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Abstract: Gliricidia sepium (Jacq.) Walp is a well-known agroforestry leguminous tree that provides
multiple benefits in different agroecological zones. Its apparent versatility is seen in improving
animal feed, cleaning environmental wastes, and healing inflammations. It was also found to have
significant benefits in agroforestry due to its ability to enhance soil fertility through nitrogen fixation
and green manure. However, this article reviews the use of Gliricidia sepium to improve soil fertility
and crop agronomic and nutritional properties. Google Scholar, PubMed, and Science Direct were the
databases consulted for the relevant articles used in this review. Trees and leaves of G. sepium, either
used as mulch, biochar, or intercropped, have enhanced soil fertility indicators, such as total soil
carbon, nitrogen, phosphorus, available phosphorus, pH, cation exchange capacity, and soil organic
matter in different farming systems. Its immense positive performance in improving the yield of
crops led to an economic advantage for low-income farmers. G. sepium can also lower the use of
mineral fertilizer as its adoption grows, leading to a greener environment in the agricultural sector.
The review concluded that there is a plethora of research on the effect of Gliricidia on maize yield
enhancement; hence further investigations should be conducted on using Gliricidia sepium as a green
fertilizer to improve yields and the nutritional properties of other crops.

Keywords: Gliricidia; agroforestry; intercropping; mulch; biochar; green fertilizer

1. Introduction

Legume trees are essential in reforestation programs, soil preservation, and green
manure. They were reported to have high growth capacity, providing ecosystem services
such as biomass production, recycling of nutrients, nitrogen (N) fixation, and carbon (C)
sequestration [1]. Using leguminous trees in biomass production in alley cropping systems
shows excellent potential in enhancing agricultural production and sustainability [2]. They
improve soil fertility, increase crop productivity, and ensure the sustainability of tropical
agroecosystems through nitrogen fixation, shade provision, green manuring, and mulch
production [3,4]. N-fixing leguminous trees and N-mineral fertilizers are used to recover
heavily degraded soils [5]. Legume trees were also used for several other applications,
including controlling pests and diseases, as supplements in animal feed, and as sustainable
raw materials for electrical energy production [6–9].

Gliricidia sepium (Jacq.) Walp (G. sepium) is a medium-sized legume tree native to
Central America but also grows naturally in Santa Rosa and Veracruz, Mexico. G. sepium
is from the Fabaceae family, the most prominent family in the plant world, and is mainly
considered a source of relatively valuable plant protein [10]. It is sometimes called the
“alfalfa of the tropics” because it has better water usage efficiency than alfalfa and may be
used as forage by livestock [11]. It is a well-known multipurpose tree due to its ability to
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adapt well to various soils, including alkaline, acidic, sandy, heavy clay, and limestone [12].
However, it thrives best in medium-textured, well-drained, and fertile soils with near-
neutral acidity [13]. Gliricidia was reported as a non-aggressive invader because it is a
light-demanding species and unlikely to invade dense plant communities. However, it
is often plagued with Aphis craccivora, which blackens the leaves and makes them fall
prematurely [13]. The use of Gliricidia in agroforestry is due to its ability to adapt very
well to a wide range of soils and a very high level of soil salt stress. The adaptation to soil
salinity stress is seen in its ability to produce new leaves about two weeks after losing all
leaves due to abrupt salinity stress [12]. G. sepium is a dominant crop for alley cropping
in tropical and subtropical regions [3]. Its biochar application for the removal of caffeine
in water and detoxification of coir pith was also reported [14,15], while Grygier et al. [10]
recommended Gliricidia sepium as an unconventional source of oil, with oil yields similar
to that of soybean (Glycine max). Furthermore, several authors reported using Gliricidia
leaves (Figure 1) and trees for anthelmintic purposes. The wound healing effect of Gliricidia
leaves grown in Indonesia, and the Philippines was studied. The authors found that the
leaves contain flavonoids, saponins, and tannins, which act as anti-inflammatory agents,
enhancing the healing process [9]. The active effect of ethanolic leaf extract of Gliricidia
against Anopheles stephensi and gastrointestinal nematodes was also reported [16,17], while
acetonic extract was used to control the intestinal nematode of ruminants [18]. However,
this article aimed to review the applications of Gliricidia trees and leaves in improving
soil quality parameters and crop nutritional properties. This review article focuses on; (a)
the different ways in which Gliricidia was applied to improve soil fertility components
(soil microbial composition, soil carbon, and nitrogen fixing in soils), (b) the impact of
Gliricidia on crop agronomic performance and nutritional components, and (c) the synthesis
of the knowledge gaps in Gliricidia sepium utilization for crop production as it relates to the
nutritional composition of different crops. A review of this kind is essential as it presents
insight into the application of Gliricidia in agroforestry practice for improving food crops’
yield and nutritional composition.

Figure 1. Photo of Gliricidia sepium leaves.

2. Impact of Gliricidia sepium on Soil Fertility

Legume trees that grow quickly are potentially valuable to farmers in the tropics and
could improve soil productivity as they do not require extensive agronomic inputs [19].
The trees and leaves of G. sepium, used in different forms, found applications in enhancing
soil fertility, which is indicated by total carbon, nitrogen, available phosphorus, pH, cation
exchange capacity, base saturation, soil aggregation, bulk density, and phospholipid fatty
acid (PLFA) composition [20].

2.1. Impact of G. sepium on Soil Microbial Composition

Silvopastoral systems are agroforestry management practices that integrate trees,
forage, and livestock. The effect of silvopastoral systems with shrub tree legumes on
the structure, diversity, and abundance of total bacterial, diazotrophic, and ammonium-
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oxidizing bacterial communities at different places around the legumes was evaluated [21].
The authors’ findings affirmed that introducing G. sepium and Mimosa caesalpiniifolia into the
silvopastoral system with Brachiaria decumbens improved soil physical quality by promoting
the abundance and spatial heterogeneity of the nitrogen-cycling bacterial community. This
results in better growth conditions for the soil microbes and aids diazotroph diversity [21].
A pot experiment was conducted to evaluate the effects of biochar produced from Gliricidia
sepium stems (BC-Gly) and rice husks (BC-RiH) on the growth of coconut seedlings. BC-Gly
significantly affected the soil microbial community structure influencing plant growth
rate, though biochar application did not affect the estimated total microbial biomass.
The concentration of fungal estimated by the total phospholipid fatty acids (PLFAs) was
significantly (p < 0.05) increased by BC-Gly amendment, and this increase was more
apparent under the dry soil condition.

Additionally, the BC-Gly amendment greatly affected the concentration of arbuscular
mycorrhizal fungi (AMF) [22]. A study by Riyanto [23] aimed to determine the application
of various local microorganisms (LMO) to the growth and yield of new rice varieties in
rainfed rice fields. Local microorganisms from Gliricidia sp. leaves produced the highest
populations of nitrogen-fixing bacteria in the soil. However, it was discovered that LMO
Gliricidia sp. leaves achieved the lowest population of phosphate-solubilizing bacteria. In a
no-tillage system, the soil was subjected to treatments with mixtures of leguminous trees
to study their impact on soil macrofauna. Gliricidia + Acacia (G + A) treatment extended
essential ecosystem functions in the no-tillage agrosystem due to the functional groups,
including soil engineers, predators, and litter transformers. These fast-growing leguminous
trees can increase soil acidity and decrease soil macrofauna diversity; however, the harmful
effects of leguminous tree cover are minor relative to the environmental benefits [24].

2.2. Impact of G. sepium on Soil Carbon

The impact of the Gliricidia-maize intercropping system on soil properties was investi-
gated. Gliricidia-maize intercrop positively affected soil organic matter, particulate organic
matter (POM), and cation exchange capacity (CEC). Gliricidia increased POM-carbon by 62%
over sole maize. Additionally, the POM-C value of Gliricidia treatment was significantly
(p = 0.0001) greater than only maize treatment with 48 kg ha−1 nitrogen added [25]. In
Brazil, an agrisilviculture system was used to enhance the quality of organic carbon and
organic matter of clayey Oxisol soil. The system in which corn is intercropped with Panicum
maximum cv. Massai and Gliricidia sepium improved soil quality and short-term carbon
sequestration [26]. Gliricidia mulch from the leaves and twigs was reported to produce
more crop biomass and recycled more soil C. Therefore, adopting no-till mulch (G. sepium)
curtailed energy use, carbon footprint, and cultivation costs, thereby enhancing energy use
efficiency [27,28]. Clay soil is characterized by its heavy weight, high porosity, and low
dry bulk density. In assessing the soil nutrient under the Gliricidia agroforestry system in
the maize district of Zambia, incorporating Gliricidia sepium leaf biomass into the farming
system improved the soil health in eastern Zambia by improving the soil organic matter
and soil carbon stocks. Additionally, the leaf biomass served as a source of cheap organic
fertilizer as an alternative to the more expensive inorganic fertilizers. This alternative
source of fertilizer presented by Gliricidia sepium will mitigate the environmental contami-
nation caused by nitrous oxide emissions by reducing the need for inorganic fertilizers [29].
G. sepium can be used as live support for restoring degraded black pepper plantations and
overall improvement in soil quality in the plains of the tropics. G. sepium registered more
excellent soil organic carbon, dissolved organic carbon, dissolved organic nitrogen, and
mineral nitrogen in its rhizosphere, improving soil fertility [30]. A study on the effects of
shade trees and spacing regimes on the availability of soil and plant nutrients showed that
total soil carbon and total nitrogen were significantly higher in the Theobroma + Gliricidia
plantation with 12 m × 12 m spacing [31]. In a Gliricidia + maize intercropping system,
Gliricidia tree prunings were applied to the soil continuously for ten years. The sequestered
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carbon in the topsoil (0–20 cm) in Gliricidia + maize was 1.6 times more than in sole maize,
while soil carbon dioxide evolution also improved in the Gliricidia-maize plot [32].

2.3. Impact of G. sepium on Soil Nitrogen Fixation

The application of nitrogen (N) fixing tree species affects, to a great extent, the rates
of N mineralization and other N transformations [33]. In a study to evaluate the effect
of leaf extracts of neem and G. sepium on emissions of methane (CH4), carbon (IV) oxide
(CO2), and nitrogen (I) oxide (N2O) in urea amended and unamended soil samples, and
to study the dynamics of inorganic nitrogen (N) in the soil samples; it was observed that
the application of aqueous extracts of the leaves improved the soil quality by increasing
the available N for crop growth and controlling the pests in the soil, even though extracts
of Gliricidia leaves did not reduce the emission of CH4 by the evaluated soil samples [34].
The Gliricidia-maize intercrop was reported to affect soil organic matter significantly, par-
ticulate organic matter (POM), and cation exchange capacity (CEC). CEC, a significant
factor in soil nitrogen fertility, was maintained in coarse-textured soils over 14 years by
the Gliricidia-maize intercrop. Gliricidia positively affected the soil’s nitrogen (N) param-
eters as it increased inorganic N from 7.93 g kg−1 in sole maize to 12.8 in the intercrop;
however, the Gliricidia intercrop decreased soil phosphorus. By improving soil fertility,
the Gliricidia sepium/maize intercropping system can increase productivity in maize-based
cropping systems [25]. In Ghana, Omari et al. [35] enhanced soil fertility using mixtures
of eight different tropical plant materials with chicken manure as soil amendments for
growing tomatoes. Of all the treatments, Gliricidia + chicken manure improved soil fertility
significantly by releasing more mineral N; however, this did not translate to more yield
for the tomato plant. Additionally, Partey et al. [36] determined how the residue quality
and decomposition of Acacia auriculiformis, Albizia zygia, Azadirachta indica, Baphia nitida,
Gliricidia sepium, Leucaena leucocephala, Tithonia diversifolia, Senna spectabilis, and Zea mays
influence soil nitrogen availability, microbial biomass, and β-glucosidase activity. It was
then concluded that the decomposed biomass of Tithonia diversifolia, Gliricidia sepium, Leu-
caena leucocephala, Senna spectabilis, and Azadirachta indica leaves might improve soil fertility
in the short term. Still, a long-term build-up of organic matter may be restricted due to
accelerated decomposition. However, the long-term build-up of soil organic matter may
be constrained due to the accelerated decomposition of the plant materials. This could
lead to high economic costs for small-scale farmers because they must apply these organic
materials every planting season. Méndez-Bautista et al. [37] reported that applying the
extract of G. sepium leaves to beans favoured their development compared to untreated
plants but had no significant effect on soil nitrification.

2.4. Impact of G. sepium on Other Soil Fertility Components

Serpentine soil is known to limit the growth of plants as it is characterized by a
high natural abundance of heavy metals, such as nickel (Ni), manganese (Mn), cobalt
(Co), and chromium (Cr), and is low in plant nutrients, such as nitrogen (N), phosphorus
(P), and potassium (K) [38]. The immobilization of heavy metals in serpentine soil and
enhancement of the soil calcium (Ca) uptake using woody biochar of Gliricidia sepium
biomass were effectively achieved, thereby improving the growth of tomatoes on the
amended soil. The woody biochar was produced by slow pyrolysis of ground Gliricidia
biomass in a muffle furnace at 300 ◦C and 500 ◦C at 7 ◦C min−1. However, it was observed
that the woody biochar pyrolyzed at 500 ◦C and used at a high application rate effectively
immobilized heavy metals in the soil [39]. Biochar is a carbon-rich material synthesized by
burning organic biomass in the absence or partial absence of oxygen at high temperatures
(usually from 300 to 1000 ◦C) [40]. The qualities, properties and impacts of biochar on
soils are primarily influenced by the type of feedstock used and pyrolysis conditions [41].
Kuntashula and Mafongoya [42] also investigated the use of participatory research methods
in evaluating the application of legume trees in improving soil fertility by engaging farmers
in eastern Zambia. During the experiment, 112 farmers rated 11 agroforestry trees, and
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the result shows that over 90% of the farmers gave G. sepium a maximum score for soil
fertility improvement. The woody biochar of Gliricidia sepium decreased the soil’s bulk
density and air capacity in a study meant to investigate the effect of biochar amendment
on enhancing the quality of clay soil, primarily due to weight dilution generated by the
biochar. Additionally, soil porosity, moisture at field capacity, and available water capacity
were affected by biochar amendment [43]. A decomposition innovation to improve soil
nutrients in a cocoa plantation was developed. It was reported that adding Gliricidia leaf
waste improved cocoa leaf waste’s decomposition and nutrient release rate [44].

Agroforestry trees improve the physical properties of soils by adding large quantities
of litterfall, root biomass, root activity, biological activities, and roots, leaving macropores in
the soil following their decomposition [45]. As highlighted in the reviewed articles, woody
biochar biomass, intercropping, leaf extract, leaf mulching, and biomass are the various
forms in which Gliricidia sepium is utilized for improving soil fertility components, such as
soil microbial population, soil bulk density, soil organic carbon, soil inorganic N fixation,
and heavy metals immobilization. The various forms in which agroforestry legume trees
can be used (Table 1) indicate their versatility in agricultural applications, as this was
also confirmed by farmers’ practice of continuously keeping G. sepium in their farmlands
because they are aware of the value of the tree crop in improving soil fertility [46] and by
the positive response from farmers in a participatory study [42]. Gliricidia sepium is a fast-
growing agroforestry tree with a significant characteristic of a relatively deep root system
that enables it to capture leached nutrients along the soil profile, thereby accumulating
nutrients that otherwise could not be accessed by other crops. These nutrients are made
available to the soil surface from leaf biomass and other forms in which the agroforestry
tree is utilized, thereby increasing soil fertility [29]. The adaptability of Gliricidia sepium in
improving the nutrients of different soil types (in various locations) makes it a green and
environmentally friendly alternative to inorganic fertilizers.

Table 1. Summary of the application of Gliricidia for soil quality improvement.

Soil Traits Evaluated Gliricidia Application Mode Gliricidia Application Effect Reference

Emissions of CH4, CO2, and N2O Aqueous leaf extracts Soil available N increased [9]

Heavy metals Woody biochar of Gliricidia biomass Calcium uptake improved, and heavy
metals immobilized [39]

Microbial population Intercropping Improved the population and heterogeneity of
the soil nitrogen-cycling bacterial [21]

Organic carbon and organic matter Intercropping Improved soil organic matter and
carbon sequestration [26]

Soil fertility Plant pruning Increased soil mineral nitrogen [35]

Soil fertility Plant biomass Improved soil fertility [36]

Soil fertility Gliricidia mulch Curtailed energy use, carbon footprint [27]

Soil health Gliricidia leaf biomass Improved soil organic matter and soil
carbon stocks. [29]

Soil properties Intercropping
An improvement in soil organic matter,
particulate organic matter, and cation

exchange capacity.
[25]

Soil quality Intercropping
Enhanced soil organic carbon, dissolved
organic carbon, -nitrogen, and mineral
nitrogen in black pepper rhizosphere

[30]

Availability of soil nutrients Intercropping Soil total carbon and total nitrogen improved [31]

Carbon sequestration Intercropping Soil carbon sequestered and carbon (IV) oxide
evolution also improved [32]

Cocoa leaf decomposition and
soil nutrients Gliricidia leaves Cocoa leaf waste decomposition and nutrient

released rate improved [44]
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3. Impact of Gliricidia sepium on Crop Performance and Crop Nutritional Properties

Gliricidia sepium tremendously impacted food crops’ yield and nutritional composition,
especially maize, as shown in Tables 2 and 3. Bandara et al. [39] experimented with
immobilizing heavy metal using woody biochar of Gliricidia sepium biomass. Pyrolysing
G. sepium biochar at 500 ◦C and applying it to the soil at 110 t/ha immobilized toxic
chromium, nickel, and manganese, increased the calcium/magnesium ratio, and facilitated
the uptake of essential nutrients (nitrogen, potassium, and sodium); thereby increasing
tomato plant growth associated with increased plant biomass. The effect of the amendment
of biochar on saturated hydraulic conductivity (Ksat), soil aeration, available water capacity,
and biomass and grain yields of maize was also investigated by Obia et al. [43]. They
reported significantly higher maize biomass and grain yields in plots treated with biochar
compared to the control plots. In contrast, Omari et al. [35] said in their experiment that the
Gliricidia treatment (coupled with chicken manure) did not enhance the yield of tomato fruit.

Coulibaly et al. [47] found that adopting Gliricidia sepium as fertilizer trees in Malawi
increased the value of food crops by 35%, positively affecting household food security.
At the same time, it was also reported that Gliricidia sepium intercropped with maize in
Malawi enhanced soil health renewal and maize yield and significantly increased the
nutritional composition of the crop [48]. Makumba et al. [49] demonstrated the Gliricidia-
maize intercropping system to be a suitable option for soil fertility improvement and
maize yield increase in sub-Saharan Africa, where inorganic fertilizer use is minimal. They
found that applying Gliricidia prunings increased maize yield three-fold over sole maize
cropping without soil amendments and improved topsoil nutrients. Additionally, the use
of Gliricidia leaves in alley cropping to improve the nitrogen uptake of sweet corn was
reported [50]. G. sepium can improve nitrogen use efficiency, increase soil organic matter,
and maintain the cations base, thereby enhancing maize grain yield in infertile tropical
soil [51]. Coe et al. [52] reported increased maize yield with Gliricidia intercropping, though
they raised concerns about the applicability of agroforestry techniques in diverse locations
with different environmental properties. A two-year experiment assessed the impact of
shrub and herbaceous mulch types on soil characteristics and maize nutritional content.
Awopegba et al. [53] reported that Gliricidia sepium, one of the shrub mulches evaluated,
enhanced maize’s nutrient composition and yield when applied at 5 t/ha. They also
observed that adopting Gliricidia sepium, Tithonia diversifolia, and Calopogonium mucunoides
mulches could meet the maize nutritional requirement of the people and improve soil
properties on a tropical alfisol. In Brazil, Gliricidia manure increases maize grain yield and
soil organic matter content by enhancing soil chemical properties, such as pH, available
phosphorus, exchangeable potassium, calcium, and magnesium, cation exchange capacity,
and base saturation in the upper soil layer [54]. Applying Gliricidia leaf biomass as mulch
with supplemental phosphorus fertilizer systematically increased the total dry weight of
maize in maize + Gliricidia intercropping. Additionally, Gliricidia leaf biomass as mulch
reduced weed dry weight compared with the control experiment [55].

The potential of intercropping maize with Gliricidia to control weeds was evalu-
ated [56–58]. The authors observed that although maize-Gliricidia showed good potential
in enhancing grain yield, it was not a viable option for weed control. However, hoeing
was reported to be a better option. Although Gliricidia-maize intercropping was reported
to increase maize yield, Sileshi et al. [59] evaluated the yield stability of maize–Gliricidia
intercropping and fertilized monoculture maize. It was reported that maize yields remained
more stable in maize–Gliricidia intercropping than in fertilized maize monoculture in the
long term. However, average yields may be higher with complete fertilization. Therefore,
considering the long-term yield stability and the accessibility of Gliricidia to low-income
farmers, Gliricidia-maize intercropping is recommended. An agroecological study was
conducted in Zambia in which the effect of the agroforestry system involved utilizing Gliri-
cidia sepium to improve soil nutrients, crop yield, and nutritional properties of food crops.
Gliricidia sepium was cultivated in alley cropping with maize, soybean, and groundnut. It
enhanced the yield of the cultivated crops by more than twofold and improved the crops’
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nutritional properties. Intercropping maize with soybean and groundnut with Gliricidia
improved crop diversification, enhancing crop resistance to climate change [29].

Swamila et al. [60] investigated the willingness and ability of farmers to adopt the
Gliricidia agroforestry technology on their farms. Results of the experiment show that
the most critical factor affecting the technology is the upfront cost because most of the
production cost of investing in Gliricidia agroforestry technology is incurred in the first
year of project establishment but has long-term biophysical and economic benefits. The
authors also argued that based on the other environmental benefits attributed to the
adoption of Gliricidia agroforestry technology, it has a high adoption potential among
farmers in Tanzania. In the same vein, the profitability of the Gliricidia-maize system
relative to an unfertilized sole maize system was assessed, and it was found that the
Gliricidia-maize intercropping technology is profitable with time. It can potentially boost
household income and food security because the monetary benefits accrued after the
first year of the establishment can offset the initial investment costs. However, helping
farmers overcome initial investment costs will aid the rapid adoption of Gliricidia-maize
intercropping, especially among low-income farmers [61].

Cotton and sunflower nutrient (nitrogen, phosphorus, and potassium) accumulation
and biomass productivity were enhanced by adding Gliricidia pruning mixed with cattle
manure. In contrast, Gliricidia-cotton intercropping is a cost-effective option for smallholder
cotton farmers [62,63]. The development of beans was favored when the soil was treated
with extracts of G. sepium [37]. The insecticidal effect of G. sepium leaf extracts was demon-
strated. This extract repelled insects from the plants, increased the overall yield of maize
and stimulated the growth of tomato plants [64,65].

The application of Gliricidia in cocoa production was also reported [66–69]. In Indone-
sia, cacao plants were shaded with G. sepium, and it was reported that contrary to general
belief, cacao bean yield was not decreased by shading. However, the shading of cacao
plants resulted in greater leaf longevity due to reduced exposure of cacao to atmospheric
drought [67]. Bai et al. [69] reported that the leaf litter of G. sepium enhanced the growth of
cacao trees by showing a higher average concentration of total nitrogen, boron, iron, and
phosphorus. The debris of G. sepium leaves also showed a rapid release of potassium after
one month of decomposition and a low carbon-to-nitrogen ratio.

The effect of G. sepium mulch from whole leaves and chopped leaves and branches on
yields and the water use efficiency of carrot plants were investigated. It was found that
G. sepium mulch from entire leaves and mineral fertilization led to higher yields and water
use efficiency of the carrot plants [70]. As reported by Ilangamudali et al. [71], a study in
Sri Lanka assessed the potential of using coconut-based G. sepium agroforestry systems
to improve the soil fertility of degraded coconut lands. The study revealed that G. sepium
replenished soil fertility of degraded coconut-growing soils by giving higher soil organic
matter, total nitrogen, potassium, magnesium, and microbial activity. Additionally, in Sri
Lanka, the effects of different mulching materials on growth, yield, quality parameters of
ginger, and soil parameters were assessed. Soil treatment with Gliricidia mulch gave the
maximum number of sprouted plants, the highest plant height, and the highest number
of pseudostems per clump. The authors concluded that Gliricidia is the best mulch for
ginger cultivation in the low country intermediate zone of Sri Lanka [72]. Incorporating
75% nitrogen, 100% phosphorus, 50% potassium by chemical fertilizer, and 50% potassium
via Gliricidia green leaf manuring improved soil fertility and yield of soybean cultivated in
Vertisols [73].

Cassava genotype TMS 4(2)1425 was reported by Okon et al. [74] to respond positively
to Glomus deserticola inoculation in conjunction with a mixture of Gliricidia sepium + Senna
siamea mulch. The Gliricidia mulch significantly enhanced the yield of the cassava sample
due to its ameliorating effects on soil structure and nutrient content. A G. sepium substrate
formulated based on 50% mill compost with 50% Gliricidia sepium effectively produced yel-
low passion fruit seedlings with excellent vegetative growth rates [75]. Carpenter et al. [76]
investigated the effect of mineral fertilization on interplanting two species of legume trees
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(Inga edulis and Gliricidia sepium) on the growth of Terminalia amazonia. G. sepium inter-
cropped with Terminalia amazonia was reported to increase yield and restore forestry. In
contrast, sweet potato yield was not enhanced at the second planting on soil fallowed by
G. sepium [77]. This could be a result of the method of application in which the leguminous
crops were used as fallow and were cleared off the field before planting.

Table 2. Summary of the application of Gliricidia for improving crop quality.

Crop Gliricidia
Application Mode Gliricidia Application Effect Location Reference

Maize Intercropping Enhanced soil health and maize yield Malawi [48]

Maize Intercropping Soil fertility and maize yield improved Malawi [49]

Maize *** Improved food crops and household food security Malawi [47]

Maize Intercropping Yield enhanced Malawi [52]

Quality Protein Maize Intercropping Nutritional value improved Brazil [78]

Maize Intercropping Improved yield Brazil [79]

Maize Intercropping Improved yield Brazil [54]

Maize Intercropping Improved yield Brazil [51]

Maize Mulching Improved Yield Nigeria [53]

Sweet corn Leaf pruning Nitrogen uptake improved Malaysia [50]

Tomato Woody biochar Facilitated nutrient uptake and increased
plant biomass Sri Lanka [39]

Cotton Intercropping Nutrient accumulation and biomass productivity
was enhanced Malawi [62]

Cacao Intercropping Leaf longevity Indonesia [69]

Maize, soybean and
groundnut Intercropping Improved yield and nutritional properties Zambia [29]

*** Review article.

Table 3. Application of Gliricidia to improve maize yield.

Yield

Crop Gliricidia Plot Sole Maize Plot Inorganic Fertilizer Plot Reference

Maize 5.52 t ha−1 1.48 t ha−1 NE [48]

Maize 597.67 kg acre−1 478.75 kg acre−1 NE [47]

Maize 3.62 t ha−1 2.73 t ha−1 NE [52]

Maize * 2.5 Mg ha−1(GA)/
2.6 Mg ha−1 (GC) 0.4 Mg ha−1 0.6 Mg ha−1 [78]

Maize 5.618 kg ha−1 6.714 kg ha−1 NE [79]

Maize 5.21 Mg ha−1 3.03 Mg ha−1 2.81 Mg ha−1 [54]

Maize 1.41 t ha−1 0.63 t ha−1 2.19 t ha−1 [53]

Maize 4520 kg ha−1 1227 kg ha−1 5954 kg ha−1 [29]

* alley cropping; NE-not evaluated; GA—Gliricidia + Acacia; GC—Gliricidia + Clitoria.

4. Knowledge Gaps and Recommendations

Gliricidia sepium tremendously impacted food crops’ yield, and nutritional composition,
especially maize. However, more studies need to be conducted to establish the effect of
applying Gliricidia sepium on other essential crops’ yield and nutritional composition. Cocoa,
cotton, tomato, black pepper, soybean, and groundnut are a few of the crops for which
the effect of Gliricidia sepium on their agronomic and nutritional components was scarcely
investigated. Therefore, the impact of Gliricidia sepium on the agronomic and nutritional
composition of food crops, especially roots and tubers, should be investigated. In studying
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the application of G. sepium on the nutritional composition of food crops, it is vital to
explore the various forms of Gliricidia application, such as mulching, biochar, intercropping,
and using leaf extracts. This will lead to having a plethora of scientific knowledge on the
best form of Gliricidia application for the different crops. A bottleneck for the widespread
adoption of Gliricidia sepium is the initial cost of the establishment, even though its profit
for farmers is in the long term. This upfront investment in agroforestry technology poses
a challenge for low-income farmers who may need more financial strength for such an
investment. However, they know the long-term benefits. Therefore, it is recommended that
governmental bodies and research organizations work in tandem with low-income farmers
to subsidize the initial cost of implementing the Gliricidia agroforestry technology; this will
increase the adoption rate of the technology. Training smallholder farmers on agroforestry
practices should also be intensified to increase the adoption rates of Gliricidia fertilizer trees.
Information on the differences between Gliricidia biochar and biochar produced from other
materials might be lacking and recommended for study.

5. Method Summary

The articles (2012 to 2022) for this review were obtained from three different databases
(PubMed, Science Direct, and Google Scholar). The PubMed database was searched using
the term “Gliricidia,” and relevant articles for our study were extracted. The Science Direct
database was also used, with the search term “gliricidia” used. An advanced search was also
carried out, with the terms “gliricidia” and “legumes” being looked up in manuscript ab-
stracts and titles. The agricultural, biological, and environmental sciences were the subject
areas that were searched. The search results provide relevant reviews and research articles
for our study. The Google Scholar database was searched using the terms “gliricidia inter-
cropping” + “maize,” “gliricidia intercropping” + “soybean,” and “gliricidia intercropping”
+ “groundnut”. The search results were examined, and pertinent articles were extracted
based on the following inclusion criteria: Information based on evidence on Gliricidia
(soil quality/fertility, crop yield/performance, and crop nutritional quality and safety). A
preliminary screening of the retrieved literature’s abstracts and contents was performed to
determine its suitability for inclusion in the more in-depth reviews that followed. After
removing duplicates and accounting for the scope of this study, we narrowed the list of
potential literature reviews down to 79 articles. The review and revision were completed in
about four months (November 2022 to February 2023), with five authors involved in the
literature search, extraction, and review.

6. Conclusions

This review highlighted the importance of G. sepium as a leguminous plant used in var-
ious agroforestry practices to improve many food crops’ yield and nutritional composition.
Trees and leaves of G. sepium, either used as mulch, biochar, or intercropped, have improved
soil fertility components and the yield of maize grains (up to a threefold yield). Gliricidia
trees, when intercropped, have a tremendous impact on fixing nitrogen components in the
soil, improving sequestered soil carbon, reducing the negative impacts of heavy metals on
soil fertility, and, by extension, enhancing the proper development of crops. Low-income
farmers have benefited economically due to G. sepium’s positive impacts in increasing crop
yields because it decreased their demand for mineral fertilizers, which are frequently out
of reach due to their expensive cost. In addition, the leaf of G. sepiun has been found to
have an anti-inflammatory function due to the high content of flavonoids and saponins,
thereby aiding the healing process. In addition to the benefits of G. sepium on soil and
crops, widespread use of G. sepium intercropping will contribute to a greener environment
by reducing the use of chemicals that release greenhouse gases into the atmosphere in the
agricultural sector.
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