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Early detection of plant virus 
infection using multispectral 
imaging and spatial–spectral 
machine learning
Yao Peng1, Mary M. Dallas2, José T. Ascencio‑Ibáñez3, J. Steen Hoyer4, James Legg5, 
Linda Hanley‑Bowdoin2, Bruce Grieve1 & Hujun Yin1*

Cassava brown streak disease (CBSD) is an emerging viral disease that can greatly reduce cassava 
productivity, while causing only mild aerial symptoms that develop late in infection. Early detection 
of CBSD enables better crop management and intervention. Current techniques require laboratory 
equipment and are labour intensive and often inaccurate. We have developed a handheld active 
multispectral imaging (A‑MSI) device combined with machine learning for early detection of CBSD 
in real‑time. The principal benefits of A‑MSI over passive MSI and conventional camera systems are 
improved spectral signal‑to‑noise ratio and temporal repeatability. Information fusion techniques 
further combine spectral and spatial information to reliably identify features that distinguish healthy 
cassava from plants with CBSD as early as 28 days post inoculation on a susceptible and a tolerant 
cultivar. Application of the device has the potential to increase farmers’ access to healthy planting 
materials and reduce losses due to CBSD in Africa. It can also be adapted for sensing other biotic and 
abiotic stresses in real‑world situations where plants are exposed to multiple pest, pathogen and 
environmental stresses.

The advent of digital technology has been making an impact on growing number of areas including agriculture. 
There is a pressing need for better management of limited resources and optimisation of cultivation practice, 
including early detection of plant diseases. While end-point PCR is often the preferred diagnostic method for 
detection of viral nucleic acid in field-collected samples, it is dependent on expensive instrumentation, time 
consuming and often cannot reliably detect virus early in infection, as seen for cassava brown streak disease 
(CBSD)1. Imaging technology has been applied to the analysis of plant conditions and nutrition levels, either 
based on visual traits or certain spectral properties reflected by the conditions or  diseases2. Hyperspectral imaging 
(HSI) and multispectral imaging (MSI) have become increasingly available and affordable techniques that offer 
many advantages over conventional RGB imaging. RGB imaging has been used to recognise visual symptoms of 
the  disease3, while plant nutritional conditions and metabolic or biotic changes due to disease may be reflected 
in certain spectral wavelengths beyond the RGB  channels3–5. These subtle signs in vast amounts of spectral and 
spatial imaging data can be successfully detected using advanced machine learning techniques. With the rapid 
advancement of imaging sensors, MSI systems have become smaller and are able to be applied in real-time and 
in-field6. This paper describes the application of a custom built active MSI (A-MSI) device and a machine learn-
ing method that leverages both spectral and spatial information of the imagery data for early detection of CBSD.

Cassava, Manihot esculenta Crantz, produces starchy tuberous roots and is one of the important staple food 
crops in the developing  world7,8. It is cultivated primarily by smallholder farmers. Cassava production in Africa 
is limited by two viral diseases, cassava mosaic disease (CMD) and CBSD. Together these diseases cause severe 
economic losses and threaten food  security9. CMD has been extensively studied and sources of endogenous 
resistance have been identified and  deployed10–16. Unfortunately, many farmer-preferred cassava cultivars, like 
the CMD2-resistant cultivar TME204, are highly susceptible to CBSD. CBSD, which was first reported in the 
coastal areas of  Tanzania17, has emerged recently as serious threat to food  production14,18. The rapid spread of 
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CBSD throughout east and central Africa resulted in research targeting development of new cassava cultivars 
that are resistant to both CBSD and  CMD8,19–21.

CBSD is caused by two closely related RNA viruses, cassava brown steak virus (CBSV) and Ugandan cassava 
brown streak virus (UCBSV), in the Ipomovirus genus of the Potyviridae family. These viruses are transmitted 
from plant to plant by the whitefly Bemisia tabaci22. The viruses are also propagated from one season’s crop to 
the next through the use of stem cuttings obtained from infected plants. CBSD typically induces only mild foliar 
symptoms that can be difficult to discern. The subtle symptoms can make it difficult even for experts to identify 
infected plants in the field, and the call is often complex and based on many visual cues. However, the tuberous 
roots of infected cassava plants have prominent necrotic lesions that can spread throughout the entire root struc-
ture, rendering it inedible. Because the necrotic lesions or root rot are only discovered when cassava is harvested, 
farmers often do not know that their crop is infected with CBSD until harvest at 9–12 months after planting.

Although considerable effort has been devoted to the search for strong sources of resistance to CBSD, the 
progress has been slow because of the lack of a rapid, reliable method for diagnosing CBSD during early stages 
of infection. Historically, diagnosis is based on subtle  symptoms23 and scoring requires visible symptoms char-
acteristic of established infections and does not distinguish resistant from tolerant plants. The use of molecular 
techniques to screen for the presence or absence of viral RNA has only recently been implemented in a few Afri-
can national research programmes because of the technical requirements, cost, and time constraints involved in 
screening large numbers of  plants8,21,24. To address these constraints, we have developed an active multispectral 
imaging (A-MSI) sensor system enhanced with machine learning as a screening platform for virus infection.

Multispectral imaging of plant viral infections generates massive amount of data. Machine learning techniques 
have become the most efficient means of extracting useful information from the wealth of the data available and 
for detecting the underlying relationships between certain mechanisms or functions under study and a large 
number of contributing parameters. Our previous  studies25,26 have used feature selections and a novelty detection 
classifier to distinguish healthy sugar beet plants from rust-diseased plants or stressed from control Arabidopsis 
plants using laboratory-based hyperspectral imaging systems. Performance was significantly higher than con-
ventional vegetation indices such as NDVI (the normalized difference vegetation index).

In the study reported here, an A-MSI device and machine learning were combined to probe the early detection 
of CBSD. Such an approach alleviates the burden of using an expensive and precise MSI system. Machine learning 
techniques can effectively make sense of plant conditions even with a low-cost, compact and less precise MSI 
device. Combining spectral and spatial features of the scans, machine learning identified significant differences 
at a high confidence between healthy cassava plants and plants inoculated with UCBSV in four experimental 
trials. The approach reliably detects CBSD much earlier and in a faster and much less invasive manner than end-
point PCR. The integrated handheld device with advanced machine learning should make it possible to detect 
disease in cassava fields early in the growing season, at a time when farmers can replant with virus-free cassava 
cuttings and should improve the efficiency of the work of cassava breeders in selecting for resistance to CBSD.

Results
Experimental settings. In three independent trials, we used the cassava cultivar TME204, which is sus-
ceptible to CBSD, to generate three treatment groups—control, infected and mock-inoculated (18 plants in each 
group, except for Trial 1—see Table 1). The infected group was inoculated with plasmid DNA corresponding 
to an infectious clone for the UCBSV Kenyan isolate  12527–29. The mock group was inoculated with an ‘empty’ 
control E. coli plasmid using the same protocol and the untreated group was not subjected to inoculation. All 
of the plants were grown together in an insect-free plant growth chamber for the duration of each experiment. 
The three treatment groups were visually indistinguishable at 7, 14 and 21 days post inoculation (dpi) (Fig. 1, 
panel B). At 28 dpi, a few plants (15%) inoculated with UCBSV displayed very mild symptoms on a single leaf. 
For plants showing symptoms, their severity slowly increased over the next 8 weeks. By 87 dpi, all of the plants 
in the UCBSV-inoculated treatment group displayed symptoms with an average symptom score of 2.6 (out of 
4), highlighting the mild nature of the symptom phenotype (Fig. 1, panel A). UCBSV infection was confirmed 
in 10 plants at 88 dpi by end-point RT-PCR of viral RNA (Fig. 1, panel C). We did not analyze viral RNA in the 
other 8 UCBSV-inoculated plants because the RcbS positive control could not be amplified from the samples. 

Table 1.  Experimental design of the Cassava-TME204-UCBSV A-MSI trials.

Trial Cultivar

Susceptibility

Groups Treatment No. of plant Leaf positionCMD UCBSV

1

TME204 Resistant Susceptible

Control Not inoculated 24
Leaf 2 for 7 dpi, leaf 3 for 28 and 53 dpi, 
and leaves 2 and 6 for 88 dpiMock Empty injection 12

Infected Inoculated by UCBSV 12

2

Control Not inoculated 18

Leaf 2 for 14, 28 and 54 dpiMock Empty injection 18

Infected Inoculated by UCBSV 18

3

Control Not inoculated 18

Leaf 2 for 7, 14, 21, 28, 52 and 59 dpiMock Empty injection 18

Infected Inoculated by UCBSV 18
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Viral RNA could also be detected at 52 dpi in some plants but with variable results. During the timeframe of the 
experiment, no symptoms were seen on plants in the other treatment groups and the RT-PCR results were nega-
tive for the control and mock groups. These results indicate that inoculation was highly efficient, consistent with 
the original report of this infectious  clone29, but do not guarantee that 100% of plants in the virus-inoculated 
group were infected. Some of the classification results presented below were therefore done using only the 10 
plants with PCR-confirmed infection (“Trial 2 with PCR”).

Scanning of cassava leaves. A single leaf (usually the second visible leaf from the apex) from each plant 
was screened using the A-MSI device, producing leaf images across 14 wavelengths. Twelve small patches were 
automatically cropped out from random spatial locations in the leaf area of each image at each wavelength, 
avoiding the leaf clapping grids and main leaf veins. This represents a simple approach to considering spatial 
variation in contrast to using the whole leaf for classification. Cropped patches were of various sizes, varying 
from 16 × 16 to 48 × 48 pixels, which covered sufficient spatial variations. Examples are shown in Fig. 2.

Performance for cassava disease detection. From each cropped patch region of a scanned leaf across 
the wavelengths, a variety of spectral and spatial features were extracted and investigated, including six vegeta-

Figure 1.  Infection results for Trial 2. (a) Images of leaves from TME204 plants at 7, 28, 52 and 87 dpi. The 
symptom score of each leaf is in parentheses. The white arrow points to faint yellow blotches characteristic 
of a symptom score of 2. (b) Average symptom scores from 7 to 87 days. (c) End-point RT-PCR of total RNA 
extracts isolated from untreated (U), mock-inoculated (M), and UCBSV-inoculated plants at 88 dpi. The upper 
panel shows a 445-bp band corresponding to UCBSV. The lower panel shows a 619-bp band corresponding to a 
cassava RbcS transcript, which served as a positive control for the isolation of amplifiable RNA.

Figure 2.  Randomly selected patches of various sizes sampled from leaf areas, avoiding leaf clapping grid and 
main veins. Patch sizes (pixels): (a) 16 × 16 , (b) 24 × 24 , (c) 32 × 32 , (d) 40 × 40 and (e) 48 × 48.
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tion indices (VIs), patch-based spectra, as well as patch-based texture extracted by Markov random field (MRF) 
probabilistic texture model. For examples, patch-based spectra are the averaged spectral reflectance values across 
all wavelengths within a patch region, while patch-based MRF textural features are the MRF model coefficients. 
Details of various vegetation indices are given in the “Methods” section. Support vector machine (SVM) was 
used as the classifier, along with various information fusion schemes, including the proposed probabilistic deci-
sion fusion method (ProbDecFus) for more reliable classification. For example, spatial–spectral fusion combines 
spatial features (MRF) and spectral features (e.g. patch-based spectra) for classification or integrates classifiers 
built on spatial features and classifiers built on spectral features. Details of various schemes are described in the 
“Methods” section.

Performance for detecting CBSD in TME204 has been investigated with various methods described in the 
“Methods” section for utilising these spectral and spatial features as well as classifier fusions, divided into to the 
following three categories, with corresponding results at 28 dpi shown in Table 2. For each of the three groups 
or pairs (control vs. infected, mock vs. infected, and control vs. mock), results are divided into the following 
three subgroups. 

1. Conventional spectral methods (1st two rows in the table, i.e. Vegetation indices and Spectral reflectance 
(whole leaf)). In the vegetation indices method, each of six VIs was calculated and averaged from cropped 
patch regions and six VIs were then concatenated for classification. The spatial reflectance (whole leaf) 
method refers to using the averaged spectral reflectance (spectrum) from each leaf.

2. Spatial–spectral methods (next two rows). Spectral reflectance (patch-based) refers to using patch-based 
spectra for classification. Instead of using averaged spectra from entire leaves, patch-based spectra represents 

Table 2.  Classification accuracy (%) at 28 dpi on leaf scans of three trials of Cassava-TME204-UCBSV and 
one trial of Cassava-Kiroba-UCBSV. ‘Trial 2 w PCR’ of Cassava-TME204-UCBSV denotes the classification 
results of the models re-trained only on those leaves that were later confirmed of infection with PCR at 88 dpi.

Groups Methods

TME204 Kiroba

Trial 1 Trial 2 Trial 2 w PCR Trial 3

Control versus infected

Vegetation indices 56.0  ±  13.1 87.7 ± 10.0 89.4 ±  9.3 73.9 ± 12.0 69.72 ± 21.22

Spectral reflectance (whole leaf) 67.6 ± 25.0 97.6 ±  8.3 96.9 ±  9.8 88.8 ± 16.4 87.41 ± 18.43

Spectral reflectance (patch-based) 78.9 ± 13.7 95.8 ±  5.8 96.1 ±  5.0 90.8 ± 11.3 87.98 ± 12.49

Spatia–spectral fusion (patch-
based) 67.7 ± 13.6 94.1 ±  7.3 95.9 ±  6.3 89.1 ± 11.9 82.58 ± 14.50

Decision fusion (average) 76.9 ± 13.8 95.1 ±  6.6 95.6 ±  6.1 90.3 ± 11.5 83.67 ± 16.38

Spectral reflectance (patch-based 
voting) 87.2 ± 17.5 98.7 ±  5.6 98.2 ±  6.4 93.5 ± 14.5 90.60 ± 15.74

Spatial–spectral fusion (patch-
based voting) 78.6 ± 20.9 98.3 ±  6.3 98.0 ±  5.8 91.7 ± 15.7 85.19 ± 20.07

ProbDecFus (patch-based) 79.0 ± 13.6 95.7 ±  6.3 96.5 ±  5.8 90.8 ± 11.4 88.12 ± 12.83

ProbDecFus (patch-based voting) 87.3 ± 17.4 98.5 ±  6.9 98.6 ±  5.1 93.6 ± 14.8 91.10 ± 15.74

Mock versus infected

Vegetation indices 53.6 ± 16.2 57.0 ± 14.9 56.3 ± 14.8 56.6 ± 17.5 63.21 ± 23.57

Spectral reflectance (whole leaf) 52.1 ± 21.8 75.3 ± 26.3 67.3 ± 22.3 76.1 ± 27.0 72.35 ± 28.27

Spectral reflectance (patch-based) 65.7 ± 13.3 72.6 ± 19.2 67.7 ± 17.6 76.9 ± 18.4 66.45 ± 22.80

Spatial–spectral fusion (patch-
based) 52.8 ± 13.3 71.9 ± 17.3 66.9 ± 17.7 74.7 ± 16.5 69.66 ± 22.29

Decision fusion (average) 63.8 ± 15.0 70.9 ± 17.9 66.0 ± 16.9 74.2 ± 19.9 67.70 ± 24.84

Spectral reflectance (patch-based 
voting) 75.5 ± 20.8 75.4 ± 24.7 70.9 ± 24.1 81.0 ± 22.8 69.42 ± 27.54

Spatia–spectral fusion (patch-
based voting) 57.1 ± 25.8 78.4 ± 25.6 71.1 ± 24.6 81.3 ± 21.8 76.37 ± 27.36

ProbDecFus (patch-based) 66.0 ± 13.3 72.3 ± 18.7 67.3 ± 17.4 77.6 ± 18.2 66.97 ± 23.30

ProbDecFus (patch-based voting) 75.9 ± 20.8 75.1 ± 24.5 70.2 ± 23.7 81.8 ± 22.6 69.47 ± 27.72

Control versus mock

Vegetation indices 55.3 ± 16.9 74.6 ± 15.5

N/A

67.8 ± 14.7 50.89 ± 16.45

Spectral reflectance (whole leaf) 60.8 ± 27.7 88.6 ± 18.9 79.4 ± 25.6 90.54 ± 15.36

Spectral reflectance (patch-based) 63.6 ± 17.7 91.4 ±  9.9 76.3 ± 15.5 84.56 ± 14.1

Spatial–spectral fusion (patch-
based) 59.8 ± 15.5 90.4 ± 11.0 77.1 ± 15.2 81.80 ± 13.29

Decision fusion (average) 62.0 ± 17.9 88.5 ± 12.3 75.9 ± 15.3 80.11 ± 15.17

Spectral reflectance (patch-based 
voting) 70.7 ± 25.5 93.4 ± 11.5 84.3 ± 20.2 88.12 ± 19.01

Spatial–spectral fusion (patch-
based voting) 66.9 ± 26.2 93.3 ±  14.0 84.7 ± 19.7 87.10 ± 20.52

ProbDecFus (patch-based) 63.2 ± 17.7 91.4 ± 10.4 76.5 ± 15.4 84.95 ± 14.22

ProbDecFus (patch-based voting) 79.0 ± 25.6 93.1 ± 11.9 84.5 ± 19.9 88.19 ± 19.23
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the simplest spatial–spectral approach. The spatial–spectral fusion (patch-based) method refers to the use 
of concatenated patch spectrum and MRF texture parameters for classification.

3. Spatial–spectral and classifier fusion methods (the remaining five rows). Decision fusion (average) refers to 
fusion of three classifiers trained on VIs, spectral reflectance and MRF texture parameters extracted from 
patches. The patch-based voting scheme regards a leaf as infected when at least half of the patches extracted 
from the leaf are classified as infected. The scheme was used with either spectral information (spectral 
reflectance (patch-based voting)) or spatial–spectral information, i.e. concatenated patch spectrum and 
MRF parameters (spatial–spectral fusion (patch-based voting)). The proposed probabilistic decision fusion 
method (ProbDecFus) combines VIs, MRF texture features and spectral reflectances to generate reliable 
classification. When the method is used on patches, we refer to it as ProbDecFus (patch-based). When it is 
used with patch-based voting, the method becomes ProbDecFus (patch-based voting).

For a fair and comprehensive comparison, we separately trained the classifiers on three pairs of sample sets: 
control versus infected, mock versu infected, and control versus mock. A leave-one-leaf-out scheme was adopted 
in Trial 2 and Trial 3 of TME204 as the numbers of leaf samples in the three conditions (control, infected and 
mock) were 18:18:18. Trial 1 of TME204 however had unbalanced sample numbers (24:12:12). We therefore 
randomly selected half of the control leaves each time and then performed the leave-one-leaf-out training. The 
random selection process of control samples was repeated at least 5000 times and the averaged classification 
results were produced. For finding the best hyperparameters of the SVM in each training, we randomly chose half 
of the training samples as the validation set and optimised the SVM classifier using the grid search algorithm.

As shown in Table 2, at 28 dpi the proposed ProbDecFus with patch-based voting achieved a classification 
accuracy of 87.3% for Trial 1, 98.5% for Trial 2 and 93.6% for Trial 3 on control versus infected. The methods 
using patch-based spatial information (fusion or not) greatly boosted classification compared to using the whole 
leaf. Using additional MRF texture features further improves and stablises the performance. For the “Trial 2 w 
PCR” results, the classifiers were trained only from those leaves with detected UCBSV by end-point RT-PCR 
(Fig. 1, panel C). The similarities between this column and “Trial 2” column confirm the effectiveness of the 
A-MSI device and classification method in detecting CBSV at 28 dpi.

The progressive detection performances on Trial 1 are shown as an example as it has the longest time course. 
Figure 3 depicts the classification results of various methods over leaf samples at 7, 28, 53 and 88 dpi. These 
graphs illustrate again that combining spatial and spectral information gives an edge over other ways of utilis-
ing the available information and significantly outperforms the use of vegetation indices. It is worth noting that 
although MRF is a powerful model for describing spatial dependence, it does not deliver convincing results 
when used alone.

Performance on a tolerant cultivar. The CBSD tolerant cultivar,  Kiroba30, was also tested in a single 
trial to verify early detection of CBSD. Eighteen plants in each group (control, infected and mock) were used in 
the trial using an experimental procedure similar to that for TME204 as described before. Scans of the leaves 
took place at 14, 26, 53 and 91 dpi. No clearly visible symptoms were observed during the course of the trial. 
Classifications between control versus infected, mock versus infected and control vs. mock were performed and 
results of 28 dpi are shown in the “Kiroba” column of Table 2. Performances across all time courses are plotted in 
Fig. 4. As can be seen these results are in line with that of TME204, indicating early CBSD detection at 28 dpi in 
a tolerant, asymptomatic cultivar. While at 14 dpi, most classifiers, except for Vegetation Indices, whole leaf and 
MRF, can already separate with over 70% accuracy between the infected and control. After 28 dpi, classification 
performances do not seem to increase further, unlike in the case of TME204; this could be well due to the toler-
ant nature of Kiroba and its restrictive virus  accumulation30.

Discussion
Several technologies have been used for diagnosis of plant viral diseases, including, enzyme-linked immuno-
sorbent assay (ELISA), loop mediated isothermal amplification (LAMP)31, and PCR. All three have been used 
to detect CBSV and UCBSV, with PCR being the most widely used. RNA isolation from non-model plants like 
cassava is often technically challenging, whereas the scanning approach described here does not require RNA 
isolation. To date, the high cost and need for laboratory resources have been prohibitive for mass deployment of 
these technologies for real-time, in-field detection of CBSD. Imaging offers an alternative to indirectly sense sub-
tle biological changes reflected in plant leaves as a result of viral infection. Such an approach is almost instant once 
configured and can be portable, hence offering the potential for widespread, low-cost deployment. The results 
in this study also show that such changes can be detected at a very early stage, well before symptoms emerge, 
whereas end-point PCR depends on viral RNA accumulation to detectable levels, which occurs later in infection. 
Across the three trials of TME204, the available common sampling points were at 7, 28 and 53 dpi, as shown in 
Table 1. Trials 1 and 3 were also scanned at 14 dpi and detection of differences was also highly probable (> 80%). 
Further optimization of the spectral profile of the A-MSI device may enable still earlier detection of CBSD. In 
principle, early detection of infection in primary whitefly-infected leaves could even enable removal of infected 
tissue before the virus can move systemically thus eliminating infection to preserve the yield of individual plants.

Machine learning approaches for analysis of MSI data can effectively even out inaccuracies of the imaging to 
some extent. Even with intuitively chosen wavelengths, as compared to those strictly optimized through many 
rounds of cross-validation process, machine learning has proven useful and effective. This in principle is in line 
with its broad deviation from the traditional orthogonal approach to information processing. With an active 
MSI system, more crop or growth conditions could be investigated using the modulation properties of various 
wavelengths of electromagnetic spectrum in response to metabolic changes in the organism, as well as translucent 
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properties of the plant leaves, extending the imaging approach from spectral and spatial to temporal and transi-
tive. We are optimistic that refinements of this approach in future field trials may be useful for early detection 
of infection in a wide range of crop pathosystems.

To further demonstrate the generalizability of the developed spatial–spectral machine learning method to 
other HSI/MSI applications, a public benchmark HSI dataset was used. The Indian Pine dataset is a HSI image 
dataset on land  coverage32. Each image is of 145 by 145 pixels with a spatial resolution of 20 m covering 16 dif-
ferent crops, provided in the ground truth reference as detailed  in32. The dataset was captured by the AVIRIS 
sensor at the Indian Pines test site in June 1992. The data contains a subset of a full scene that covers portions 
of Northwestern Tippecanoe County, IN, USA. The dataset is widely used in HSI analysis for validating clas-
sification efficiency. Comparisons with the state-of-the-art methods are presented in Table 3. The classification 
was performed using a 5-fold cross-validation strategy, and repeated 10 times to achieve satisfactory precision. 
Convolutional neural networks (CNNs) were used on the extracted spectral-spatial features. The baseline model, 
named 2D-CNN, consisted of seven main blocks (architecture: 1 × 20-(8C3-8C3)-16R3-32R3-64R3-128R3-
256R3-(512FC-16FC)). The first block used two convolutional layers, each containing 8 filters of 1 × 3 with zero 
padding. After subsequent five residual blocks, two fully connected layers were used with a softmax layer to pro-
duce probabilistic output over each class. Batch normalisation was inserted in each convolutional layer between 
the convolutional and ReLU activation. A max-pooling layer was also inserted in each residual block after the 
addition function. The developed spatial–spectral Net ( SSFNet2D ) had the same architecture as the baseline 
except that the input was further combined with MRF texture parameters extracted from the 25 × 25 surrounding 
neighbourhood of the centre pixels. The networks were trained using the Adam optimiser for 200 epochs with 
a batch size of 4. The learning rate started at 0.001 and was decreased using the polynomial scheduler. Again, 
the inclusion of spatial features was beneficial, resulting in more accurate and more stable classification results.
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Figure 3.  Classification accuracy (%) from leaf scans on Cassava-TME204-UCBSV Trial-1, at 7, 28, 53 and 88 
dpi, respectively, (a) control versus infected, (b) mock versus infected, and (c) control versus mock.
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Methods
Active multispectral imaging (A‑MSI) system. A handheld active multispectral imaging (A-MSI) 
prototype, developed at the e-Agri Sensors Centre, the University of Manchester, was used to obtain the data 
presented in this study. The sensor system exploits a modified proprietary digital imaging detectors appropri-
ately engineered within the active optical assembly, also to enable the vastly overlapping ‘Nth-order’ molecular 
vibrational harmonics, from the near-infrared and visible 2D time-series data, to be deconvoluted. Isotropic 
illumination is achieved, with minimised specular reflectance, via a combination of an integrating hemisphere, 
optical diffuser and appropriately arranged narrow-band semiconductor sources (LEDs). The latter cover 15 
wavebands using 10 LEDs per waveband, at the wavelengths detailed in the Table 4. Custom drive electron-
ics are then used to enable the multispectral frames to be compiled within a parallel processing unit (NVDIA 
Jetson Nano). The variant of A-MSI adopted in the study is distinct from more traditional passive multispectral 
imaging (MSI)  systems38 as closed-loop control of the illumination power at each detection band enables highly 
repeatable measurements to be undertaken with significantly greater signal-to-noise ratio (SNR) than that by a 
filtered or dispersive-element based passive MSI sensor-system. This is due, in part, to the variability in illumina-
tion angle, spectral composition and polarisation of ambient illumination. The prototype instrument used in the 
study is shown in Fig. 5, which depicts the as-built unit and the inset measurement chamber, relative position of 
the LED array, and camera assembly within the integrating hemisphere. The system automatically calibrates the 
illumination level for each band at the start of each scanning process.

Cassava cultivation and virus inoculation. Cassava cuttings (Manihot esculenta cultivar TME204 or 
Kiroba) were originally provided by J. Ndunguru (Tanzania Agricultural Research Institute). Import and con-
tainment of plant cuttings and the UCBSV infectious clone (pLX-UCBSVi) followed international, U.S. (Depart-
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Figure 4.  Classification accuracy (%) from leaf scans on Cassava-Kiroba-UCBSV dataset, at 14, 28, 53 and 91 
dpi, respectively, (a) control versus infected, (b) mock versus infected, and (c) control versus mock.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3113  | https://doi.org/10.1038/s41598-022-06372-8

www.nature.com/scientificreports/

ment of Agriculture Animal and Plant Health Inspection Service), and institutional guidelines. Plants were 
propagated at 28 °C in a 12-h light/12-h dark cycle. For each experiment, 18 plants at the 6-leaf stage were inoc-
ulated under the apical meristem area using a microsprayer and 40 psi helium to deliver gold particles coated 
with plasmid  DNA39 (Venganza, Inc.). Each plant was inoculated with 1.67 μg of plasmid DNA corresponding 
to pLX-UCBSVi (infected)28,29 or pUC119 (mock). pLX-UCBSVi contained an E35S expression cassette driving 
transcription of UCBSV Ke_125 (GenBank accession  KY82516627). Untreated plants (18) were not subjected to 
the inoculation treatment. Plants were monitored for symptoms and were scored on a scale of 1 (no symptoms), 
2 (small yellow blotches on 1 leaf), 3 (yellow blotches on two leaves), and 4 (yellow blotches and yellowing along 
veins on multiple leaves).

TME204 samples (1 mg) were collected at 88 dpi near the petiole of leaf 2 (relative to the plant apex), flash-
frozen in liquid nitrogen, and stored at − 18 °C. Leaf samples were ground in a Retsch Mixer Mill, followed by 
RNA extraction using a Qiagen RNeasy Plant Mini kit. RNA concentration was measured using the Qubit RNA 

Table 3.  Class-specific accuracies (%) on Indian Pines dataset.

Class 3D-CNN-LR33
RNN-GRU-
PReTanh34

Feature-
ensemble 
ND-SVM25 CNN-MRF35 HSINet36

UHfe SRVAE11
37 2D-CNN SSFNet2D

1 100 70.6 99.9 ± 0.1 86.5 100 89.6 90.7 ± 7.5 95.3 ± 4.3

2 96.3 ± 1.1 70.3 66.4 ± 1.4 91.5 66.9 89.4 97.6 ± 1.3 98.4 ± 1.0

3 99.5 ± 0.7 81.5 82.8 ± 1.0 96.4 62.4 85.1 97.8 ± 1.6 98.7 ± 1.2

4 100 90.2 89.9 ± 1.2 96.2 100 82.0 97.8 ± 2.4 99.0 ± 1.8

5 99.9 ± 0.2 92.0 94.6 ± 0.6 99.5 83.2 92.6 96.4 ± 2.5 97.8 ± 2.4

6 99.8 ± 0.3 96.1 99.3 ± 0.1 99.8 98.0 96.7 98.6 ± 1.3 99.3 ± 0.8

7 100 84.8 99.9 ± 0.1 78.0 100 34.8 84.6 ± 17.6 93.0 ± 9.6

8 100 59.6 99.6 ± 0.1 98.8 99.7 98.6 99.9 ± 0.3 99.9 ± 0.1

9 100 86.2 99.9 ± 0.1 100 100 93.8 84.9 ± 17.5 93.9 ± 9.8

10 98.7 ± 1.0 99.4 92.2 ± 0.7 94.3 77.5 89.9 97.1 ± 1.9 98.4 ± 1.4

11 95.5 ± 1.2 85.0 77.7 ± 1.0 96.5 78.4 93.2 99.0 ± 0.6 99.4 ± 0.5

12 99.5 ± 0.4 77.6 83.2 ± 1.2 91.9 75.0 85.5 96.8 ± 2.0 97.6 ± 2.7

13 100 95.6 99.8 ± 0.1 98.9 99.5 99.0 98.7 ± 2.2 99.1 ± 1.6

14 99.6 ± 0.6 84.6 95.7 ± 0.2 98.4 96.5 96.7 99.7 ± 0.5 99.9 ± 0.2

15 99.5 ± 1.3 90.9 86.2 ± 1.1 91.5 69.1 80.1 98.9 ± 1.4 99.2 ± 1.3

16 99.3 ± 1.08 100 99.9 ± 1.0 97.9 100 92.9 87.8 ± 7.5 95.3 ± 5.9

OA 97.6 ± 0.4 88.6 – 96.1 83.0 ± 0.2 91.4 98.1 ± 0.4 98.9 ± 0.4

AA 99.2 ± 0.2 85.3 91.7 ± 0.1 94.8 87.9 ± 0.2 87.5 95.4 ± 3.1 97.8 ± 2.8

κ × 100 97.0 ± 0.5 73.7 – 95.8 81.9 ± 0.2 90.2 – –

Figure 5.  (a) Photo of the developed A-MSI system and (b) its LED ring and sensing chamber.
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BR Assay Kit (Invitrogen). cDNA was synthesized in reactions containing 0.5 μg total RNA, oligo d(T)18 mRNA 
primer (60 μM), RNasin (40 U/μL), dNTPs (10 mM), and M-MuLV reverse transcriptase (200 U/μL) using the 
following conditions: 5 min at 25 μC , 60 min at 42 μC, 20 min at 65 μC. cDNA (5 μL) was amplified in PCR 
reactions comprising 10 pMol primers, 10 mM dNTPs, and Hot Start Taq polymerase (NEBioLabs). UCSBV RNA 
was amplified across the 3′ NIa-Pro and 5′ NIb coding sequences using the primer pair—UCBSV-F (GGG TTC 
CAT AGT GGT GTG ATTAG) and UCBSV-F (CTC GAA CTG GCT CAT TGT ACTT). The cassava RbcS transcript 
(Manes.05G137400.1), which served as a positive control for mRNA and cDNA quality, was amplified using the 
primer pair—RBC-1 (CTA CTA TGG TGG CTC CGT TC) and RBC-2 (CCG TTC AGT CGG AGA AAC TC). Both 
sequences were amplified for 30 cycles using the following conditions: 95 °C denaturation for 60 s, 51 °C anneal-
ing for 60 s, 68 °C extension for 60 s. The PCR products were resolved on 1% agarose gels. The UCBSV products 
were purified using the Qiagen PCR purification kit and verified by Sanger sequencing.

Cassava leaf MSI acquisition. Leaves were detached from the TME204 plants at 7, 28, 53 and 88 dpi and 
from Kiroba plants at 14, 26, 53 and 91 dpi. The adaxial and abaxial surfaces of each leaf were scanned using a 
handheld multispectral imaging instrument. The leaves were sampled from the same position on each plant (leaf 
2 or leaf 6 counting from the plant apex). The plants were also scored for symptom development at the same 
dpi using a scale from 1 (no visible symptoms) to 4 (severe symptoms). Details of the experimental design are 
shown in Table 1.

Data preprocessing. In the experiments, multispectral scans of cassava leaves were sampled by automati-
cally cropping out patches. Twelve patches were cropped out at random spatial locations of the leaf region from 
each leaf scan. For spectral analysis, the number of pixels from the cropped leaf area were averaged over each 
wavelength range to reduce the variability in pixel intensities and produce the spectral signature. Examples are 
shown in Fig. 2. Such patch-based spectral information represents the simplest approach to consider spatial 
variation. Averaged reflectance across the entire leaf was used for comparisons, in which leaf segmentation was 
performed and average reflectance calculated.

Vegetation indices (VIs) calculation. The spectral signatures from each cropped patch were extracted 
and averaged to calculate empirical VIs. Based on the 14 wavelength bands provided by the A-MSI, six empirical 
indices were extracted and analysed to study plant properties and conditions. The primary formulation is the 
Carter index (CI), a strong indicator for plant stress, which measures the ratio between reflectance at 695 nm 
and 420  nm40,

The modified chlorophyll absorption in reflectance index (MCARI) measures the depth of chlorophyll absorp-
tion at 670 nm relative to the green reflectance peak at 550 nm and the reflectance 700  nm41,

The optimised index transformed chlorophyll absorption in reflectance index (TCARI) was studied as being 
more sensitive to chlorophyll content, thus avoiding the influence by canopy and soil reflectance  values42,

(1)CI =

R695

R420
.

(2)MCARI = [(R700 − R670 − 0.2(R700 − R550)]
R700

R670
.

Table 4.  Detailed wavelength information used in the A-MSI system.

LED No. Band no. Wavelength (centre band)

1 8 395 nm

2 9 415 nm

3 10 470 nm

4 11 528 nm

5 12 532 nm

6 13 550 nm

7 14 570 nm

8 0 585 nm

 9 1 590 nm

 10 2 610 nm

11 3 625 nm

12 4 640 nm

13 5 660 nm

14 6 700 nm

15 7 880 nm

Null 15 No LED
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The photochemical reflectance index (PRI) measures the normalised difference VI of reflectivity at 531 nm 
and 570 nm and has been developed for disease  detection43,

The disease water stress index (DSWI) is the ratio between reflectances at 550 nm and 680  nm44,

And the healthy index (HI)45 can be expressed by,

Conventional decision fusion techniques. The general idea of classifier/decision fusion can be sum-
marised as merging multiple learners or classifiers to produce the best possible decision so as to enhance the 
prediction performance over a single classifier. By taking into account the outputs of all classifiers, combinations 
of multiple classifiers minimise the risk of choosing a weak classifier, stabilise results of random classifiers and 
increase the robustness of the  decisions46. Classifier/decision fusion has been an active research topic in machine 
learning since the late twentieth century and much of the effort has been devoted to combining classifiers for 
decision making in several pattern recognition  applications47–50. Typically, in a multiple classifier system, there 
are two general approaches to obtaining the final  decision46: 

1. Selection: Assuming complementary classifiers, only a single selected classifier contributes to the final deci-
sion.

2. Fusion: Assuming competitive classifiers, the integration of all classifiers determines the final decision.

Based on the output information of classifiers, fusion can be divided into three  levels51: 

1. Abstract level: Each classifier only outputs the predicted class label for each input. An abstract level combiner 
includes weighted or unweighted versions of the majority vote.

2. Rank level: For each input, classifiers rank all labels or classes and produce a list of possible predictions.
3. Measurement level: Instead of class labels, each classifier outputs the probability or confidence score for each 

class. The measurement level contains the most information among these three levels, making it possible 
to incorporate with various combiners (e.g. average, maximum, minimum and product), by using either 
selection or fusion methods.

Various methods in the literature are also concerned with how the final outputs can be combined. Majority 
vote is the simplest and most used combiner, in which the ensemble of classifiers choose the class that receives 
the highest number of votes. The fusion scheme for the unweighted majority voting can be described as,

where {θ1, θj , . . . , θC} are the C possible classes that an input is to be assigned to, L denotes the total number of 
classifiers, ŷi,j is the predicted output of the ith classifier for the jth class, and ŷ represents the final decision. In 
cases where each classifier contributes unequally to the fusion output, a weighted majority vote scheme can be 
employed by associating a weighting wi for ith classifier, and the decision becomes,

Apart from the majority voting, multiple rules can be applied at the measurement  level49,52. The maximum, 
minimum or average rule finds the maximum, minimum or average probability of each class among the classifiers 
and assigns the input to the class with the maximum score among the maximum, minimum or average scores, 
respectively. These rules can be expressed as,

(3)TCARI = 3

[

(R700 − R670 − 0.2(R700 − R550)

(

R700

R670

)]

.

(4)PRI =

(R531 − R570)

(R531 + R570)
.

(5)DSWI =

R550

R680
.

(6)HI =

(R534 − R698)

(R534 + R698)
− 0.5R704.

(7)ŷ = arg max
θj∈{θ1,θj ,...,θC}

L
∑

i=1

ŷi,j ,

(8)ŷ = arg max
j∈{θ1,θj ,...,θC}

L
∑

i=1

wiŷi,j .

(9)ŷ = arg max
θj∈{θ1,θj ,...,θC}

max
L

P(θj|xi),

(10)ŷ = arg max
θj∈{θ1,θj ,...,θC}

(1 − min
L

P(θj|xi)),
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where P(θj|xi) represents the estimated probability for input x that the ith classifier output xi belongs to the jth 
class θj . Similarly, the product rule multiplies the probabilities or confidence scores generated by each classifier 
and assigns the class label with the maximum score to given input pattern,

Markov random field texture analysis. As a fundamental image property descriptor, image texture 
models brightness variations in a local neighbourhood. Furthermore, image texture features are associated with 
various image properties such as orientation, coarseness and smoothness and quantify the spatial arrangements 
of pixel intensities in an image or an image region. Texture-based image analysis has been shown to be helpful in 
various applications such as remote sensing, medical imaging and industrial inspection.

MRFs are generative, flexible and stochastic image texture models, in which contextual dependencies and 
spatial interrelationships are established among image pixels or other correlated  features53. Due to the random 
nature of imaging and noise, pixels are naturally considered as random variables that are conditionally related 
to neighbouring variables. As undirected probabilistic graph models, MRFs not only specify the conditional 
dependencies between these random variables, but also interpolate the joint probability distributions with use-
ful potential  functions54. MRF based texture analysis plays an important role in modern texture modelling and 
 synthesis55–57 as well as helps visual interpolation and image  understanding54,58,59.

A typical Gaussian MRF model is a stationary noncausal two-dimensional autoregressive process that can be 
expressed by a set of difference  equations53,60 as

where r is the relative position with respect to central pixel s, and {es} is a stationary Gaussian noise sequence 
with zero mean and standard deviation σ 2 characterised by

where βr is the model parameter describing the relationship between pixels fs and fs+r . All the parameters βr in 
the neighbourhood system Ns form the parameter vector β.

In model-based texture methods, model parameters can be used as features for distinguishing textures. Model 
parameter estimation plays an significant role in analysing image properties and the least squares estimation is 
commonly used to estimate Gaussian MRF  models60. The quadratic difference � between the centre pixel and 
its neighbours can be defined as

The least squares problem can be resolved by a close-form solution,

where fs+r represents the neighbouring pixels of fs.

ProbDecFus: probabilistic decision fusion. Support vector machines (SVMs) are com-
monly used machine learning algorithms for classification and regression. Given train-
ing vectors X = {x

(1), x(2), . . . , x(N)
} = {x

(k)
}
N
k=1 ∈ R

M×N and its corresponding class labels 
Y = {y(1), y(2), . . . , y(N)

} = {y(k)
}
N
k=1 , the ν-SVM61 solves the quadratic optimisation problem

where ω denotes the weight vector, b is the learning bias, ξ is a non-zero slack variable, and ν is the regularisation 
parameter that controls the trade-off between smaller training errors and larger margins. ν ∈ (0, 1] represents 
an upper bound on the fraction of training margin errors as well as a lower bound of the fraction of support 
 vectors61,62. Training vectors xi are mapped into a high-dimensional space by function φ though the kernel trick 
K(x

(i), x(j)
) = φ(x

(i)
)
T
φ(x

(j)
) . A radial basis function (RBF) is a typical kernel function

(11)ŷ = arg max
θj∈{θ1,θj ,...,θC}

1

L

L
∑

i=1

P(θj|xi),

(12)ŷ = arg max
θj∈{θ1,θj ,...,θC}

L
∏

i=1

P(θj|xi).

(13)fs =

∑

s+r∈Ns

βr fs+r + es ,

(14)E(eses+r) =







σ
2 if r = (0, 0)

−σ
2
βr if r �= (0, 0)

0 otherwise
,

(15)� =

∑

s

(

fs −

∑

s+r∈Ns

βr fs+r

)2
.

(16)ˆβ = (FTs+rFs+r)
−1FTs+r�,

(17)

min
ω,b,ξ ,ρ

1

2
ωTω − νρ +

1

N

N
∑

k=1

ξk

s.t. y(k)
(ωT

φ(x
(k)

) + b) � ρ − ξk ,

ν ∈ (0, 1], ξk � 0, ρ > 0
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where γ is the kernel parameter. Hence the predicted class labels Ŷ = {ŷ(1), ŷ(2), . . . , ŷ(N)
} = {ŷ(k)

}
N
k=1 can be 

obtained through the decision function,

where αk is the Lagrange multiplier.
In addition to predicted class labels, it is also possible to obtain an estimated probability for each class, 

P(θj|x
(k)

) , by minimising the negative log likelihood and optimising the quadratic  problem62–64. In this study, 
three independent SVM classifiers were constructed based on the spectral reflectances, VIs and MRF spatial 
features, respectively. The spectral reflectance profiles, x(k)

0  , extracted from selected areas of leaves, were averaged 
within the regions over the entire wavelengths. The empirical VI information, x(k)

VI  , refers to the concatenation 
of six VIs (CI, MCARI, TCARI, PRI, DWSI and HI) calculated on the spectral reflectance. The MRF spatial 
features, x(k)

MRF , were produced by estimating the texture parameters in each of the selected area. The classifier 
built on the spectral reflectances was considered as the baseline model, and we proposed a probabilistic decision 
fusion scheme, ProbDecFus, for integrating spectral and spatial information for further classification. Firstly, we 
calculated a threshold value µ based on the classification accuracy of the validation set ( accval),

where,

Then according to the probability estimations, the final classification results were generated by weighting 
and fusing the three classifiers using

Data availability
The MSI dataset of these three trials (Cassava-TME204-UCBSV) are available at https:// doi. org/ 10. 5281/ zenodo. 
46369 68.
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�=ŷ(k)
}

max
θj∈{θ1,θj ,...,θC}

Pval(θj|x
(k)
0 )

(23)w
(k)
0 = 1 −

minθj∈{θ1,θj ,...,θC} P(θj|x
(k)
0 )

maxθj∈{θ1,θj ,...,θC} P(θj|x
(k)
0 )

(24)w
(k)
i =







1 −

minθj∈{θ1,θj ,...,θC } P(θj |x
(k)
i )

maxθj∈{θ1,θj ,...,θC } P(θj |x
(k)
i )

w
(k)
0 � wµ

0 w
(k)
0 > wµ

https://doi.org/10.5281/zenodo.4636968
https://doi.org/10.5281/zenodo.4636968


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3113  | https://doi.org/10.1038/s41598-022-06372-8

www.nature.com/scientificreports/

 13. Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: Actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701 
(2009).

 14. Legg, J. P. et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. 
Virus Res. 159, 161–170 (2011).

 15. Okogbenin, E. et al. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in 
Nigeria. Crop Sci. 52, 2576–2586 (2012).

 16. Rabbi, I. Y. et al. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing 
and its implications for breeding. Virus Res. 186, 87–96 (2014).

 17. Storey, H. H. Virus diseases of East African plants. VI. A progress report on studies of disease of cassava. East Afr. Agric. J. 2, 34–9 
(1936).

 18. Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus 
pandemics in East and Central Africa. Virus Res. 186, 61–75 (2014).

 19. Beyene, G. et al. A virus-derived stacked RNAi construct confers robust resistance to cassava brown streak disease. Front. Plant 
Sci. 7, 2052 (2017).

 20. Kawuki, R. S. et al. Alternative approaches for assessing cassava brown streak root necrosis to guide resistance breeding and selec-
tion. Front. Plant Sci. 10, 1461 (2019).

 21. Sheat, S., Fuerholzner, B., Stein, B. & Winter, S. Resistance against cassava brown streak viruses from Africa in cassava germplasm 
from South America. Front. Plant Sci. 10, 567 (2019).

 22. Maruthi, M. N. et al. Transmission of cassava brown streak virus by Bemisia tabaci (Gennadius). J. Phytopathol. 153, 307–312 
(2005).

 23. Nichols, R. F. J. The brown streak disease of cassava: Distribution, climatic effects and diagnostic symptoms. East Afr. Agric J. 15, 
154–160 (1965).

 24. Mohammed, I., Abarshi, M., Muli, B., Hillocks, R. & Maruthi, M. The symptom and genetic diversity of cassava brown streak 
viruses infecting cassava in East Africa. Adv. Virol. 2012 (2012).

 25. AlSuwaidi, A., Grieve, B. & Yin, H. Feature-ensemble-based novelty detection for analyzing plant hyperspectral datasets. IEEE J. 
Sel. Topics Appl. Earth Observ. Remote Sens. 11, 1041–1055 (2018).

 26. AlSuwaidi, A., Grieve, B. & Yin, H. Combining spectral and texture features in hyperspectral image analysis for plant monitoring. 
Meas. Sci. Tech. 29, 104001 (2018).

 27. Winter, S. et al. Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak 
disease in East Africa. J. Gen. Virol. 91, 1365–1372 (2010).

 28. Pasin, F. et al. Multiple T-DNA delivery to plants using novel mini binary vectors with compatible replication origins. ACS Synth. 
Biol. 6, 1962–1968 (2017).

 29. Valli, A. A. et al. Maf/ham1-like pyrophosphatases, host-specific partners of viral RNA-dependent RNA polymerases. bioRxiv 
https:// doi. org/ 10. 1101/ 2021. 05. 18. 444600.

 30. Kaweesi, T. et al. Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression 
and virus load. Virol. J. 11, 1–15 (2014).

 31. Panno, S. et al. Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 9, 461 (2020).
 32. Baumgardner, M. F., Biehl, L. L. & Landgrebe, D. A. 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian Pine test 

site 3 (2015).
 33. Chen, Y., Jiang, H., Li, C., Jia, X. & Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on con-

volutional neural networks. IEEE Trans. Geosci. Remote Sens. 54, 6232–6251 (2016).
 34. Mou, L., Ghamisi, P. & Zhu, X. X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. 

Remote Sens. 55, 3639–3655 (2017).
 35. Cao, X. et al. Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans. Image 

Process. 27, 2354–2367 (2018).
 36. Wang, Y. et al. Self-supervised feature learning with CRF embedding for hyperspectral image classification. IEEE Trans. Geosci. 

Remote Sens. 57, 2628–2642 (2018).
 37. Yu, W., Zhang, M. & Shen, Y. Spatial revising variational autoencoder-based feature extraction method for hyperspectral images. 

IEEE Trans. Geosci. Remote Sens. 59, 1410–1423 (2021).
 38. Park, B. & Lu, R. (eds.) Hyperspectral Imaging Technology in Food and Agriculture (Springer, 2015).
 39. Cabrera-Ponce, J. L. et al. An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus 

officinalis L.). Plant Cell Rep.16, 255–260 (1997).
 40. Carter, G. A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Remote Sens. 15, 697–703 (1994).
 41. Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B. & McMurtrey, J. III. Estimating corn leaf chlorophyll concentration from 

leaf and canopy reflectance. Remote Sens. Environ. 74, 229–239 (2000).
 42. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrow-band vegetation indices for predic-

tion of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426 (2002).
 43. Gamon, J., Penuelas, J. & Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. 

Remote Sens. Environ. 41, 35–44 (1992).
 44. Apan, A., Held, A., Phinn, S. & Markley, J. Formulation and assessment of narrow-band vegetation indices from EO-1 Hyperion 

imagery for discriminating sugarcane disease. In Proc. Spatial Sci. Conf., 1–13 (2003).
 45. Xue, J. & Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sensors https:// doi. 

org/ 10. 1155/ 2017/ 13536 91 (2017).
 46. Ponti Jr, M. P. Combining classifiers: from the creation of ensembles to the decision fusion. In Proc. SIBGRAPI Conf. Graph. Pat-

terns Images Tuts, 1–10 (IEEE, 2011).
 47. Selfridge, O. G. Pandemonium: A paradigm for learning. In Neurocomputing: Foundations of Research, 115–122 (1988).
 48. Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. Adaptive mixtures of local experts. Neural Comput. 3, 79–87 (1991).
 49. Kittler, J., Hatef, M., Duin, R. P. & Matas, J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998).
 50. Jain, A. K., Duin, R. P. W. & Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000).
 51. Xu, L., Krzyzak, A. & Suen, C. Y. Methods of combining multiple classifiers and their applications to handwriting recognition. 

IEEE Trans. Syst., Man, Cybern. 22, 418–435 (1992).
 52. Alexandre, L. A., Campilho, A. C. & Kamel, M. On combining classifiers using sum and product rules. Pattern Recogn. Lett. 22, 

1283–1289 (2001).
 53. Geman, S. & Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern 

Anal. Mach. Intell. 6, 721–741 (1984).
 54. Li, S. Z. A Markov random field model for object matching under contextual constraints. In Proc. IEEE Conf. Comput. Vis. Pattern 

Recogn., 866–866 (1994).
 55. Cross, G. R. & Jain, A. K. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5, 25–39 (1983).
 56. Li, C. & Wand, M. Combining Markov random fields and convolutional neural networks for image synthesis. In Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit., 2479–2486 (2016).
 57. Zhirong Wu, X. T., Dahua Lin. Deep Markov random field for image modeling. In Proc. Eur. Conf. Comput. Vis., 295–312 (2016).

https://doi.org/10.1101/2021.05.18.444600
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1155/2017/1353691


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3113  | https://doi.org/10.1038/s41598-022-06372-8

www.nature.com/scientificreports/

 58. Julesz, B. Visual pattern discrimination. IRE Trans. Inf. Theory 8, 84–92 (1962).
 59. Julesz, B. Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981).
 60. Kashyap, R. & Chellappa, R. Estimation and choice of neighbors in spatial-interaction models of images. IEEE Trans. Inf. Theory 

29, 60–72 (1983).
 61. Schölkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural Comput. 12, 1207–1245 

(2000).
 62. Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Tech. 2, 1–27 (2011).
 63. Wu, T.-F., Lin, C.-J. & Weng, R. C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 

975–1005 (2004).
 64. Lin, H.-T., Lin, C.-J. & Weng, R. C. A note on Platt’s probabilistic outputs for support vector machines. Mach. Learn. 68, 267–276 

(2007).

Acknowledgements
 We thank Adrián Valli, Fabio Pasin, and Juan Antonio Garcáa (Spanish National Center for Biotechnology, 
Madrid, Spain) for the gift of the pLX-UCBSVi infectious clone.

Author contributions
M.M.D., J.T.A-I., J.S.H. and L.H.B. designed the laboratory experiments. M.M.D. collected the data. Y.P., B.G. and 
H.Y. analysed the data and designed ML methods, and B.G. designed the MSI device. All authors contributed to 
analysis of the results and drafting and approving the submitted manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 06372-8.

Correspondence and requests for materials should be addressed to H.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-06372-8
https://doi.org/10.1038/s41598-022-06372-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning
	Results
	Experimental settings. 
	Scanning of cassava leaves. 
	Performance for cassava disease detection. 
	Performance on a tolerant cultivar. 

	Discussion
	Methods
	Active multispectral imaging (A-MSI) system. 
	Cassava cultivation and virus inoculation. 
	Cassava leaf MSI acquisition. 
	Data preprocessing. 
	Vegetation indices (VIs) calculation. 
	Conventional decision fusion techniques. 
	Markov random field texture analysis. 
	ProbDecFus: probabilistic decision fusion. 

	References
	Acknowledgements


