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Integrated management of Spodoptera frugiperda 6 
years post detection in Africa: a review 
Ghislain T Tepa-Yotto1,2, Peter Chinwada3, Ivan Rwomushana4,  
Georg Goergen1 and Sevgan Subramanian5   

The introduction of fall armyworm (FAW) Spodoptera frugiperda 
(JE Smith) (Lepidoptera: Noctuidae) on the African continent 
has led to paradigm shifts in pest control in maize systems, 
occasioned by year-round populations. The discovery of 
resident parasitoid species adapting to the new pest 
significantly informed decision-making toward avoiding highly 
hazardous synthetic insecticides to control the pest. A number 
of biopesticides have shown promise against the fall 
armyworm, providing a new arsenal for the sustainable 
management of this invasive pest. However, a few knowledge 
gaps remain for a fully integrated and sustainable FAW- 
management approach, particularly on host-resistance 
potential. 
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Background 
The fall armyworm (FAW) Spodoptera frugiperda (JE Smith) 
(Lepidoptera: Noctuidae) is native to the Americas. 
Following its first detection in Africa in early 2016 [1••], 
FAW unarguably became the most damaging lepidopteran 

pest in maize agroecosystems. Before 2016, the predominant 
lepidopteran pest complex in maize agroecosystems com
prised a few foliage-feeding species of Spodoptera and stem 
borers [e.g. Busseola fusca (Fuller), Sesamia calamistis 
Hampson, Chilo partellus (Swinhoe), and Eldana saccharina 
Walker] [2]. Except for sudden outbreaks of the African 
armyworm, S. exempta (Walker), infestation by these other 
Lepidoptera either rarely warrants chemical control or is 
maintained at below economic injury level by native and 
introduced natural enemies [3]. 

The accompanying high levels of damage on maize 
against a backdrop of a limited number of plant-protec
tion products that are yet registered for FAW, and the 
general unsustainability of chemical control at the 
smallholder farmer level highlights the need for a hol
istic integrated pest-management (IPM) strategy. 
Therefore, continental efforts were launched by several 
development partners, regional, and international orga
nizations to design and deploy contingency-mitigation 
measures and medium-term and long-term interven
tions. Subsequent training, research, and partnership 
arrangements are leading to the generation of evidence- 
based knowledge. Coordination mechanisms, break
throughs, and the potential impact of the tools and in
novations developed to manage the invasive pest are 
discussed in this review. We also assess farmers’ re
sponses to the pest threat and articulate guiding princi
ples for a roadmap for improved delivery of FAW IPM in 
the context of changing climates. 

Following its first detection on the continent, various 
strategies were employed to manage the new and highly 
damaging FAW pest. At the smallholder farmer level, 
techniques employed included physical and mechanical 
control (e.g. crushing of egg masses and neonates, pla
cement of sand or wood ash inside plant funnels, and 
drenching plant funnels with laundry-washing powders), 
application of extracts from neem (Azadirachta indica) 
and velvet bean (Mucuna pruriens), application of fish 
soup, ‘push–pull’, intercropping, and other traditional 
practices [4–8]. At the commercial farmer level, there 
was total reliance on synthetic chemical insecticides, 
some of which are classified as moderately to highly 
hazardous [9]. Simultaneously, using information from 
the Americas, governments started fast-tracking regis
trations of synthetic chemical insecticides that had no 
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known lepidopteran-resistance history and had not yet 
undergone proper trials. 

Knowledge generation and sharing 
A better understanding of the bioecology of the pest in 
the African context has led to hypothesis-driven FAW 
research [10]. 

Impact assessments and socioeconomic studies, 
including socioeconomic costs of damage 
There have been disparate maize-yield loss estimates 
between farmer perception-based and socioeconomic 
surveys of FAW impacts [11–14] and rigorous empirical 
reports showing much lower consequences [15,16]. 
However, early outbreaks of FAW were quite devas
tating, and in some instances, all the maize crops were 
totally lost. Thus, whether further vast FAW-manage
ment campaigns contributed to successful reduction of 
pest populations, the new associations of natural ene
mies contributed to FAW-population regulation, or the 
initial impact assessments were overestimates is unclear. 
Besides, it was postulated that FAW would outcompete 
resident communities of stem borers in Kenya and 
Uganda [2,3]. Indeed, field data collected from several 
countries from 2016 to 2020 appeared to show an almost 
total absence of stem borers from maize fields (P. 
Chinwada, unpublished data; S. Nyamutukwa, un
published data). However, recent field studies are 
starting to show increased incidence of some stemborer 
species in maize fields infested by FAW, thus pointing 
to a putative partitioning of the niche that is permitting 
coexistence of both [17]. Evidence from Cameroon as
sociated the FAW infestations with vegetative stages, 
while stem borers were associated with reproductive 
stages of maize [18]. 

Early warning, monitoring, and surveillance 
Data portals were launched to inform pest monitoring 
and surveillance, including the Food and Agriculture 
Organization of the United Nations' Fall Armyworm 
Monitoring and Early Warning System platform (https:// 
www.fao.org/fall-armyworm/monitoring-tools/famews- 
global-platform/en/), Plantvillage Nuru Application, and 
CAB International (CABI)’s fall armyworm portal 
(https://www.cabi.org/isc/fallarmyworm). These are 
scouting, pheromone trapping, and algorithm-generated 
products. In West Africa, field trapping with FAW 
pheromones showed significantly differing results ac
cording to the lure component, cropping environment, 
and country [19]. The most used 2-component lure in 
the Americas was not efficient for FAW pheromone 
trapping in Africa. A few studies confirmed potential 
communication interferences between FAW and the 
resident communities of Spodoptera and Leucania loreyi 
using the generic well-known 2-component, 3-compo
nent, and 4-component lures of S. frugiperda. This was 
supported by new insights that only the three acetates 

Z9–14:Ac, Z7–12:Ac, and Z9–12:Ac were present in fe
male pheromone gland of African FAW specimens [20]. 
Literally, some pest prediction models and monitoring 
and surveillance data improved our knowledge of the 
determinants of the pest’s distribution patterns  
[10,21,22] with hints on potential migration patterns/ 
seasonal spread across different regions in Africa [10]. 
However, this is still not well documented as in the 
Americas, which is a gap regarding early warning efforts 
and deployment of effective management strategies in 
Africa. This is critical as in locations with transient po
pulations of FAW, some of the sustainable management 
strategies will not perform well. Further FAW migration- 
model predictors should consistently include the African 
ecosystem landscape diversity (skirting from humid 
forests to the most xeric environments) and cropping 
cycles and seasons. Moreover, a greater portion of the 
African continent is suitable for FAW-overlapping gen
erations, while the pest displays a uni- or oligo-voltine 
population nature, particularly in the Sahel. 

Host range and pest genetic diversity 
To the best of our knowledge, little is known regarding 
the FAW host plant diversity [23•], but most of the gray 
literature from field-survey efforts concur to the con
clusion of not as much as FAW host plant species in 
Africa compared with the long list of host plant species 
documented in the Americas (353 FAW host plant spe
cies [24]). But these two contexts are not comparable 
since the pest was introduced to the African continent 
not long ago. From pest genetic analysis [25], it is now 
established that FAW strains present on the African 
continent are to date composed of more than 90% maize 
strain; the rest are hybrids and some less than 1% rice 
strain [26]. The haplotype profile from locations ex
amined in 11 African countries indicated that Florida 
and the Caribbean regions are the most likely Western 
Hemisphere origins of the African infestations. Con
versely, evidence of further recent introductions of the 
pest into the continent underpins the need for continued 
surveillance to avoid the incursion of new FAW 
populations with broader host range and pesticide 
resistance [27]. 

Integrated pest-management techniques 
The most effective synthetic insecticides reported are 
emamectin benzoate (avermectin) [28], and Ampligo® 
150 ZC, a binary formulation with 100 g a.i./L chloran
traniliprole (diamide) and 50 g a.i./L lambda-cyhalothrin 
(pyrethroid) to control FAW on maize at the early-whorl 
stage [29] (Table 1). The fact that most of the chemicals 
listed in Table 1 are registered in Southern Africa does 
not indicate a lack of registrations in other regions of 
Africa [30], but is merely reflective of the ease with 
which such information was obtained from national 
plant-protection organizations in Southern Africa as 
well as on the Internet. Most insecticide-application 
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schedules used by farmers are calendar based and not 
action-threshold based. In the long run, calendar-based 
spraying would neither be cost-effective nor sustainable 
and has high risk of FAW-resistance population buildup 
in Africa. With increasing evidence, more rational ap
plication rates will be recommended. For example, in 
Ghana, Osae et al. [29] found two applications of Am
pligo 150 ZC (200 ml/ha) at one-week intervals to be 
sufficient to sustain maize for the whole cropping season. 
It is important to point out that, in the absence of lo
cation-specific data on FAW incidence and temporal 
dynamics (as influenced by planting dates and season), 
extrapolating this recommendation on Ampligo applica
tion schedules to other regions or countries should be 
avoided. Although offering fast curative action, the 
health risks associated with synthetic insecticides and 
resistance patterns [31] continue to point to the need for 
alternative pest-management methods, particularly in 
the African context where the use of the chemicals does 
not always comply with standards. Thus, the application 

of biopesticides such as neem-, virus-based, and en
tomopathogenic fungi-based products may represent 
such alternatives [32–35]. However, farmer perception of 
their effectiveness remains a concern to widescale use  
[36••]. In addition, rotation of active ingredients with 
different modes of action remains one of the sound re
sistance-management strategies to be implemented to 
delay the evolution of resistance of FAW. The earliest 
report on push–pull technology efficacy exhibited good 
control levels of FAW in Eastern Africa [4,5]. Success in 
efforts to expand push–pull to West Africa has been 
limited due to weak crop–livestock integrations. For 
successful adoption of the push–pull technology, factors 
such as return on investments from the intercropped 
Desmodium and trap plants (Brachiara or Napier grass) at 
post maize harvest, availability of companion crop seeds, 
and necessities to adapt push–pull to the needs of di
verse agroecologies and communities must be strength
ened. The first reports of locally prevalent parasitoids 
associating with FAW in Africa [37–39••] (Figure 1) 

Table 1 

Some insecticides and biopesticides registered for FAW control in Africa.      

Active ingredient Some brand names Countriesa References  

Beauveria bassiana Eco-Bb South Africa https://www.dalrrd.gov.za/ 
Spodoptera frugiperda multiple 
Nucleopolyhedrovirus 

Fawligen Kenya https://www.pcpb.go.ke/ 
biopesticides-on-crops/ 

(Z)-9-tetradecen-1-yl acetate 79.15% (Z)-11- 
hexadecen-1-yl acetate 11.83% 

Pherogen Kenya https://www.pcpb.go.ke/ 
biopesticides-on-crops/ 

Maltodextrin Eradicoat T GH Ghana CABI Bioprotection portal 
Chlorantraniliprole Coragen, Predation, Mythic 

FN SC 
South Africa, Zambia Chinwada P, personnal 

communication; https://www.dalrrd. 
gov.za/ 

Chlorantraniliprole + lambda-cyhalothrin Ampligo, Ampligo 150 ZC South Africa, Zambia, 
and Zimbabwe 

https://www.dalrrd.gov.za/; 
Chinwada P, personnal 
communication 

Cyantraniliprole Lumivia 625 FS Zambia Chinwada P, personnal 
communication 

Cyantraniliprole + thiamethoxam Fortenza Duo Zambia, Zimbabwe, 
and Kenya 

Chinwada P, personnal 
communication 

Cypermethrin Cypermethrin, Cypercal 
250 EC 

Cameroon, Malawi [6] 

Bacillus thuringiensis subsp. kurstaki strain 
SA-11 

Delfin South Africa, Zambia Chinwada P, personnal 
communication; https://www.dalrrd. 
gov.za/ 

Diflubenzuron Dimilin 25 WP South Africa https://www.dalrrd.gov.za/ 
Emamectin benzoate Emamectin benzoate, 

Prove, Proclaim Fit 
Malawi, South Africa, 
Zambia, and Zimbabwe 

[6]; https://www.dalrrd.gov.za/ 

Emamectin benzoate + Lufenuron Denim Fit South Africa, Zambia Chinwada P, personnal 
communication; https://www.dalrrd. 
gov.za/ 

Flubendiamide Belt 480 SC Malawi, South Africa [6]; https://www.dalrrd.gov.za/ 
Indoxacarb Steward, Steward 150 EC, 

Advance 
Malawi, South Africa [6]; https://www.dalrrd.gov.za/ 

Lufenuron Judge, Match 050 EC Kenya, South Africa https://www.dalrrd.gov.za/ 
Methomyl Methomex 900 SP, 

Methomyl 200 SL 
South Africa https://www.dalrrd.gov.za/ 

Profenofos Formag Profenofos 500 Malawi, South Africa [6]; https://www.dalrrd.gov.za/ 
Spinetoram Delegate 250 WP South Africa https://www.dalrrd.gov.za/ 
Spinetoram + methoxyfenozide Uphold 360 SC South Africa https://www.dalrrd.gov.za/ 

a List not exhaustive.  

FAW-IPM in Africa Tepa-Yotto et al. 3 

www.sciencedirect.com Current Opinion in Insect Science 52( 2022) 100928 

https://www.dalrrd.gov.za/
https://www.pcpb.go.ke/biopesticides-on-crops/
https://www.pcpb.go.ke/biopesticides-on-crops/
https://www.pcpb.go.ke/biopesticides-on-crops/
https://www.pcpb.go.ke/biopesticides-on-crops/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/
https://www.dalrrd.gov.za/


have led to more careful assessment of the native fauna 
before classical biological control considerations using 
promising co-evolved parasitoids from the Americas such 
as Chelonus insularis Cresson, Cotesia marginiventris 
(Cressson) (both Hym.: Braconidae), or Eiphosoma la
phygmae Costa Lima (Hym.: Ichneumonidae) [40]. As a 
result, stakeholders may need to focus more on aug
mentative and conservation options. The egg parasitoid 
Telenomus remus Nixon (Hymenoptera: Platygastridae) is 
preferred over Trichogramma spp. in biocontrol programs 
in the Americas due to its capability of parasitizing inner 
layers of egg masses. The first data of FAW-field para
sitism by T. remus collected in Benin and Ghana [41] 
showed 14.5–25.9% attack on egg masses and is lower 
than the above 50% average recorded in Eastern Africa  
[38]. This suggests a better performance of T. remus at 
lower temperatures due to a longer duration of the egg 
stage, and thereby a larger window of opportunity for 
parasitization. However, further reports on inoculative 
releases of the egg parasitoid provided contrasting re
sults with no significant differences between the ‘re
lease’ and ‘no-release’ plots in Ghana [42]. New 
associations between FAW and native Charops larval 
parasitoid species were discovered both in West and 
East Africa [41,43], although low parasitism rates were 
frequently reported as is the case elsewhere in Mo
zambique [44]. Inversely, the findings on Cotesia icipe 
Fernández-Triana and Fiaboe (Hym.: Braconidae) per
formance on FAW first and second instar larvae in
dicated more than 60% parasitism rate in the laboratory  
[45] and up to 45% parasitism in the field in Ethiopia  
[37]. Most African countries have a precautionary stance 
regarding the use of genetically modified organisms 

(GMOs). Candid concerns have been raised on the af
fordability of the products developed from the GMO 
technology in the context of smallholder farming sys
tems in sub-Saharan Africa [29]. Bt-maize is currently 
mostly deployed in South Africa for FAW management  
[46]. Unfortunately, there is not much cost–benefit 
analysis on its use against FAW in the African context, 
while there are some early reports on development of 
resistance by FAW [47]. Only recently has evidence on 
FAW host plant resistance become accessible in the 
public domain [48]. Though host plant resistance can 
play an important role in FAW management [49•], 
the rapid decline in resistance (taking on average 
three years) merits further investigations in order to 
increase the level of adoption of the technology at the 
smallholder farmer level. The best IPM package to 
manage FAW sustainably should therefore be context- 
specific [50] with emphasis on accessible cost-effective 
technologies. 

Stories and roadmap for successful 
integrated pest-management 
Partnerships and coordination 
Donors began to commit funding to develop manage
ment strategies against FAW when almost the entire 
sub-Saharan Africa was affected at astonishing speed. 
Out of panic, a few governments procured huge volumes 
of synthetic insecticides as emergency response to initial 
FAW outbreaks. Further, science-led development 
agencies and international research for development and 
partnership for development consortia advised otherwise 
and advocated for sound IPM measures for sustainability 
reasons. Therefore, decision-makers and governmental 

Figure 1  

Current Opinion in Insect Science

Distribution maps of two key FAW parasitoid species in Africa: (a)Telenomus remus, (b) Cotesia icipe, and (c) both species. The species were reported 
in some further localities, but the georeferenced records were not accessible.   
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institutions were engaged in a series of regional and 
subregional awareness campaigns and capacity- 
strengthening events. In addition, local, regional and 
international FAW task forces were created to improve 
coordination and synergies across interventions. This 
was also part of scaling mechanisms to enhance the 
adoption of proven FAW IPM strategies. However, there 
is still concern on the sustainability of these initiatives 
once the sponsoring projects end. Evidence on con
tinued action post project interventions is scant. 

Preconditions to scale best-bet climate-smart 
integrated pest-management 
The lack of suitable cost-effective alternative insect- 
pest- management technologies often explains farmers’ 
dependence on synthetic insecticides. This in most 
cases has weakened awareness campaigns against highly 
toxic insecticides. Accessibility of validated effective 
technologies is key for their adoption. Equally, the de
sign of any IPM package should be context-specific, 
matching farming communities’ needs and be gender- 
and social-inclusion-sensitive. For instance, the deploy
ment of resistant/tolerant varieties that do not meet 
consumer demands will have high-adoption failure rates. 
The phenomenon of FAW has emphasized the need for 
enhanced anticipation (horizon scanning) and foresight 
analysis, particularly in the face of climate change. Any 
IPM investment that is not climate-smart risks waste of 
resources and lack of uptake by farmers. For example, 
biological control programs should increasingly consider 
the model biocontrol agents’ capabilities to adapt, de
spite changing climates [51•]. Earlier reports design 
climate-smart IPM [52] as partly including the following 
elements also relevant for long-term FAW management:  

• Developing climate-informed models of pest risks 
and candidate natural enemies for the reprioritization 
of management options;  

• Enhancing capacity for timely detection of invasive 
species and preventive action against future climate- 
driven pest risks;  

• Upgrading monitoring, forecasting, and scaling of 
advisory services as incentives for farmers to con
tribute to pest surveillance using IC-based early 
warning tools;  

• Enhancing governmental pest-management front 
agents, farmers, and other next- and end-users’ cap
abilities in reporting, anticipation, proactiveness, and 
response;  

• Fine-tuning pilot evidence-based innovations and 
fostering the use of digital tools, including Apps-led 
pest scouting and warning devices;  

• Cocreating business models for pest-management 
services and engaging the private sector for sustain
able deployment of impactful products and tools by 
empowering champion youth and women;  

• Engaging policy makers to trigger enabling policies, 
regulatory environment, and coercive measures, par
ticularly against prohibited and high-toxicity chemi
cals that have significant nontarget effects;  

• Fostering approval procedures and harmonization of 
low-toxicity biopesticides and measures to guard 
against abuse/misuse of chemicals; and  

• Accelerating the codevelopment and coordination of 
functional, local, and regional early warning and rapid 
response systems. 
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