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A B S T R A C T   

After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera 
frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in 
sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the 
dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study 
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applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to 
provide insights and project the intensity of FAW infestation across Africa. The data collected 
between January 2018 and December 2020 in selected locations were matched with the monthly 
average data of the climatic and environmental variables. The multilevel analytics aimed to 
identify the key factors that influence the dynamics of spatial and temporal pest density and 
occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and 
dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities 
and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes 
were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and 
high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to 
the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the 
diversity in the climate patterns and cropping systems across the African sub-regions are 
considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 
53% was obtained across the three years and at a continental scale, however, a gradual increase in 
prediction accuracy was observed among the years, with 2020 predictions providing accuracies 
greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of 
accuracy obtained could also be explained by the non-inclusion of data related to certain key 
factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the 
analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the 
region may help to complete the tri-trophic interactions between the host plants, pests, and 
beneficial organisms. Nevertheless, the tool developed in this study provides a framework for 
field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS).   

1. Introduction 

Invasive insect pests present a permanent threat to agricultural activities and crop production worldwide (Sileshi et al., 2019). 
Effective monitoring of invasive pests and reliable prediction of future trends in their dynamics, spread, the interaction of host plants, 
and natural regulatory factors is critical to guide the development and implementation of areawide management strategies for invasive 
species (Sileshi et al., 2019; Wang et al., 2020). 

The Fall armyworm (FAW), Spodoptera frugiperda is a lepidopteran pest native to tropical and subtropical regions of the Americas 
and its first successful invasion outside the native region was reported in Africa, more precisely in Nigeria, Togo, and Benin in 2016 
(Goergen et al., 2016). By late 2017, it had expanded its infestation range to about 40 sub-Saharan African countries (Cock et al., 2017; 
Du Plessis et al., 2018). Currently, the pest has spread to over 45 African countries, including few North African countries (Niassy et al., 
2021). In January 2019, FAW was also recorded in Asia, particularly in India, Thailand, Myanmar, and China (Wang et al., 2020; Wu 
et al., 2019). Subsequently, the pest has further spread to Australia, Korea, Japan, and countries in Oceania and the Middle East by 
2021 (Rwomushana, 2019). This quick spread across continents might have been accelerated by the high natural wind-assisted flight 
capability of FAW, which allows it to reach several hundreds of kilometers in a single day (Early et al., 2018). 

FAW can exploit a wide range of host plants, with the potential to survive on more than 350 plant species belonging to about 70 
families (Casmuz et al., 2010; Montezano et al., 2018). The most common host plants belong to the families Poaceae, Asteraceae, and 
Fabaceae (Early et al., 2018), with maize being the most preferred host crop in Africa, together with sorghum and millet (Rwomushana 
et al., 2018). These FAW preferred crops are the staple crops for most sub-Saharan African countries. Although the presence of FAW has 
also been recorded on many other host crops in Africa, the damages and related losses on maize exceed any other crop (Rwomushana 
et al., 2018). Without any control measures in place, maize yield losses due to FAW can exceed 50% of the total annual production of 
the affected countries, especially in the low and medium maize producing areas (De Groote et al., 2020), leading to serious economic 
and social implications. Thus, the successful management and control of such a serious invasive pest species needs to be proactive and 
preemptive based on real-time early warning and anticipated intervention (Early et al., 2018; Sokame et al., 2020a, 2020b). 

In North America, where FAW is endemic, migration starts from Texas and Florida in the late winter or spring (February – May). 
Populations are noticed in the northern areas in late summer and fall, hence the name fall armyworm (Nagoshi et al., 2012). In Africa, 
FAW appears to have been established in cereal-based agro-ecosystems (Goergen et al., 2016). However, cropping systems, farming 
practices, and the agroecosystems in Africa are different from those of north, central and south America. Therefore, the FAW temporal 
and spatial infestation spread in different parts of Africa could be influenced by these factors which are yet to be established. 

Many models have been developed worldwide to help understand the dynamics and behavior of FAW using different frameworks 
and modeling techniques. For example, Ramirez-Cabral et al. (2017) and Paudel Timilsena et al. (2022) developed a CLIMEX model to 
spatially project the impact of climate change on future establishment scenarios for north and south America and Africa, respectively. 
Again, the study of Early et al. (2018) combined effects of temperature and precipitation on FAW life-history, presence and pseudo 
absence datasets in Africa, north and south America were analyzed to build a world map using a FAW suitability index and the 
‘biomod2’ R-package while comparing techniques such as artificial neural networks (ANN), random forest (RF), and generalized linear 
models (GLM) (Early et al., 2018). In 2019, a computational model was developed by Garcia et al. (2019) to describe the spatio
temporal dynamics of FAW in Bacillus turgeniencis (Bt) transgenic corn areas and non-Bt transgenic corn areas, using the following 
variables; crop area, thermal requirements of FAW, and weekly temperature recordings, migration rate, rate of larval movement, and 
insect resistance to the transgenic Bt crop. The model was subsequently tested in the field using data collected in northern Florida, USA. 
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In Wu et al. (2019) the numerical trajectory modeling approach was used to predict FAW’s potential flight pathway and population 
range in China (tropical and sub-tropical regions), considering the insect flight ability and meteorological data (wind speed, tem
perature, rainfall, and relative humidity). More recently, Li et al. (2020) adopted the trajectory analytics approach, using the FAW 
flight ability and meteorological data to predict the migration pathways in eastern China. 

Although many studies have demonstrated that almost the entire sub-Saharan African continent is suitable for the FAW’s long-term 
establishment (Rwomushana et al., 2018), the dispersal and migration patterns of FAW in Africa have not been fully understood to 
provide mechanisms and solutions to real-time early warning. This is due to the lack of understanding of infestation dynamics over 
seasons in all sub-Saharan Africa and its sub-regions (central, eastern, southern, and western). Furthermore, the variability of envi
ronmental and climatic factors in a year, coupled with the diversity of farming culture, increases the complexity of predicting FAW 
densities across sub-Saharan Africa. 

The advancement in data science and analytics provides a new paradigm to understand the population dynamics of highly mobile, 
polyphagous, and serious pests such as the FAW. Such advancements unify statistics, data analytics, informatics, and related methods, 
facilitating a deep understanding of the actual phenomena (van der Aalst, 2016). Data science is a relatively new field that combines 
mathematics, computer science, and statistical methods, processes, algorithms, and systems to extract knowledge, patterns, and in
sights from structured and unstructured data (Raschka et al., 2020; Chemura et al., 2021). Estimating the density level of a pest insect 

Fig. 1. The African continent (green) and the location of the field survey of Fall armyworm (FAW) density (red dots).  
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in a crop is complex but can be addressed using empirical and mechanistic modeling approaches such as rule-based modeling (Liebhold 
and Tobin, 2008; Bell et al., 2013). The rule-based modeling approach has been successfully used to analyze the dynamics of biological 
interactions between living organisms and abiotic factors (Morton-Firth and Bray, 1998; Faeder et al., 2009; Chylek et al., 2013; Forbes 
et al., 2017; Boutillier et al., 2018) and involves a set of rules portraying the dynamics of a system, especially when the use of a 
mathematical model is difficult or impossible (Chylek et al., 2013). The set rules are then customized to describe and characterize the 
interactions among components of the system whose dynamics are being mimicked through deterministic or stochastic simulations. 
Although its application is common in studies of biochemical systems, its usage may be extended to address problems in the context of 
ecology, agriculture, or spatial modeling (Ibrahim et al., 2013; Vodovotz and An, 2015). The advantage presented by allowing the 
inclusion of mechanistic and detailed interaction that affect insect pest dynamics makes data science with rule-based modeling the 
most suitable approach to address the purpose of this work. 

Therefore, the present study aimed to use the data science and rule-based modeling approach to match, predict, and map the 
density level of FAW on crops across Africa using the following data collected from sub-Saharan Africa: field trap monitoring of FAW, 
weather data (temperature, rainfall, solar radiation, wind speed), farming system data, the elevation of the location of data collection 
and month of the year. The proposed approach targets to provide the first step towards information and knowledge on where to 
prioritize and implement a FAW control strategy. 

2. Materials and methods 

2.1. Study area 

The study included all regions of sub-Saharan Africa, however, data used for the continent-wide project were obtained from some 
selected farm locations in various countries where field monitoring of FAW density had been conducted (Fig. 1). The motivation to use 
the entire continent was informed by the timely need for a method that provides accurate and holistic information across the sub- 
regions in sub-Saharan Africa coupled with the highly migratory pattern of this invasive pest. 

2.2. Data description and analytics 

2.2.1. Collection of environmental and climatic variables data used to develop the mixed and rule-based models 
The long-term FAW field data monitoring initiative by the United Nations Food and Agriculture Organization (FAO) using the FAW 

monitoring and early warning system (FAMEWS) was used as the main locational and density data source. The data were downloaded 
from the FAO platform (http://www.fao.org/fall-armyworm/en/) in a.csv file format upon obtaining required permissions. In this 
dataset, the variables recorded during the field monitoring include: (i) Date: i.e. the date the survey was conducted; (ii) CropSystem: 
the cropping system used on the farm; (iii) CropStage: the developmental stage of the main crop on the farm location at the time of 
data collection; (iv) CropMain: the main crop on the farm (either maize, sorghum, or rice); (v) CropIrrigation: a yes/no variable for 
irrigation use or not, respectively; and (vi) Density: number of FAW male adults found in the pheromone traps at a given time during 
field counts. 

The universal bucket traps associated with FAW pheromone (lure blend: z9-12Ac (0.25%); Z7-12Ac (0.5%); z11-16Ac (17.54%) 
and Z9-14Ac (81.7%)) were used for this field survey. They were suspended about 1.5 m above the ground with one trap covering 
0.5–2 ha; placed both inside and outside the maize farm. The traps were examined and emptied every week while the pheromone was 
changed every 3–6 weeks and the damaged traps replaced while the trapped moths were examined for FAW identification and 
quantification. 

Considering that trap counts can only show trends of the population over time and, the number of males is equal to the number of 
females, this study used data collected from January 2018 to December 2020, which corresponds to more than 15,000 observations 
from the various field locations across 17 countries (Benin, Burundi, Burkina Faso, Ethiopia, Ghana, Guinea, Madagascar, Malawi, 
Mozambique, Liberia, Kenya, Tanzania, Togo, Rwanda, Uganda, South Africa, and Zambia) in sub-Saharan Africa. Data were subjected 
to a rigorous cleaning procedure to remove duplicated records and missing values and the datasets received from the different sub- 
regions were standardized as follows: two data observations were considered duplicates if the columns of the date of the record 
(date), geographic coordinates (latitude, longitude), and the main crop were identical. The data cleaning process was performed semi- 
automatically in R software 4.1.0 (RCoreTeam, 2020). Out of the total of 15,000 data points obtained 8231 observations were retained 
after the data cleaning process. 

The climatic variables used in this study were wind speed, solar radiation, temperature, rainfall, and landscape elevation. The 
selection of these variables was motivated by other studies that have reported the dependency of FAW occurrence and density on these 
environmental and climatic variables (Ramirez-Cabral et al., 2017; Early et al., 2018; Garcia et al., 2019; Sokame et al., 2020a, 2020b). 
The temperature, solar radiation, and wind speed dataset were obtained from the WorldClim database (http://www.worldclim.org/ 
current) (Fick and Hijmans, 2017). Similarly, the rainfall data were obtained from the Climate Hazards Group Infrared Precipitation 
with Station data (CHIRPS) database at 0.05◦ resolution satellite imagery (https://www.chc.ucsb.edu/data/chirps) (Funk et al., 2015). 
The landscape elevation data were obtained from the Shuttle Radar Topography Mission (SRTM), provided by the Earth Resources 
Observation and Science (EROS) Center (https://www.usgs.gov/centers/eros). 

The downloaded climatic data were monthly mean raster datasets either in tagged image file format (.tiff) or American Standard 
Code for Information Interchange (.asc). For each of these variables, we extracted the pixel values to the FAW field dataset using the 
geographic location of the 8231 point coordinates and the ‘extract’ function in the ‘raster’ package in R (Hijmans, 2020). The dataset 
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Fig. 2. Trend of Fall armyworm (FAW) records variation from field monitoring data where (A) shows the monthly density of FAW in Africa from 
January 2018 to June 2019, (B) shows the FAW density in Africa per host plant, (C) shows the FAW density based on the host plant developmental 
stage, and (D) shows the FAW records for each sub-region in Africa. 
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Fig. 3. Seasonal variations of climatic factors in areas of Fall armyworm (FAW) field occurrence in the three selected African sub-regions, namely 
east, south, and west. The considered climatic factors are (A) temperature, (B) wind speed, (C) rainfall, and (D) radiation. 
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was subdivided into the five Africa sub-geographical regions, i.e., north, south, east, west, and central, using the coordinate references. 
This classification was needed to explore the variations of the spatiotemporal effects due to weather and seasonal variations in the five 
sub-geographic regions, which are likely to influence the crop calendars and associated occurrence and density of the FAW differently 
at any timestep. 

2.2.2. Multilevel analysis 
A multilevel analysis was done using the cleaned dataset by designing a linear mixed-effect model to explore and identify key 

factors (fixed and random) having a considerable impact on the density and occurrence of FAW in sub-Saharan Africa. After a quick 
exploration of the FAW population density variations observed from the field, we hypothesized that time, space, or the combination of 
both would influence the occurrence and density of the FAW. The following hypotheses were used to guide the analysis: The variation 
of FAW density is randomly affected by (i) the time (day, week, or month of the year); (ii) the spatial locations (sites) of the area where 
the collection is made; and (iii) both the time and the spatial location. 

The multilevel analysis that was used refers to the application of mixed-effects models to hierarchical data (Pinheiro et al., 2020). A 
mixed or multilevel model was the most suitable statistical tool in this study as it is often used for analyzing time-series data or repeated 
observation across groups or individuals (nested data) (Rosenblatt, 2019). Also, it is appropriate for research designs of ecological, 
biological, and socio-ecological processes that operate at more than one scale. We aimed to determine if a group of given factors could 
predict an individual outcome, in our case, the density and occurrence of FAW in sub-Saharan Africa (Rosenblatt, 2019). The spec
ificity of the mixed models is that they incorporate the fixed and the random effects of the process together. A random effect simply 
refers to the main source of variability (Rosenblatt, 2019). 

In this study, we predicted the density variation of FAW using fixed effects including the wind speed, radiation, temperature, 
precipitation, elevation of location, cropping system, crop stage, main crop, irrigation system, and farm area and month of year. The 
variables for the random effects include the date of farm data monitoring and the sub-region of the trap (PointRegion) within farms. 
Using these factors, three statistical models were designed, respectively in relation to the three hypotheses. The first model considered 
the temporal variation as the random effect, the second model considered the spatial variation as the random effect while the third 
model considered both the temporal and spatial variations as random effects. The derived three models are given as shown in Eqs. (1)– 
(3) using the R-package ‘nlme’ v3.1-147, respectively (Pinheiro et al., 2020).  

mixedModel1 ← lme(FawDensity ~ WindSpeed + Radiation+ Temperature + RainValue +Elevation + cropSystem +cropStage+ cropMain +
monthOfYr + cropIrriga + cropFiel, random = ~1|date, data = fawDataAfrica)                                                                                  (1)  

mixedModel2 ← lme(FawDensity ~ WindSpeed + Radiation+ Temperature + RainValue +Elevation + cropSystem +cropStage + cropMain +
monthOfYr + cropIrriga + cropFiel, random = ~1| PointRegion, data = fawDataAfrica)                                                                      (2)  

mixedModel3 ← lme(FawDensity ~ WindSpeed + Radiation+ Temperature + RainValue +Elevation + cropSystem + cropStage + cropMain +
monthOfYr + cropIrriga + cropFiel, random = ~1| PointRegion /date, data = fawDataAfrica)                                                               (3) 

A preliminary stage to select the best model was done using the lowest Akaike information criterion (AIC) value. An analysis of 
variance (ANOVA) together with the likelihood ratio test (LRT) were conducted on the third model to test the significance of the 
contribution of each of the factors on FAW densities. A detailed statistical analysis was done on the linear-mixed modeling outputs to 
set the rules and estimate the boundaries and values of the biotic and abiotic parameters needed for the rule-based modeling pre
diction. Response curves of the different variables were developed and observed to assess the relative influence of each variable on the 
density of the FAW. 

2.2.3. Calibration of the ‘rules’ from descriptive analytics 
The analytics started by observing the monthly FAW density across sub-Saharan Africa for the entire period of field monitoring 

(Fig. 2A). Thereafter, we assessed the variation of the FAW density on diverse host plants, which helped identify the preferred host of 
the pest in sub-Saharan Africa (Fig. 2B). Maize and sorghum were the plants having the highest FAW density. Therefore, their physical 
cropping area was integrated while defining the spatial projection rules by considering the area suitable for cropping these host plants. 
In Fig. 2C, we explored the general infestation level based on the host plant crop stage, while the variation of FAW density per region is 
shown in Fig. 2D. Few monitoring operations were undertaken in the central and northern regions compared to the eastern (Kenya, 
Tanzania, Uganda, Ethiopia, Rwanda), southern (Malawi, Madagascar, South Africa, Zambia, Mozambique), and western (Nigeria, 
Mali, Benin, Burkina Faso, Guinea, Liberia), regions of Africa; hence, only data from these three African sub-regions were considered in 
defining the rules for spatial projections. 

Boxplots were used to explore the dispersion of the climatic factors for each of the three sub-regions based on five synoptic 
numbers, namely: the minimum, the first quartile (Q1), the median, the third quartile (Q3), and the maximum (Fig. 3). The considered 
climatic factors include temperature, rainfall, radiation, and wind speed. The threshold outputs from this quartile analysis were then 
used to design the set of ‘rules’ for spatial projection and mapping of the FAW density level of infestation. 

2.2.4. Spatial projection process 
The spatial projection was conducted by dividing the entire African continent into a regular 2 km x 2 km squared grid. The 

2 × 2 km scale was adopted to match the geographical scale covered by a single trap during the field data collection process. One trap 
was assumed to represent the catches of an area between 0.5 ha to 2 ha (Niassy et al., 2021). However, considering the high flight 
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ability of FAW combined with the difficulty to obtain high resolution remotely sensed environmental and climate data for the entire 
African continent, the 2 × 2 km grid resolution was therefore considered optimum for this study. 

Using the spatial join function in QGIS software (QGIS Development Team, 2014), all trap locations that occurred within each of the 
2 × 2 km grids were considered to belong to the same spatial location and were summed up to the central coordinate of the 2 × 2 km 
grid. In each grid, the data was summed in a monthly aggregation of the FAW density. A mean monthly summary from all the traps in a 
sub-region was done to study the general spatial variability for that region over the years 2018 and 2019 (Figs. 4B, 5B, and 6B). 
Furthermore, the trends of FAW density for each region were observed by selecting grid locations that were consistent with the trap 
monitoring that was done over the field survey to plot the yearly trend of FAW density (Figs. 4C, 5C, and 6C). Further analyses were 
conducted to observe the cumulative shifts in densities across the regions, i.e., to explore if the decrease in one sub-region increased in 
another as is usually the case in North America with seasonal migrations (Niassy et al., 2021). Additionally, this analysis was done to 
assess and observe the variations within the same region but at different geographic locations. The spatial analysis was also conducted 
based on the below assumption: 

Let Δ, representing a spatial location marked out by geographic extent coordinates and ρthe spatial projection, defined as a 
continuous function on the domain Δ. 

Δ and ρ can be characterized as follow: Δ = {(lon, lat) ∈ R2|lonmin ≤ lon ≤ lonmax, latmin ≤ lat ≤ latmax} where lonand latare 
respectively longitude and the latitude delimiting the area of interest. Then, 

ρ : Δ → Z+

⃒
⃒
⃒∀{i∈N;Δi∈Δ;d∈Z+}, ρ(Δi) =

∑
( ∩ FΔi ) = dΔi  

Where dΔi correspond to FAW density in the spatial area Δiand FΔithe set of climatic and environmental factors in consideration in the 
area. 

The preliminary analysis of the trends of the FAW density per month and region revealed that the climate seasonality of the region 
influences the density, which significantly increases during the cropping seasons on the two main host crops, i.e., maize and sorghum. 
The seasonal rainfall pattern grouped per region and the general cropping calendar of maize and sorghum were therefore considered as 
the foundations for determining the type of analytics and defining the rules for the projections and mapping of the pest density across 
sub-Saharan Africa (Table 1). 

Fig. 4. The Fall armyworm (FAW) density in a spatial grid-scale of 2 km x 2 km in the western region of Africa given by (A) the trap’s locations of 
the subset of data used, (B) the global trend of the density for grids with a high frequency of records different from zero in the region for 2018 and 
2019, and (C) the monthly progression of FAW density for three randomly selected grid locations in the western region for 2018 and 2019. 
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Moreover, to ensure the coverage of all the areas where maize and sorghum were suitable together with other potential host plants, 
considering the very wide host range of FAW, the African landcover (https://www.esa.int/ESA_Multimedia/Images/2017/10/ 
African_land_cover) data provided by the European space agency (ESA) at 20 m spatial resolution was also used in designing the 
‘rules’. Using the land cover classification, we assumed that every location classified within a vegetation class has the potential to grow 
FAW host plants. 

2.3. Definition of rules used in the modeling experiments 

The definition of model rules for the estimation of the density level of FAW infestation in Africa requires a critical approximation of 
the available records at the boundaries of each class. The determination of cutoff boundaries of the respective environmental and 
climatic variables used to predict the density classes used in this study were established by computing the quantiles which were 
matched against the observed monthly FAW densities recorded in the field. Using the monthly field data recorded from January 2018 
to December 2019, the mean density of each location from the two years of the collection was matched to the minimum, i.e., the first 
quartile (Q1), the median (Q2), the third quartile (Q3), and the maximum (Q4) of the monthly density. Relationships to each quartile 
were established, analyzed, and matched to establish the duration (when), mechanism (how), and the quantity (percentage) of the 
environmental and climatic variable that would influence the density as well as the cutoff (threshold) when it would cease to have an 
effect. Subsequently, the annual mean for each quartile was calculated to represent the boundary of each class. 

In this study, the lower boundary corresponded to the median value, while the upper boundary corresponded with the value of the 
third quartile. Three density levels were inferred from this analysis based on the FAW densities observed in the field at the a given 
corresponding time in which the environmental and climatic variables were observed and classified as follows: ‘low’, ‘moderate’, and 

Fig. 5. The Fall armyworm (FAW) density for spatial grid-scale of 2 km x 2 km in the eastern region of Africa given by (A) the trap’s locations of the 
subset of data used, (B) the global trend of the density for grids with a high frequency of records different from zero in the region for 2018 and 2019, 
and (C) the monthly progression of FAW density for three randomly selected grid locations in the eastern region for 2018 and 2019. 
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‘high’. The difference in the level of intensity for each of the selected environmental and climatic variables was estimated by their 
monthly measure of dispersal per region. The low-density level is given by the lower boundary, i.e., FAW density < lower boundary, 
while moderate density is between the lower and the upper boundaries, i.e., lower boundary ≤ FAW density ≤ upper boundary. The 
high-density level is greater than the upper boundary, i.e., FAW density > upper boundary. Due to the variation in seasonality in the 
different subregions, each environmental or climatic factor was computed based on the average monthly quantiles from the matched 
subregional dataset. The high level of FAW density was observed between Q1 and Q3 ([Q1, Q3]), while the moderate level was be
tween the min and the max value excluding the range from Q1 to Q3 ([Min, Max]\ [Q1, Q3]). 

2.4. Model simulations and spatial predictions 

Fig. 7 summarizes the flow chart of the rules characterizing the FAW density level of infestation. The algorithm was designed to 
iterate between the different ‘set of rules’ i.e., using the upper and lower boundaries of each of the explanatory variables, and evaluate 
the conditions until the best condition was met in a tree-like design (Fig. 7). Thus, the output from each grid is determined by a series of 
‘rules’ set for each condition of the environmental and climatic variables to produce a pixel value with either ‘high’, ‘moderate’, or 
‘low’ density of FAW. This process was conducted in each pixel grid of 2 km x 2 km covering the entire continent as demonstrated in  

Fig. 6. The Fall armyworm (FAW) density for spatial grid-scale of 2 km x 2 km in the southern region of Africa given by (A) the trap’s locations of 
the subset of data used, (B) the global trend of the density for grids with a high frequency of records different from zero in the region for 2018 and 
2019, and (C) the monthly progression of FAW density for three randomly selected grid locations in the southern region for 2018 and 2019. 

Table 1 
Adopted seasonality based on climates and cropping calendar in sub-Saharan Africa per sub-region.  

Sub-Saharan Africa sub-regions Maize cropping period Sorghum cropping period Others 

South December – March April – May, November June – October 
East April – July and November – January February – March and August – September October 
West April–July and September – November August December – March  
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Figs. 7 and 8. 
The algorithm in Fig. 8 summarizes the design of the rule-based modeling process for mapping the density level of FAW infestation 

in sub-Saharan Africa. The implementation and simulation of the rule-based modeling algorithm were done using R packages including 
‘dplyr’ (Wickman and Francois, 2016), ‘raster’ (Hijmans, 2020), ‘sp’ (Pebesma et al., 2017), ‘reshape2’ (Wickham, 2012), and ‘rgdal’ 
(Bivand et al., 2017). The map for the density level of infestation of FAW in sub-Saharan Africa was produced monthly. 

2.5. Model validation 

The FAW density data collected across sub-Saharan Africa from 2018, 2019, and 2020 was used to evaluate and validate the model. 
The same 2 km x 2 km grid used to harmonize the trap data was used to extract predicted density values from the output raster files 
generated from the rule-based modeling approach. The central coordinates of each grid were used as the reference location to match 
the observed density with the predicted density at that location. Therefore, for each coordinate, the monthly predicted and observed 
values were gathered to validate and evaluate the performance of the modeling approach. The obtained predicted and observed 
density values were thereafter categorized into the three density levels of infestation, i.e., low (<11), moderate (11 − 30), and high 

Fig. 7. Summary of the ‘rules’ for estimating the Fall armyworm (FAW) density level of infestation. Maize and sorghum are considered the main 
host plants of the pest. The green arrow shows the algorithmic iterations if the timing was within the sorghum planting period and cropping area. 
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(>30). For each of the coordinates, the predicted FAW infestation level class was compared with the observed class, and if the classes 
were the same, a value ‘1’ was assigned representing a correctly predicted infestation level. Similarly, if the class values between the 
observed and the predicted were different, a value ‘0’ was assigned to signify a mismatch between the observed and the predicted 
classes. A proportion (%) of the correctly predicted classes (‘1’) was compared with the misclassifications (‘0’) in each month and 

Fig. 8. The summary outline of the algorithm used in the ‘rule-based’ classification of the Fall armyworm (FAW) density level of infestation in sub- 
Saharan Africa. 
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across the years. A bar graph of the mean monthly accuracy and line graphs of the trend of accuracy across the months and years were 
used to present the results. This procedure was followed for each of the three years across the twelve months. 

3. Results 

3.1. Mixed modeling 

The preliminary results of the mixed models revealed that the model that considered both the time and space as random effects had 
the lowest AIC. These preliminary results prompted the selection of the third model, as demonstrated in Table 2. This spatiotemporal 
approach was used in the modeling process since these results showed that FAW occurrence and density were subject to environmental, 
climatic, spatial, and time variations (monthly in the context of this work). 

3.2. Analysis of variance of the mixed models 

Furthermore, the ANOVA, LRT together with the response curves of the used variables obtained from the third model confirmed the 
significant contribution of each of these factors on the FAW density level of infestation occurrence as presented in Table 3 and Fig. 9. 

3.3. Determination of the upper and lower boundary ‘rules’ 

Table 4 presents the results of the measure of the dispersion of FAW density obtained per year, representing the estimated boundary 
of each class. The FAW density data showed a wide range of density values across the continent; however, the quartile analysis reduced 
this wide variation to three classes for ease of comparison, as shown in Table 4. 

The final values of the lower and upper boundaries were 11 and 30, respectively. These values informed the classes low, moderate, 
and high classes (Table 5). 

3.4. Model validation 

Relatively high accuracies of the prediction density of FAW were observed across the months and years, with an optimum overall 
accuracy of 53% across the three years (Fig. 10). Predictions of FAW in September, October, November, and December showed 
relatively high accuracy rates than other months. Comparatively, a progression in improvement in the overall accuracies across the 
years was observed with the densities of FAW in the year 2020 predicted better than previous years, i.e., 2018 and 2019 (>80%) 
(Fig. 10). There were low values of accuracy observed in February and March of the year 2018. These months corresponded to the 
period when very little data were obtained from the FAO database, i.e., n = 1 for February 2018 and n = 3 for March 2018. 

3.5. Spatial prediction of Fall armyworm density across Africa 

The spatial projection of FAW density across Africa shows that FAW intensity follows the observed crop calendars and seasonal 
variations within the different subregions in Africa. The highest density in January to April was observed in central and southern 
Africa, while the May to July period shows high intensities of FAW in countries located around the equator (Fig. 11). On the other 
hand, the month of August showed the least level of infestation across the entire continent, with moderate infestations mostly observed 
in countries around the equator. This cycle of infestation was observed to oscillate again from October to December, descending from 
the equator countries toward central and southern Africa. 

4. Discussion 

Estimation of the occurrence and density of highly dynamic pests such as the FAW presents a challenging task that requires creative 
and innovative conceptual approaches. The study becomes more critical and complex when the exploration includes the spatial and 
temporal variability of the pest across an expansive landscape such as the African continent. Our approach to harness data science 
provided a systematic comparison of data analytics to project and predict the FAW density level of infestation across the entire African 
continent. Using data collected from a three-year field monitoring project, combined with the influence of cropping systems, subre
gional climatic variability, rainfall quantity, temperature fluctuations, and the availability of main host plants - in our case, maize, and 
sorghum - proved very relevant to the project and predict the density of a pest that can exist on many host crops and within complex 
environments. Data science analytics were conducted to estimate the effect of these factors on the fluctuation of FAW density together 

Table 2 
Comparison of the three mixed models using the Akaike information criterion (AIC).  

Model Degree of freedom AIC 

mixedModel1  59  73,534.58 
mixedModel2  59  73,366.65 
mixedModel3  60  73,282.77  
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with the linear mixed models (multilevel analysis) to identify and explore the variability of the most significant factors. The ‘rules’ 
generated from the data analytics were then used in a rule-based modeling approach to spatially project the monthly variation of FAW 
density level of infestation. Further, this study demonstrated that the fluctuation of spatial density is sensitive to the environmental and 
climatic variations occurring across the different sub-regions of Africa. These results were validated using in-field observed data with 
optimal accuracy. 

Since the first official report of FAW in Africa, i.e., in 2016, many modeling tasks have been undertaken worldwide to help improve 
the understanding of the spatial dynamics of the pest to anticipate the potential dispersal and damages on crops (Farias et al., 2001; 
Early et al., 2018; Garcia et al., 2019; Wu et al., 2019; Li et al., 2020). These studies were provided in addition to earlier studies 
developed before the first official report of FAW in Africa (Farias et al., 2001; Ramirez-Cabral et al., 2017; Westbrook et al., 2019). 
Although these models were very useful and informative in predicting the migration pathways of FAW, mainly in Asia and America (Li 
et al., 2020; Wu et al., 2019), very few attempts to understand the spatial dynamics of the pest within the Africa context were made 
(Early et al., 2018). The models targeting Africa, such as by (Early et al., 2018), were derived from species distribution models (SDMs) 
that fundamentally estimate the potential suitability of an area for FAW invasion or establishment. These studies could not inform the 
probability of FAW occurrence in a given year or the precision of the local interaction due to spatial heterogeneity of the landscape and 
a multitude of factors that influence occurrence across the different months of the year (DeAngelis and Yurek, 2017). The methodology 
adopted in the study is the first of its kind and presents more advantages compared to the spatially implicit approaches such as SDM 
(DeAngelis and Yurek, 2017). The results obtained in this study are useful in providing potential monthly infestation within a 2 x 2 km 
grid, which enhances and informs the ability to pinpoint priority locations for intervention within a specified timescale. Moreover, 
none of the previous studies has classified and spatially projected FAW density of infestation to the entire African landscape, which 
characterizes the innovation of this work. 

Although the overall model accuracy obtained in this study across the three years was optimal ( ± 53%), it could be further 
improved by enhancing the standardization of data collection by the different citizen science data collectors, particularly regarding 
coordinates and trap locational data. It was observed that most of the FAMEWS trap data points were clustered randomly within the 
same grid yet belonging to the same coordinate, hence a 2 x 2 km grid was developed to aggregate all the data points occurring in one 
grid to one central coordinate. This approach reduced the data variability in space and time as they were aggregated according to the 
collection date. Apart from the low amount of data in the early years (2018 and 2019), the average level of accuracy obtained could 
also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, 
parasitoids, and pathogens) into the analytics (Sokame et al., 2020a, 2020b). As studies progress, detailed data on the occurrence and 
efficiency of FAW natural enemies will be collected to complete the tri-trophic interactions between the host plants, pests, and 
beneficial organisms (Abdala-Roberts et al., 2019). It is also important to note that insect catches vary according to a multitude of 
factors: position of the trap, lure, trap type, trap density, microclimate, presence, and number of females, temperature and humidity, 
the fieldworker, the taxonomist (specimens misidentified), kairomone effect and certainly more. 

In addition, our predictions were evaluated by comparing field monitoring data collected in the three years (2018, 2019, and 2020) 
using the long-term average bioclimatic data. This approach can be improved by acquiring real-time bioclimatic data to match the 
timing of predictions. Even though some of the predicted classes were different from the observed, the predicted classes were generally 
found within a class of lower density compared to the one from the field monitoring. This could be explained by the variability of 
bioclimatic factors across the years, particularly rainfall that has been reported to negatively affect FAW density in the field by washing 
and reducing the eggs and larvae from the host plant hence the density of the adults (Hailu et al., 2021; Sokame et al., 2020a, 2020b). 

Climate variability significantly influences the distribution and abundance of insects such as FAW (Barton et al., 2019; Xu et al., 
2020). This was demonstrated by the cyclic spatial distribution of the FAW following the subregional cropping calendars and the 
seasonal variation. Again, the temperature variable has also been reported by earlier studies as a paramount factor for the insect’s 

Table 3 
Effect of each variable of the third model using the linear mixed model. See Appendix for the detailed table with the estimated value or 
parameters and confidence interval.  

Variable denDF LRT Pr (Chi) 

Fixed Effect  
Wind speed 7189  0.256 0.6127 
Solar Radiation 7189  7.364 0.0066 (**) 
Mean monthly temperature 7189  37.376 9.74e-10(***) 
Rainfall 7189  14.808 0.0001(***) 
Elevation 7189  8.412 0.0037 (**) 
Farm area 7189  25.209 5.14e-07 (***) 
Cropping system 7189  18.627 0.0009 (***) 
Crop stage 7189  22.97 0.0001(***) 
Main crop 7189  63.377 1.224e-05 (***) 
Month of the year 7189  38.465 0.0021 (**) 
Irrigation status 7189  36.539 1.163e-08 (***) 
Random Effect  
Date of collection: 1  85.883 2.2e-16 (***) 
Country/ region 1  171.380 2.2e-16 (***) 

Significance level: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Fig. 9. Response curves and effect of environmental and climatic factors on FAW incidence.  

Table 4 
Adopted seasonality base of cropping calendar in Africa per sub-region.   

2018 2019 

Min  4  1 
Q1  6.13  3.89 
Median (Q2)  9.83  10.04 
Q3  30.5  28.07  

Table 5 
Global FAW density level classification.  

Low density < 11 
Moderate density [11–30] 
High density > 30  
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development, survival, and dynamics (Estay et al., 2014; Mudereri et al., 2020). Although temperature highly affects the general 
temporal variability of insect population abundance (Estay et al., 2014), it does not individually determine their dynamics and 
migration patterns which are also highly sensitive to seasonal variation of environmental and climatic factors occurring over the year 
(Zidon et al., 2016; Nnzeru et al., 2021). These results were also demonstrated in Africa by (Early et al., 2018), who combined the effect 
of temperature and precipitation on FAW life history to build SDMs. On the other hand, our work is the first attempt to combine 
temperature, rainfall, wind speed, and radiation to explore their combined effect on the FAW density variability as informed by 
perpetual data collected from the field. This is paramount considering the role played by these factors for a successful implementation 
of biological control strategy in an integrated pest management context (Prasanna et al., 2018). Some virus-based bioinsecticides, 
whose virulence is highly dependent on temperature, humidity, and radiation, have been reported to have a high potential for use 
against FAW, especially when applied on maize plants from V6 to V8 leaf stage (Prasanna et al., 2018). 

Complex dynamic processes in the agroecosystem are better understood when designed using mechanistic modeling approaches 
(Nathaniel, 2006; Etterson et al., 2017). This includes techniques like mathematical equations or rule-based modeling techniques. 
Rule-based models enable an analysis of complex problems through system thinking and dynamic components that relate and interact 
with one another (Chylek et al., 2013; Forbes et al., 2017). The peculiarity of rule-based modeling compared to machine learning 
approaches is that it enables the consideration of the little available detail of FAW biophysical interactions with their ecosystems. 
However, both approaches require a careful selection of the appropriate parameters since the modeling depends on the availability of 
correct and consistent data. 

The dynamics of FAW incidence in agroecological production across SSA display exclusive patterns that cannot be explained only 
by the density variation. In most geographical sub-regions of Africa, FAW is highly abundant at a specific time but completely absent at 
another (Rwomushana et al., 2018). This suggests that FAW dynamics are subject to seasonal environmental and climatic change 
(Ramirez-Cabral et al., 2017; Baudron et al., 2019; Feldmann et al., 2019). The maps generated in this study demonstrate that the 
density level of infestations across the continent is sensitive to the monthly variations of climatic and environmental factors and the 
availability of the host (Draper et al., 2019; Qin et al., 2017; Ramirez-Cabral et al., 2017). Moreover, the occurrence of FAW in a given 
area depends on the suitable interaction of a wide range of factors whose mechanisms of interaction are still not well understood 
(Rwomushana et al., 2018; Baudron et al., 2019). These factors vary from the farm size area and its geographical location to the 
cropping calendar of the FAW host plant over the year and the control mechanism that is implemented on the farm (De Groote et al., 

Fig. 10. Fall armyworm density prediction accuracy across the months i.e., January to December, and across the three years i.e., 2018, 2019, and 
2020. The bars show the mean densities per month across the three years while the lines show the trend for each year. The brown line shows the 
prediction accuracy trend for 2018, while the orange and gray lines show the prediction accuracy trend for 2019 and 2020, respectively. 
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2020). 
The analysis of the linear-mixed model obtained during the data analytical process has helped strengthen the hypothesis and 

highlight the role of these variables on the FAW density level of infestation, which supports previous studies (CABI, 2017). However, 
the spatially projected FAW density level may differ in some locations since some of the weather data used were a long-term average 
and not matched with the time frame of data collection. This is understandable considering the difficulty to get real-time and accurate 
environmental and climatic data at the entire Africa continent scale. Therefore, the accuracy of the spatial projection will likely 
improve if the model is locally projected using real-time data from the localized weather stations. 

The output from this study is part of a framework for establishing a FAW early warning system in Africa; however, more remains to 
be done for this approach to be effectively useful to farmers. Future studies can consider embedding this model into a platform that 
provides access to local weather station data for real-time estimation of the level of density infestation at scale. The VIPS platform 
(https://www.nibio.no/en/services/vips) developed by The Norwegian Institute of Bioeconomy Research (NIBIO) has been identified 
as an example and a suitable candidate platform to address the purpose and providing the most effective solutions to farmers. This 
provides an opportunity to easily monitor FAW infestation through a simple mobile application. 

Other than host plant and climatic factors, the role of natural enemies (Sokame et al., 2021) and phytosanitary interventions, e.g. 
chemical and biopesticide use, need to be integrated. This study could help estimate the magnitude and value of management stra
tegies to enable stakeholders to prioritize the best-bet FAW IPM tactic for a given situation. Furthermore, it would be useful to estimate 
the FAW economic threshold level on maize to identify the approximate density from which relevant damages are expected and require 

Fig. 11. Spatial projection of the Fall armyworm (FAW) density level of infestation in Africa for (a) January, (b) February, (c) March, (d) April, (e) 
May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, (l) December. Areas in white are not suitable for the presence of FAW, 
while the areas in green, yellow, and red correspond to the FAW density level low, moderate, and high, respectively. 
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control measures to be implemented. All these achievements put together will ease the adoption of a proactive control measure as 
recommended by FAO (Feldmann et al., 2019) for the effective management of FAW in Africa. 

5. Limitations of the study 

The data for the evaluation used in this study were collected in 2020 after several pest management strategies and control methods 
were developed and implemented (i.e., in 2018/2019) to reduce pest damages and infestation in maize farms. The model in its current 
form does not take into consideration the effect of the various actions such as the use of pesticides i.e., chemical, or biological; natural 
enemies i.e., predators, parasitoids, and pathogens that were initiated by farmers and agricultural officers to reduce crop damage by 
FAW in farms in the study area. Future work might have to consider these parameters and limitations to improve the predictions 
accuracy. 
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Appendix 

Estimated values of parameters with their respective confidence interval.   

FAW Density 

Predictors Estimates CI p 

(Intercept) 33.16 -4.76 – 71.08  0.086 
WindSpeed 1.13 -3.57 – 5.83  0.637 
Radiation -6.05 -10.42 – ¡ 1.68  0.007 
Temperature -29.94 -39.50 – ¡ 20.38  < 0.001 
RainValue -10.47 -15.78 – ¡ 5.16  < 0.001 
Elevation -12.15 -20.13 – ¡ 4.18  0.003 
cropFiel 1 54.18 32.88 – 75.49  < 0.001 
cropSystem [pushPull] 3.98 -4.42 – 12.38  0.353 
cropSystem [rotation] 1.96 0.11 – 3.81  0.038 
cropSystem [seasonal] -0.68 -2.33 – 0.97  0.418 
cropSystem [unknown] 0.33 -5.99 – 6.65  0.918 
cropStage [reproductive] 3.34 1.87 – 4.81  < 0.001 
cropStage [seedling] 1.42 -0.84 – 3.68  0.219 
cropStage [sowing] -1.28 -5.57 – 3.00  0.557 
cropStage [vegetative] 2.34 0.90 – 3.78  0.001 
cropMain [barley] 1.61 -32.20 – 35.41  0.926 
cropMain [beans] -4.2 -33.79 – 25.39  0.781 
cropMain [cassavaManioc] 1.97 -27.72 – 31.65  0.897 
cropMain [cotton] 12.27 -19.11 – 43.64  0.443 
cropMain [cowpeas] -0.8 -31.28 – 29.69  0.959 
cropMain [flowers] -1.95 -38.06 – 34.15  0.916 
cropMain [maize] 4.28 -24.93 – 33.49  0.774 
cropMain [millet] 9.1 -22.69 – 40.90  0.575 
cropMain [otherCereals] -0.02 -35.90 – 35.85  0.999 
cropMain [otherFruits] -2.15 -31.59 – 27.30  0.886 
cropMain [otherGrasses] -0.2 -29.91 – 29.50  0.989 
cropMain[otherRootsTubers] 9.95 -20.04 – 39.95  0.515 
cropMain[otherVegetables] -1.46 -31.25 – 28.32  0.923 
cropMain [peanut] 13.79 -21.90 – 49.48  0.449 

(continued on next page) 
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(continued ) 

FAW Density 

Predictors Estimates CI p 

cropMain [rice] 1.38 -28.21 – 30.97  0.927 
cropMain [Select] -1.93 -52.65 – 48.78  0.94 
cropMain [sorghum] -0.9 -30.22 – 28.42  0.952 
cropMain [soybean] 0.81 -33.76 – 35.38  0.963 
cropMain [teff] 1.82 -35.87 – 39.50  0.925 
cropMain [tobacco] -0.44 -51.84 – 50.97  0.987 
cropMain [weeds] 13.44 -17.23 – 44.11  0.39 
cropMain [wheat] -14.69 -46.77 – 17.38  0.369 
cropMain [yam] -6.75 -40.74 – 27.25  0.697 
monthOfYr [01/2019] 4.54 -8.62 – 17.71  0.498 
monthOfYr [02/2018] 20.17 -12.90 – 53.23  0.232 
monthOfYr [02/2019] 5.54 -7.67 – 18.74  0.411 
monthOfYr [03/2018] 7.4 -13.62 – 28.41  0.49 
monthOfYr [03/2019] 5.8 -7.44 – 19.05  0.39 
monthOfYr [04/2018] 3.61 -10.63 – 17.85  0.619 
monthOfYr [04/2019] 4.73 -8.52 – 17.99  0.484 
monthOfYr [05/2018] 1.52 -12.63 – 15.67  0.833 
monthOfYr [05/2019] 3.93 -9.29 – 17.14  0.56 
monthOfYr [06/2018] 1.23 -12.38 – 14.84  0.859 
monthOfYr [06/2019] 12.08 -1.50 – 25.66  0.081 
monthOfYr [07/2018] 7.8 -5.67 – 21.27  0.256 
monthOfYr [08/2018] 3.72 -9.55 – 16.99  0.583 
monthOfYr [09/2018] 1.46 -11.77 – 14.68  0.829 
monthOfYr [10/2018] 1.28 -11.94 – 14.50  0.849 
monthOfYr [11/2018] 1.9 -11.34 – 15.14  0.779 
monthOfYr [12/2018] 3.06 -10.17 – 16.29  0.65 
cropIrriga [rainFed] -6.52 -8.62 – ¡ 4.41  < 0.001 
cropIrriga [unknown] -5.9 -12.91 – 1.12  0.1 
Random Effects     
σ2 425.28    
τ00 dateCollection 21.27    
τ00 countryRegion 7.22    
N dateCollection 432    
N countryRegion 5    
Observations 8186    
Marginal R2 / Conditional R2 0.065 / NA     
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Cock, M.J.W., Beseh, P.K., Buddie, A.G., Cafá, G., Crozier, J., 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the 

spread of invasive species in developing countries. Sci. Rep. 7, 4103. https://doi.org/10.1038/s41598-017-04238-y. 
De Groote, H., Kimenju, S.C., Munyua, B., Palmas, S., Kassie, M., Bruce, A., 2020. Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize 

production areas of Kenya. Agric. Ecosyst. Environ. 292, 106804 https://doi.org/10.1016/j.agee.2019.106804. 
DeAngelis, D.L., Yurek, S., 2017. Spatially explicit modeling in ecology: a review. Ecosystems 20, 284–300. https://doi.org/10.1007/s10021-016-0066-z. 
Draper, D., Marques, I., Iriondo, J.M., 2019. Species distribution models with field validation, a key approach for successful selection of receptor sites in conservation 

translocations. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00653. 
Du Plessis, H., Van Den Berg, J., Ota, N., Kriticos, D.J., 2018. Spodoptera frugiperda (Fall Armyworm). Pest Geogr. 1–5. 

R.A. Guimapi et al.                                                                                                                                                                                                    

https://doi.org/10.1111/ele.13392
https://doi.org/10.1016/j.ecolmodel.2018.12.017
https://doi.org/10.1016/j.cropro.2019.01.028
https://doi.org/10.1016/j.cropro.2019.01.028
https://doi.org/10.1371/journal.pone.0054202
https://doi.org/10.1093/bioinformatics/bty272
http://refhub.elsevier.com/S2351-9894(22)00058-0/sbref6
http://refhub.elsevier.com/S2351-9894(22)00058-0/sbref7
http://refhub.elsevier.com/S2351-9894(22)00058-0/sbref7
https://doi.org/10.1038/s41598-021-87647-4
https://doi.org/10.1038/s41598-021-87647-4
https://doi.org/10.1007/978-94-007-6803-1_9
https://doi.org/10.1038/s41598-017-04238-y
https://doi.org/10.1016/j.agee.2019.106804
https://doi.org/10.1007/s10021-016-0066-z
https://doi.org/10.1016/j.gecco.2019.e00653
http://refhub.elsevier.com/S2351-9894(22)00058-0/sbref14


Global Ecology and Conservation 35 (2022) e02056

21
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