0.63 and RMSE = 1.2 t ha-1. 

The variable importance analysis showed that the altitude, 

precipitation, temperature, and soil physical and nutrients 

conditions variables explained most of the variation in maize 

grain yield. Maps were generated to identify the locations 

where CA had a yield advantage over CP during seasons with 

below and above-average precipitation. The CA showed yield 

gains of up-to 1 t ha-1 during the season with drought 

compared to CP. In contrast, the CA returned yield losses of 

similar magnitude during the season with above-normal 

precipitation, except in Mozambique. The maps on yield 

advantage will support the spatial targeting of CA to suitable 

biophysical and socioeconomic contexts. Results demonstrates 

that multi-source remotely sensed data, coupled with advanced 

and efficient machine learning algorithms can provides 

accurate, cost-effective, and timely platform for predicting the 

optimal locations for the upscaling sustainable agricultural 

technologies. 
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I. INTRODUCTION 

Conservation Agriculture (CA) involves the 

simultaneous application of minimum soil disturbance, crop 

residue retention, and crop diversification through rotations 

and intercropping systems [1]. CA improves water 

infiltration capacity, available soil moisture and gradually 

increase soil carbon content. Recent publications has shown 

that CA can increase crop yields compared to conventional 

tillage (CP) practices [2]. However, adoption of CA by 

smallholder farmers in Africa is low [3] that is partly 

attributed to poor spatial targeting [3-5]. To design robust 

strategists for scaling out CA practices, it is important to 

develop spatially explicit and evidence-based 

recommendation domains that show which CA practices are 

suitable at different agro-ecologies. Tesfaye [4] applied a 

multi-criteria approach to map the recommendation domains 

of CA applied that incorporate elements of subjectivity. 

Recently there have been increase of data from agronomic 

trials [1, 6, 7]. Moreover, there is increase of big data from 

earth observation platform coupled with advances in robust 

spatial analytics and algorithms [8-10] that improves 

prediction of crop yields over time and space. However, the 

robust analytics have not been applied to map crop yield 

from CA systems in Africa. Moreover, robust analytical 

methods and algorithms have emerged for deriving useful 

insights from complex data.  

The machine learning (ML) algorithms have 

proofed to be accurate for prediction of crop yields [11-14]. 

The ML algorithms are flexible in dealing with complex data 

characterized by high dimensionality, multicollinearity, 

outliers, and nonlinear relationships [14]. ML coupled with 

high spatial and temporal resolution earth observation data 

has shown great potential for spatial-temporal prediction of 

yields. The ML approaches offer robust algorithms that learn 

patterns from big data to predict the desired output. 

Moreover, ML algorithms like RF are flexible to handle 

unstructured data to unravel complex relationships [14]. 

However, different ML algorithms have different predictive 

power depending on the inherent characteristics of input data 

[11]. Though the current study applied RF for spatial 

prediction of maize yield, future studies should compare the 

performance of different ML algorithms.  

 

This paper apply a random Forest (RF) algorithm to 

estimate the spatial-temporal variation of maize grain yields 

from 13-year multi-locational on-farm trials over four 

countries in Southern Africa (Malawi, Zambia, Zimbabwe 

and Mozambique. The predicted yields are applied to access 

the areas where CA has yield advantage over CP during 

seasons with above normal and below normal precipitation 

regime. Results provides evidence-based information on 

potential of CA practices to increase resilience to climate 

change and variability in smallholder farming systems in 

Southern Africa.  



II. MATERIALS AND METHODS 

The study area is covers four countries in Southern Africa 

and measures over 2 million square kilometers (Fig. 1). The 

area experience unimodal rainfall regime from October to 

April. The rainfall regime is experiencing significant 

increase or decrease although varied over space and time 

[15]. 

 
Fig. 1.  Map of study area with on-farm trial sites superimposed on long-

term (1981 - 2017) mean annual precipitation generated from CHIRPS-v2. 

A. Agronomic data 

Agronomic data were derived from CIMMYT’s long-
term on-farm CA trial database established over 13 growing 
seasons between 2004/2005 and 2016/2017 in the four 
countries. This comprised georeferenced yields with details 
of tillage practices, maize varieties, and other complementary 
agronomic management practices. The database comprised 
of the five CP and seven CA treatments. A total of 18 maize 
varieties with greater than 100 observations in the agronomic 
database were considered in this analysis. Detailed 
description of the agronomic trials can be found in [1] and 
[6]. A total of a total of 1137 observations with precise GPS 
of the farm location. 

B. Remote sensing variables 

Gridded monthly and seasonally aggregated data on 
precipitation, actual evapotranspiration (ET), maximum 
(Tmax), and minimum temperatures (Tmin) was obtained 
from TerraClimate [16]. The standardized precipitation 
anomalies were generated as the difference between total 
precipitation for each growing season and the long-term 
mean (1981 - 2017) was divided by the standard deviation to 
derive the seasonal. The ASTER DEM was used to generate 
the slope layer. Soil physical and chemical characteristics 
were obtained from SoilGrids250m database [17]. We used 
the seasonal maximum value composite of MODIS enhanced 
vegetation index (EVI) with 250m was used. Social 
economic variables included the cattle density and market 
access. Length of growing period layer was downloaded 
from FAO. 

III. DATA ANALYSIS 

A. Model training and prediction 

 
 We applied RF model (Breiman, 2001) from the 

‘ranger’ R package [18] to develop the spatial prediction 
framework. The RF regression analysis was used to predict 

the yield using both the continuous (n = 35) and the 
categorical variables (n = 38). The function ‘tuneRF’ was 
initially used to find the optimum parameters to run the 
random forest algorithm. The optimum number of trees 
(ntree) obtained through the ‘tuneRF’ function was 100. The 
model performance was evaluated using the root mean 
squared error (RMSE) and the amount of variation explained 
by the model (R2). The permutation variable importance 
measure [19] was used to evaluate the importance of features 
in the RF model. we used the ‘pdp’ package [20] to produce 
the partial dependency plots for variables with the highest 
contribution to the model. The following single model was 
used to predict maize yield in the four countries in tonnes per 
hectare (t ha-1). The model was parameterized as follows:  

MGY [t ha-1] = f [Tillage treatment + Variety + Soil 
nutrients + Soil physical + Climate + Terrain + 
Socioeconomic + EVI+ CA period]   [Eq. 1] 
  

Where: MGY is the maize grain yield (t ha-1). The tillage 
treatments and variety are defined in Tables 1 and 2, and the 
other continuous variables are as described in Table 3. The 
‘CA period’ represented the number of years since the 
implementation of CA trials and was divided into two 
categories i.e., 0 – 5 years and 6 – 13 years. The variables 
tillage treatment, variety, CA period are categorical variables 
(Tables 1 - 2). 

After training the RF model, it was applied for spatial 
prediction of maize grain yield for PAN53 maize variety for 
different CA treatments. Predictions were conducted for two 
growing seasons with above (2004/2005) and below average 
(2016/2017) precipitation to evaluate the performance of CA 
practices under contrasting soil moisture conditions. The 
multivariate model allows spatial predictions of yield for 
multiple combinations of agronomic variables, which are 
impossible if individual models are fitted. 

 

B. Calculating yield advantage of CA over CP 

treatments 

The The spatial yield advantage or loss of CA practices 
was calculated as the difference in the predicted yield 
between the CA and CP treatments (Equation 2) because of 
its ease of interpretation and the relevance for comparing 
potential gains. The raster representing predicted yield from 
the CPMS (Table 1) was used as the control and contrasted 
with the raster outputs from each of the seven CA practices 
during a dry (2005) and wet (2017) season to examine the 
mean yield advantage (loss) of CA practices during those 
respective periods using Eq. 2 below:  

Yield advantage = yield (ca) – yield (cpms)  
 [Eq. 2] 

Yield advantage is the amount by which the predicted 
yield from CA is higher or lower than from the CP. Yield (ca) 
and yield (cpms) is the predicted yield from CA and CPMS 
systems, respectively. Positive or negative values indicate 
that CA systems have a yield advantage or loss over CP. The 
results were plotted against each other at a site, variety, and 
season to determine which treatment and varieties had a 
greater yield advantage or loss. The primary assumption is 
that when the yield of the two treatments is equal, there is no 
change in yield (yield advantage = 0). In contrast, a positive 
yield value signifies the superiority of the CA method over 



the CP. Similarly, a negative value shows that the CP 
produces better yields at that location and time compared to 
the CA practice. 

IV. RESULTS 

A. Validation of remote sensing estimates with 

gauge data 

The RF regression model predicted the maize yield 

with a relatively high accuracy of R2 = 0.63 and out-of-bag 

RMSE = ±1.2 t ha-1 (Fig. 2). The top five most important 

predictors for maize yield were the elevation, February 

precipitation, ET, total precipitation, and precipitation 

anomaly (Fig. 3). 

 
Fig. 2. Agreement the measured and predicted maize grain yields 

 

 
Fig. 3. Long-term spatial temporal trends of CHIRPS-v2 rainfall for six 

West Africa countries for 37 years period (1981 – 2017) 

B. Spatial prediction of maize yields 

Fig. 4 and Fig. 5 shows the predicted maize yield maps for 

the PAN53 variety with CPMS and DSMIR treatments for 

dry (2004/2005) and wet (2016/2017) growing seasons, 

respectively. Yields were higher during wet (2016/2017) 

compared to dry (2004/2005) seasons except in some parts 

of Northeast Mozambique. 

 
Fig. 4. Predicted maize grain yield for PAN53 variety under conventional 

practice with sole maize (CPMS) during 2004/2005 (a) and 2016/2017 (b) 
growing seasons that had below and above normal precipitation, 

respectively 

 

 
Fig. 5. Predicted maize grain yield for PAN53 variety under direct seeding 

with maize intercropping and rotation (DSMIR) conservation agriculture 
practice (CA) during 2004/2005 (a) and 2016/2017 (b) growing seasons. 

 

C. Spatial prediction of maize yields 

Fig. 6 shows the yield advantage (loss) for the PAN53 

variety in the DSMIR CA systems compared to the CPMS 

during dry (2004/2005) and wet (2016/2017) seasons. 

During the dry season, the DSMIR CA systems returned a 

yield advantage (0.1 – 1 t ha-1) compared to CPMS across 

the entire region (Fig. 6). The DSMIR system showed the 

highest yield advantage (0.5 – 1 t ha-1) in Mozambique, 

north-eastern Zambia, and central Malawi. In contrast, in the 

wet season, all CA systems returned a yield loss compared 

to CPMS in a large swath of Zambia, Zimbabwe, and 

western Malawi (Fig. 6b). Results clearly show a yield loss 

when CA practices are applied during a season with above-

average precipitation in the three countries. This pattern was 

replicated across other CA treatments (data not shown) 
 



 
Fig 6. long-term spatial temporal trends of minimum temperature (Tmin) 

for six West Africa countries 

V. DISCUSSIONS 

CHIRPS-v2 This paper utilized big data from 

agronomic trials, remote sensing platforms, and RF 

algorithm to predict the spatial variation of maize grain 

yield under CP and CA practices in four southern African 

countries. The effectiveness of CA over CP systems is 

examined during the 2004/05 and 2016/17 growing seasons 

that experienced below and above-normal precipitation, 

respectively. We generated maps to identify the locations 

where CA systems had a yield advantage over the CPMS 

systems during seasons with drought and above-average 

precipitation. The CA systems showed a yield advantage of 

0 – 1 t ha-1 during the drought season (2005) compared to 

CPMS systems. In contrast, during the season with above-

normal precipitation, the CA systems returned yield losses 

(0 to -1 t ha-1) over a larger area in southern Africa, except 

in Mozambique. This information is essential for targeting 

the CA practices to the site where it provides maximum 

yield advantage as an adaptation measure to droughts.  

The order of variable importance showed that 

maize yield in this region is heavily dependent on 

precipitation and temperature. These results concur with the 

studies related to the growth and production of maize to 

precipitation [7, 21, 22]. Precipitation (especially for 

February, November, and December) distinctly comes as the 

most important covariate overall, including its anomaly in 

the different years. The timing of precipitation are critical 

since the other growth and maturity stages of maize in this 

region have varied moisture requirement i.e. precipitation in  

November – December coincides with the germination, 

while in February it coincides with silking and anthesis 

growth stages that require sufficient precipitation [23].  

This study demonstrated the utility of ML 

approaches for generating information from big and 

complex agronomic and remote sensing data to inform 

evidence-based targeting of CA technologies in southern 

Africa. The maps are decision support tools that are 

important for guiding investment as well as extension and 

development agencies. These maps are helpful in identifying 

the best-bet locations for extrapolating CA systems and 

complementary technologies such as improved maize 

varieties that are suited for different agro-ecologies. Results 

show that CA practices enhances resilience to droughts in 

large area in Southern Africa. 
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