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Abstract: Hyperspectral imaging (HSI) is one of the most often used techniques for rapid quality
evaluation for various applications. It is a non-destructive technique that effectively evaluates the
quality attributes of root and tuber crops, including yam and cassava, and their food products. Hyper-
spectral imaging technology, which combines spectroscopy and imaging principles, has an advantage
over conventional spectroscopy due to its ability to simultaneously evaluate the physical charac-
teristics and chemical components of various food products and specify their spatial distributions.
HSI has demonstrated significant potential for obtaining quick information regarding the chemical
composition of the root and tuber, such as starch, protein, dry matter, amylose, and soluble sugars, as
well as physical characteristics such as textural properties and water binding capacity. This review
highlights the principles of near-infrared hyperspectral imaging (NIR-HSI) techniques combined
with relevant image processing tools. It then provides cases of its application in determining crucial
biochemical quality traits and textural attributes of roots and tuber crops, focusing on cassava and
yam. The need for more information on using NIR-HSI in the quality evaluation of yam and cassava
was underscored. It also presents the challenges and prospects of this technology.
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1. Introduction

The world’s tropics and subtropics depend on root and tuber crops such as cassava,
yam, potato, and sweet potato as critical staple foods that are consumed in various ways [1].
Additionally, they serve as the starting point for small-scale industrial production, particu-
larly in underdeveloped nations [2]. Nearly 700 million people in subtropical and tropical
areas mainly obtain carbohydrates and energy from cassava (Manihot esculenta Crantz)
root [3]. The leaves also supply protein, vitamins, and minerals [4]. The roots have a dry
matter composition of 80 to 90% carbohydrates, of which 80% is starch and the other minute
amounts are sucrose, glucose, fructose, and maltose. They also contain about 0.1– 0.5% fat,
1–3% protein, and 80–90% carbohydrates, respectively. Yam (Dioscorea spp.) is another sta-
ple crop cultivated in Africa, Asia, South America, the Caribbean, and the South Pacific [5].
Generally, it provides energy ranging between 80 and 120 kcal/100 g, depending on the
variety. The moisture content of fresh tubers ranges between 58 and 80%, 0.5–1.2% for
ash, 17.5–28% for carbohydrates, 1.5–6% for crude protein, 0.1–0.2% for fat, and 0.6–1.5%
for fiber, on a wet basis [3]. Cassava and yam breeding programs need to evaluate many
genotypes for agronomic parameters, nutritional composition, and end users’ preferred
attributes to facilitate the breeding of crops with top-performance quality and increase
adoption by farmers and processors. However, evaluating these traits is cumbersome, as it
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is costly and time-consuming, especially when using conventional approaches. Therefore,
this brings to the fore the necessity to provide a cost-effective, time-saving, and accurate
prediction of those important traits to make informed decisions in the selection process,
especially in large breeding populations.

Near-infrared spectroscopy (NIRS) has proven to be a reliable tool for predicting
various quality parameters in many breeding programs, such as cassava, yam, potato, and
sweet potato [1,6–11]. Its application in breeding programs has improved, as it enhances
the adoption of modern NIRS and has been used to accurately predict key quality traits, as
reported by many authors on genetic technologies that require the phenotyping of many
clones for complex features within the shortest time possible and at minimal cost, especially
at the early breeding stages [8]. NIRS has been used to evaluate many quality traits in crops,
and their flour, with a good to a medium coefficient of prediction, as reported in [1,12–17].

To highlight the potential of NIRS for the investigation of numerous chemical con-
stituents, Alamu et al. [18] wrote a review which shows that NIRS has potential as a
high-throughput phenotyping tool for root and tuber crops. Additionally, their research
showed that most published studies supported the ability of NIRS to accurately predict
biochemical parameters such as starch, soluble sugar, and many others. However, there are
only a few studies confirming the possibility of NIRS predicting other quality attributes
related to end-product quality, which inform consumers’ preferences. These are seem-
ingly complex traits because the quality of the product has been impacted by processing
factors [18]. However, the emergence of near-infrared hyperspectral imaging (NIR-HSI)
represents a new development in the application of spectroscopy. By combining the spatial
and spectral data of the target sample, this method merges imaging and spectroscopic
concepts with the ability to capture additional inherent information about the product. It
can accurately predict the biochemical properties, physical (internal and external) features,
and spatial information of the chemical components in the products [19]. It has gained
broad interest in the noninvasive quality monitoring of many food crops [19].

NIR-HSI was originally developed for remote sensing applications, but it is now used
to facilitate complete and reliable analyses of the inherent physical and chemical properties
of food products [20]. Recently, many authors have reported using NIR-HSI to assess
quality attributes in food and other products [21–24]. In addition, it has been extensively
used for the physical and biochemical constituent characterization of potatoes and sweet
potatoes [25–30]. HSI is currently used to determine both the appearance and internal chem-
ical characteristics of food quality, such as rice fungal growth [31], the hardness of maize
kernels [32], and the sugar content in potatoes [33]. This technology is a powerful method
for the nondestructive evaluation of various quality traits of processed and raw food crops.
Specific physical properties, such as the color of potato tubers while processed [25] and
the textural attributes of potato tubers, have been studied [34]. In addition, biochemical
constituents in sweet potatoes, such as starch, cellulose, and the distribution of soluble solid
content, have been estimated using HSI [35]. Adulterants in tapioca starch have also been
detected using NIR-HSI, with excellent prediction performance (R = 0.99) and a Root Mean
Square Error in Calibration (RMSEC) of 2.47% [36]. Hyperspectral imaging technology
has an advantage over conventional spectroscopy due to its ability to integrate imaging
and conventional spectroscopy for the rapid and simultaneous assessment of physical and
chemical components of various food products. This review highlights the principles of
near-infrared hyperspectral imaging techniques combined with chemometrics tools. It then
provides cases of its application in determining important biophysical quality traits and
texture quality in root and tuber crops, especially yam and cassava. It also presents the
drawbacks and the way forward for this technology. This work will contribute significantly
to understanding quality trait assessment using the NIR-HSI method.
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2. Overview of Near-Infrared Reflectance Spectroscopy (NIRS)

NIRS is a fast, non-destructive analytical technique widely used to analyze organic
constituents and other properties in various agricultural products with minimum or no
sample preparation steps [37]. It employs a wavelength between 780 nm (12,500 cm−1)
and 2500 nm (14,000 cm−1), providing more complex structural information about bond
vibration behavior. Chemical bonds between light atoms in molecules such as C, N, O, and
H with primary absorption in the infrared (IR) region have strong vibrational overtones
and combination bands that absorb light in the near-infrared (NIR) region (780–2500 nm)
of electro-magnetic radiation. The NIRS region in the electromagnetic radiation has a linear
relationship between the absorbance and concentration (i.e., the Beer–Lambert–Bouguerre
relationship), making it an important analytical tool [38]. The Beer–Lambert–Bouguerre
relationship is a main rule in spectrophotometric analysis that gives a great opportunity to
find the concentration of a substance by measuring the absorbance of its solution [38].

Organic molecules absorb energy in the near-infrared region when they vibrate or are
translated into an absorption spectrum within an NIR spectrometer. At 1300 nm, the NIR
region is divided into short-wave NIR (SW-NIR) in the wavelength range of 700 to 1100 nm
and standard NIR (780 to 2500 nm). The SW-NIR region is an absorption band of high
overtones, whereas the traditional NIR region is an absorption band of the first or second
overtone [39,40]. The intensity of absorption decreases as the overtones increase. As a result,
SW-NIR is frequently used in transmission analysis, where reflection is significantly reduced
so that the amount of radiation attenuated by the sample is measured in transmittance
modes, as opposed to standard NIR, which is used in diffuse reflection analysis, which is
frequently used for the analysis of opaque solids and is associated with light scattering at
the surface to obtain surface information of the samples [41]. Because of the interaction
of electromagnetic radiation in the near-infrared region and biological tissues, NIRS has
found widespread application in the quantitative evaluation of various crops.

NIRS could be useful for qualitative measurement, but due to the overlapping and
non-specific nature of NIR spectra, they become difficult to interpret. However, each peak
has enormous hidden information of the molecular bonds absorbing in the respective
wavelengths. NIR absorptions between 700 and 1050 nm are usually the second and third
overtones of both C-H and O-H bonds, which are mainly for starch and water. Oil has
a unique absorption band which appears as a duplet at two characteristic wavelengths
of 1700 nm and 2300 nm, while water absorption is at 1925 nm, which is indicative of
stretching and bending vibrations of O-H [41]. The combination band of NH at 2130
and 2190 nm is indicative of protein, whereas the first overtones region was the best for
predicting starch (1452–1770 nm) [41].

2.1. Main Components and Modes of Operation of the NIRS

A light source, beam splitter system, sample detector, optical detector, and data
processing system are the main components of an NIR spectrometer. Most NIR spectrometer
systems use tungsten halogen lamps as the source of light due to the low cost and high
intensity for a continuous spectral output. The role of the beam splitter system is to
translate multicolor light to single-color light. Usually, the NIR system works with a
computer system with software installed for data acquisition. The older NIRS equipment,
which was highly sophisticated and expensive and could only be used in the laboratory,
has now been replaced by new designs that have the advantage of being lighter, smaller,
and available in portable versions suitable for field applications [39].

The performance of the NIRS has also improved in terms of speed, spectrum acquisi-
tion, and signal processing. NIRS can operate in three modes: transmittance, reflectance, or
transflection. The transmittance mode collects spectra data from the entire sample volume
incident by light, whereas the reflectance mode only collects data from the sample surface.
Transflectance, however, combines the reflectance and transmittance modes, which are
applicable to liquid samples [40]. NIRS application requires calibration, which is the key
to its successful use [41]. However, the reliable calibration of the NIR systems requires
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many samples with physical and chemical characteristics variations. Calibration models
are developed by combining the NIRS spectra data with the reference data (biophysical or
biochemical) obtained from laboratory analysis using chemometric tools. The developed
models then predict the constituents of interest from similar unknown samples. Principal
component analysis, multiple linear regression, and partial least squares regression (PLSR)
are the most commonly used chemometrics tools. They establish a mathematical relation-
ship between variations in the NIR spectra of the samples and variations in the measured
laboratory parameters.

2.2. Constraints in the Application of NIRS

One of the limitations of NIR is that the prediction accuracy relies on the quality of the
laboratory reference results [42]. The initial difficulty of developing a robust and accurate
model is the major constraint of the NIRS technique; once the calibration models are
achieved, the NIRS offers a rapid, cost-effective alternative for screening a large population
with the ease of use [43]. Another disadvantage of NIR spectroscopy is its low sensitivity for
predicting mineral composition because there is no mineral absorption in the near-infrared
region unless it is combined with other detection systems such as X-ray fluorescence
spectroscopy and UV light [44]. Even though NIR spectroscopy predicts significant physical
and biochemical traits in food products with reasonable speed, simplicity, and accuracy, its
measurement focuses only on a relatively small portion of the sample to produce average
composition values [45–47]. It could not, however, provide some basic information, such as
the spatial distribution of the quality parameters, which is a disadvantage when the samples
are heterogeneous [45]. However, using NIRS-hyperspectral imaging systems, spatial and
spectral information could be acquired concurrently. NIR-hyperspectral imaging (NIR-HSI)
captures hundreds of contiguous wavelength bands in the NIR region for each pixel. When
near-infrared spectroscopy is combined with hyperspectral imaging (NIR-HSI), it provides
exceptional capability, broadening its application and use across various industries.

3. Overview of Hyperspectral Imaging Spectroscopy (HSI)

HSI is a modern method which incorporates the critical concept of imaging and spec-
troscopy and can concurrently obtain spectral and image information from a sample [48–54].
NIR-HIS was initially used in remote sensing studies but now serves as an emerging tech-
nology in various quantitative applications in the food [31,55–57], medicine, and agriculture
industries [58–60]. HSI is a promising method for the rapid and nondestructive sorting
and prediction of quality parameters in various root and tuber crop categories, including
yam and cassava [21]. NIR-HSI systems can capture a broad range of spectra data from
visible to near-infrared and far-infrared regions of electromagnetic radiation. The pixel in
the NIR-HSI image has a continuous spectrum of about a hundred bands [61–63].

Additionally, the image contains valuable information on the intrinsic chemical compo-
sitions and their spatial distributions within the target. HSI has shown the potential to char-
acterize the biochemical and biophysical constituents, including their spatial distribution,
simultaneously. Spectral imaging technology is classified as multispectral, hyperspectral,
or ultraspectral [19,64].

Hyperspectral images can be generated in various ways, which include a tunable filter,
push broom, and whiskbroom, respectively [64]; this depends on the hardware used for the
data acquisition. A tunable filter keeps the target fixed and obtains images subsequently
from one wavelength to another; this is used when the number of wavelengths needed is
limited. ElMasry and Nakauchi, [19] stated that a push broom and whiskbroom rely on
scanning the target in the spatial domain by moving the target either line-by-line (push
broom) or point-by-point (whiskbroom). Additionally, HSI can be operated in different
optical modes, such as reflectance, transmittance, absorbance, or fluorescence, depending
on the optical properties of the samples. Most of the published work was performed
in the reflectance mode [65–68]. A “hypercube” is a three-dimensional (3-D) structure
obtained with HSI that consists of two spatial and one spectral dimension [69,70]. Because
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of their ability to combine conventional imaging and spectroscopy, HSI systems can provide
physical and geometrical features of the target (i.e., color and appearance) and the chemical
composition. As a result, hyperspectral imaging technology has distinct advantages in
detecting plant materials’ outward and intrinsic quality. It has numerous advantages over
traditional analytical methods, including the nondestructive nature of samples and the
unrivalled prediction accuracy. It can quickly determine the chemical composition of foods
and the spatial distribution of the quality attributes (69).

3.1. The Main Component of the Hyperspectral Imaging System

The push broom hyperspectral imaging system comprises a camera with a two-
dimensional (2D) light detector, a spectrograph, a translation stage, illumination units, and
a computer (Figure 1). Each component’s characteristics influence the overall accuracy
of the system. As a result, measuring and optimizing the system before image capture is
critical. For example, ideal illumination should cover a large area uniformly and shield the
samples from radiation. When the linear translation stage is moved during an object scan,
a three-dimensional (3D) hypercube with (x, y, and z) dimensions is created, where (x and
y) indicate spatial positions and (z) represents spectral changes. The images are stacks of
hundreds of two-dimensional spatial images taken at various angles.
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Figure 1. A diagram of a hyperspectral imaging system.

The hypercube (Figure 2) is made up of several congruent images that represent
intensities at different wavelength bands and are made up of vector pixels (voxels) that
contain both two-dimensional spatial information (x rows and y columns) and spectral
information (z of wavelength). These hyperspectral data can reveal the physical and
chemical properties of the material being tested [71]. Physical and geometric observations
of size, orientation, shape, color, and texture, as well as chemical/molecular data such as
water, fat, proteins, and other hydrogen-bonded constituents, can all be included in this
information [72]. As a result, hyperspectral imaging provides more critical information
than traditional NIR spectroscopy.
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3.2. Hyperspectral Image Processing

Images are subjected to preprocessing procedures to remove distortions. Image cor-
rection, segmentation, identifying regions of interest (ROIs), and feature extraction are
the four significant steps in this processing. The image will be calibrated first with white
and dark references to eliminate illumination non-uniformity and the influence of dark
current [73]. When the light source is turned off and the camera lens’s opaque covering
is entirely closed, a dark image with 0% reflectance is usually obtained. A spectral image
of a uniform, high-reflectance white calibration ceramic tile is used to generate a white
reference image (with 99% reflectance).

3.3. Hyperspectral Imaging and Chemometrics
3.3.1. Chemometrics in NIR Imaging Processing

A hyperspectral image has essential hidden information that requires some data
mining software to explore the details. Chemometrics relates measurements obtained
from a product to its physical and chemical state using mathematical algorithms. In NIR
spectroscopy, chemometrics is used primarily for spectral data pre-processing, develop-
ing calibrations for quantitative analysis, and model transfer [24]. However, imaging
spectroscopy still combines spatial and spectra information and requires different data
processing systems to explore the information embedded in the hypercube. NIR-HSI image
processing involves clustering, which aims to create subgroups of the sample’s information
based on their similarity and classification using explanatory variables. Then, the regression
model for quantitative prediction is developed.
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Pre-Processing

Preprocessing is a typical data processing routine used to obtain clean data for further
processing. This usually begins with determining the area of interest (ROI). The background
should be removed using hyperspectral techniques when the sample does not cover all
scanned areas. In addition, pre-processing is used to remove dead pixels and spiked
points. Essentially, spectral preprocessing techniques are used to avoid the effects of
random and systematic variations on spectral measurement [74]. The scattered correction
method and spectral derivatives are the standard spectral preprocessing techniques used in
spectroscopy [71]. To reduce multiplicative interferences, scatter correction methods such
as multiplicative scatter correction (MSC), and standard normal variate (SNV) can be used.
Spectral derivatives remove additive and multiplicative effects depending on the order.

Multivariate Data Exploration

Following data preprocessing, the next step is multivariate data exploration, which
can extract all information from all wavelengths of the data. Principal component analysis
(PCA) and k-means clustering are popular multivariate data processing techniques. These
remove meaningful information from the hyperspectral dataset and identify patterns.
The next step is to develop a prediction model, which could be quantitative or classified.
It establishes a quantitative relationship between the desired biochemical or physical
properties and the sample’s spectra. The regression model can unfold hyperspectral images
and generate predictive values for each pixel [22].

Model Development

The multivariate regression model establishes a link between an object’s desired phys-
ical, chemical, or biological attributes and its spectrum response. Multiple linear regression
(MLR), principal component regression (PCR), and partial least squares regression (PLSR)
are the most used regression methods in quantitative analysis. MLR analysis aims to find a
relationship between a response variable and an explanatory variable. One disadvantage of
the MLR model is that the spectra often have high co-linearity, which can lead to overfitting
the calibration models. When there is a linear relationship between the spectra and the
quantitative features of the sample, PLSR emerges as the most reliable and robust tool, built
on the linear algorithm and giving good performance [74]. The model’s performance is
judged by its higher determination coefficients; other statistics include lower root mean
square errors for cross-validation (RMSECV) and prediction (RMSEP) [75].

Multivariate Image Analysis

One hypercube may contain over 200,000 spectra, necessitating multivariate image
analysis (MIA) techniques [73]. MIA can be used on raw or preprocessed images; it is
applied to the hypercube in a specific sequence and repeated several times with changes
until the best classification model is found. Typically, the image analysis sequence begins
with image cleaning, which includes removing unwanted backgrounds and correcting
shade effects. The image is preprocessed to reduce noise, increase the signal-to-noise
ratio, and remove unnecessary information before using MIA. Errors in an image can
be caused by optical-related errors, sample presentation errors, and dead pixels in the
detectors and background shade. Removing these image errors before processing is critical
to obtaining accurate information from the dataset and making good predictions. The
image cleaning is followed by exploratory analysis using principal component analysis
(PCA). PCA is a linear transformation tool that reduces the dimensionality of an image
dataset without losing much of the data’s critical information variance [70]. PCA reduces
the number of dimensions while retaining most of the data’s informative variance. The new
variables are known as principal components (PCs), and they correspond to the covariance
matrix’s largest eigenvalues, accounting for the most significant possible variance in the
data. The development of a regression model follows PCA. Regression techniques used
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in NIR spectroscopy, such as MLR, PCR, and PLS for regression models, are also used on
hyperspectral images [70].

Generally, a successful MIA relies on how effective the image preprocessing and
cleaning steps are implemented. MIA is a powerful tool for understanding and evaluating
physical and chemical compositions in a sample matrix and their spatial distribution.

4. NIR-Hyperspectral Imaging Spectroscopy for Yam and Cassava Food Quality

NIR spectroscopy has recently moved from traditional spectroscopy to coupling with
other technologies, including NIR-microscopy, NIR-MIR Spectroscopy, and NIR-Hyperspectral
imaging spectroscopy for the quality assessment of root and tuber crops. Along with in-
creased spectra quality from the millions of spectral data points acquired at each wavelength,
NIR-HSI also gives information on the spatial distribution of the target product’s chemical
components. Numerous root and tuber crops, particularly potatoes and sweet potatoes, have
been reported to use NIR-HSI for their food quality assessment [26,75–82].

Alamu et al. [18] mentioned in their review paper that only one work characterizing
cassava by applying NIR-HIS, that of Su and Sun [83], had been reported at the time of their
research. The authors employed the HSI method to identify the adulteration of cassava
flour in Irish organic wheat flour (OWF). Between 900 and 1700 nm, hyperspectral images
were taken using OWF samples that had different levels of percentage adulterations. For
quantitative analysis, PLSR and principal component regression (PCR) were used, and
feature wavelengths were chosen using the first derivative and mean centering iteration
procedure using the loading plots of PCA (FMCIA). Wavelengths were further decreased
following the corresponding feature using the model regression coefficients (RC). The RC-
FMCIA-PLSR model produced the best admixture detection outcome for OWF mixed with
cassava flour, with R2

P = 0.973 and RMSEP = 0.036. Khamsopha et al. [36] later reported on
another use of NIR-HSI for identifying adulterations of cassava flour in tapioca starch. This
investigation added limestone powder to tapioca starch at intervals of 0.5% across a range of
0–100% (wt/wt) to create adulterated tapioca starch. A calibration set of samples (N = 141)
and a prediction set of samples (N = 61) were used in the study. All samples were scanned
with the NIR-HSI equipment at a wavelength of 935–1720 nm. The model’s prediction
accuracy was perfect, with a correlation coefficient (R) of 0.99 and a root mean square
error of prediction (RMSEP) of 2.47%. Using prediction model visualization techniques,
the study demonstrated the potential of NIR-HSI as a quick way for identifying the levels
of adulteration in tapioca starch. The application of NIR-HSI for dolomite adulteration
in tapioca starch was also evaluated in a different study by the same researchers, who
added dolomite in concentrations ranging from 0.5 to 100% (wt/wt). Using NIR-HSI at
935 to 1720 nm, 400 samples of pure and contaminated tapioca starch were scanned. These
samples were separated into a calibration set (N = 300) and a validation set (N = 100).
For preprocessing, Savitzky–Golay’s first derivative differentiation was utilized to create
the ideal environment for the classification model. The model’s classification of pure and
contaminated tapioca was assessed to be 100% accurate [84]. Although there are many
practical applications using NIR-HSI for other root and tuber crops, especially potato and
sweet potatoes (Table 1), only a few studies were reported on using NIR-HSI for quality
characterization of cassava and yam tubers. A standard operating procedure (SOP) for
monitoring water distribution in fresh yam using HSI was reported in the framework
of the RTBfoods project. However, this SOP only described the use of HSI to detect the
longitudinal distribution of water in fresh roots and tubers using multivariate analysis [85].
Therefore, further SOPs must be developed to investigate the cross-sectional parts of the
root and tuber crop for physical and chemical characteristics.
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Table 1. Applications of MIR and NIR-HSI to other root and tuber crops, especially potato and
sweet potato.

S_N Method Trait Product Software Equipment References

1 NIR-HSI Moisture and
weight Potatoes ANN

-MATLAB 7.0

Image spectrometer
(ImSpector V10E) with

CMOS camera
(BCi4-USB-M40LP)

[86]

2 NIR-HSI Dry matter and
starch

Potatoes and
sweet potatoes

MLR, LWPLSR, PLSR
-MATLAB R2016a

Push broom hyperspectral
imaging system—Specim [87]

3 NIR-HSI Moisture content Potatoes and
sweet potatoes

PLSR, SVMR,
LWPLSR,
BPANN

Image spectrometer
(ImSpector V10E) with

CMOS camera
(Xeva 992, Venix

Infrared Solutions)

[88]

4 NIR-HSI Starch content Potatoes and
sweet potatoes PLSR, FMCIA Push broom hyperspectral

imaging system—Specim [89]

5 Vis/NIR-HSI
Moisture and
anthocyanin

content
Purple sweet

potato
PLSR

-MATLAB 2014a-

CCD camera (V10EB1610)
and spectrograph

(ImSpector V10E2/3)
[81]

6 Vis/NIR-HSI
Fresh cut

visualization and
starch content

Potato tubers PLSR
-MATLAB 2014a-

Image spectrometer
(ImSpector V10E) with

CCD camera
(IGVB1620)

[90]

7 NIR-HSI Adulteration Cassava starch PLS Push broom hyperspectral
imaging system—Specim [91]

8 NIR-HSI

Visual
authentication

and rapid
classification of
tubers using the
moisture content

Sliced,
oven-dried

potatoes

PLS-DA
-MATLAB 7.12

software-

Specim ImSpector N17E
spectrograph [79]

9 NIR-HSI Scab disease
detection Potato tubers

Support Vector
Machine

-Not specified-

Xenics Xeva 1.7–320
camera with Specim

Imspector—N17E
spectrograph

[92]

10 NIR-HSI Hollow heart
disease detection Potato tubers Support Vector

Machine

Xenics Xeva 1.7—320
camera with Specim

Imspector—N17E
spectrograph

[93]

11 MIR Protein and
glucose

Cassava, sweet
potato, and taro

flour

PCA and PLSR
-Unscrambler®X
(Version 10.5.1)-

FT-IR
spectrometer—Nicolet

6700
[94]

12 NIR-HSI Moisture content
Steamed and
dried sweet

potato

PLS-DA
-Unscrambler®X
(Version 10.5.1)-

ImSpector N17E—Specim [95]

13 NIR-HSI Plant yield Potato Multi-period relative
vegetation indices

USB 2000
spectrometer—Ocean

Optics
[96]

14 VIS/NIR-HSI
Processing

quality
parameters

Potato tubers
PLSR

-MATLAB 7.5.0.342
software-

CCD camera
(C4880)—Hamamatsu

Photonics
[97]

15 HSI Tuber yield and
tuber set Potato tubers

OLS, PLSR, SVR, RF,
AdaBoost

-SpectralView
software-

Headwall nano-hyper
spec imager [98]
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Table 1. Cont.

S_N Method Trait Product Software Equipment References

16 Vis/NIR-HSI Soluble solid
content

Sliced sweet
potato

PLSR, SVR, MLR
-ENVI 4.6 and

MATLAB 2011a-

Hyperspectral
imager—GaiaField-V10E

(Dualix Instruments)
[99]

17 HSI
Moisture and
gastric acid
distribution

Steamed and
fried sweet

potato

PLS
-Prediktera Evince

software 2.7.2-

VIS-InGaAs hyperspectral
camera and a Headwall

spectrograph
(Model 1003B-10151)

[100]

18 NIR-HIS
Moisture

migration during
dehydration

Fresh potato
tubers

PLSR
-Matlab 7.12-

CCD camera (Xeva 992)
and ImSpector N17E

spectrograph (Specim)
[82]

19

NIR-HSI

Moisture content
Potato and

sweet potato
tubers

LWPLSR
-Matlab R2017b-

CCD camera (Xeva 992)
and ImSpector N17E

spectrograph (Specim)
[29]

MIR-HSI
LUMOS FT-MIR

(Bruker Optics) in
ATR mode

20

NIR-HSI Variety
identification and

cooking loss
determination

Sweet potato
tubers

PLSR
-Unscrambler 10.1

software and
PLStoolbox

v8.6 in Matlab
R2017b software-

CCD camera (Xeva 992)
and ImSpector N17E

Spectrograph (Specim)
[34]

MIR-HSI
LUMOS FT-MIR

(Bruker Optics) in
ATR mode

21 MIR
Total sugar,

polysaccharides,
and flavonoids

Chinese yam PLS Thermo Nicolet 380
Fourier transform (FT-IR) [101]

22 HSI Optimal cooking
time Potato tubers PLS-DA

-MATLAB 7.5-

CCD camera (KP-F120)
with ImSpector V10

spectrograph
[102]

23 MIR Acrylamide
content Potato chips

PLSR
-Pirouette 4.0

software-

Excalibur 3500
Fourier-Transform

IR spectrometer and
Agilent FTIR spectrometer

(Cary 630)

[103]

24 MIR Nutritional traits Freeze-dried
potato flour

PLSR
-Pirouette 4.0

software-

Agilent FT-IR spectrometer
(Cary 630) [104]

25
Vis-

NIR/SWIR-
HSI

Black spot
detection Potato tubers PLS-DA

-MATLAB R2014a-

CCD camera (TXG14) with
ImSpector V10
spectrograph

[105]

26 Vis/NIR-HSI Moisture content
and chromaticity Potato slices PLS

-MATLAB 2013b-

Schneider
lens (Xenoplan 1.9/35)

with ImSpector V10
spectrograph

[25]

27 Vis/NIR-HSI Glycoalkaloids
and chlorophyll Potato PLSR

-R software-

TechSpec 25 mm with
ImSpector V10
spectrograph

[27]

28 HSI Anthocyanin
content

Purple-fleshed
sweet potato

slices

PLSR, MLR, and
LS-SVM

-ENVI 5.1, LS-SVM
v1.5 toolbox, and
MATLAB R2013a-

Inno-Spec CCD camera
(VRmC-9) with an
Inno-Spec image

spectrograph (Golden
EYE/P 3810)

[106]

29 Vis/NIR-HSI

Postharvest
monitoring

during hot air
drying

Organic potato

PLS
-MATLAB R2015b,

PLS_Toolbox
software v8.1, and R

v3.3.3-

Schneider
lens (Xenoplan 1.9/35)
with ImSpector V10E

spectrograph

[107]

30 Vis/NIR-HSI Sugar content Potato slices
PLSR

-MATLAB 7.5.0.342
software-

CCD camera
(C4880)—Hamamatsu

Photonics
[33]
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There remains a scarcity of information on applying this technique for the quality
traits assessment of cassava and yam tubers. Table 2 summarizes the few works reported
on detection of adulteration in cassava flour and tapioca starch. NIR-HSI should also be
explored for important quality parameters such as color, starch content, amylose, protein
and texture of cassava and yam products which are key traits that drives their acceptability
by consumers.

Table 2. Summary of NIR-HSI applications for quality analysis of cassava.

Trait Product Software Equipment Accuracy Reference

Adulteration Cassava flour
FMCIA-

PLS
MATLAB-Mathworks

CCD camera Xeva
992—Xenics Infrared

Solutions
(R2 = 0.98, SECV = 0.026) [83]

Adulteration Tapioca starch PLSR
Specim Fx17, Spectral
Imaging Ltd., Oulu,

Finland

The calibration set’s total
accuracy = 99.33%,

prediction set’s absolute
accuracy = 100%.

[84]

Note: PLS: partial least squares; FMCIA: first-derivative and mean-centering iteration algorithm; R2
: correlation

coefficient; SECV: Standard error of cross-validation.

5. Quality Evaluation of Potatoes and Sweet Potatoes with NIR-Hyperspectral
Imaging Techniques

The application of NIR-HSI for the quality evaluations of potatoes and sweet potatoes
is summarized in Table 1. The water content and weight of potato tubers was assessed
using the hyperspectral imaging technique and artificial neural network algorithms, where
934–997 nm was the wavelength range found to be selective for the absorption band in
predicting the water content in the potato tuber [85]. Measurements of the dry matter
of potato and sweet potato were conducted using hyperspectral imaging in conjunction
with LWPLSR, PLSR, and MLR. Using the MLR model, a highly satisfactory prediction
coefficient (R2P) of 0.96 was obtained [86]. A multispectral real-time system was developed
to monitor the moisture content (MC) in dried potato and sweet potato products using
near-infrared (NIR) and mid-infrared (MIR) hyperspectral techniques combined with
chemometric algorithms. Multivariate models were created using partial least squares
regression (PLSR), support vector machine regression (SVMR), locally weighted partial least
square regression (LWPLSR), and a back propagation artificial neural network (BPANN) in
the full spectral range of 900–10,372 cm−1. The prediction (R2

P) determination coefficients
of 0.950 and 0.904, respectively, were obtained from the simplified SPA-LWPLSR and SPA-
BPANN, respectively, indicating good model performances for the tuber MC prediction [87].
Additionally, the NIR hyperspectral technology was used to predict the starch content
of sweet potato and potato [88]. The feasibility of hyperspectral imaging systems in
monitoring the changes in the moisture (MC) and total anthocyanin (TA) contents of purple
sweet potatoes [PSP] during convective hot air drying (CHD) and microwave drying (MD)
was investigated [80]. The PLSR model was developed after spectra extraction to predict the
TA and MC contents of the processed purple sweet potatoes. For the CHD, a determination
coefficient in prediction (R2p) of 0.836 and 0.817 and a root mean square error (RMSEP) of
0.091 and 0.407 were reported for MC and TA, respectively. However, the R2p obtained for
the MD was 0.831 and 0.766, with an RMSEP of 0.095 and 0.382 for MC and TA, respectively.
The authors also established that HSI could be useful for visualizing the distribution of MC
and TA during the drying process of the purple sweet potatoes. The authors observed a
uniform distribution of MC and TA at the initial drying stage by CHD until after 45 min
of drying, when high moisture loss was observed from the core of the sample. They
reported that convective hot air drying has better distribution uniformity of the measured
parameters than the microwave drying [80]. The starch contents of fresh-cut potatoes were
analyzed with hyperspectral imaging techniques using Competitive Adaptive Reweighed
Sampling (CARS) and the successive projection algorithm (SPA) to extract characteristic
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wavelengths from the images. A PLSR model was developed to predict the starch content
from the preprocessed full spectrum and the spectrum under the characteristic wavelength.
The results indicate that the full spectrum model constructed through standard normal
variable transformation (SNV) had the best performance, with a correlation coefficient in
the calibration set (Rc) value of 0.9020, a root mean square error of correction (RMSEC) of
2.06, and a residual prediction deviation (RPD) of 2.33 [89].

Physical Parameters and Texture Analysis Using Hyperspectral Imaging

Physical parameters such as the color and textural attributes of roots and tubers have
become an essential factor driving their final quality at a consumption stage. Consumers’
preferences for product quality are influenced mainly by color, particularly when process-
ing substantially impacts product quality [108]. Xiao et al. [109] reported that NIR-HSI was
used to determine the color of potatoes. The textural attributes of cassava and yam products,
such as boiled and pounded forms, are determined by a sensory evaluation, which may be a
subjective and mechanical instrument measurement which requires considerable time [108].
Hyperspectral imaging has been used in evaluating the color and other physical characteris-
tics of other tuber crops, such as potatoes and sweet potatoes [74,106,107,109]. The color of
potato slices was observed as they were being air dried using Vis/NIR hyperspectral imag-
ing, and the R2

P was as high as 0.91 when the PLSR was paired with feature wavelength
selection techniques such as chosen interval partial least squares regression (iPLSR) [110].
PLSR was also used to determine the specific gravity and water absorption of sliced pota-
toes using hyperspectral imaging systems in the NIR spectra range of 900–1700 nm. With
the linear weighted principal component regression algorithm, a coefficient of prediction
(R2p) of 0.98 was obtained for specific gravity, and one of 0.97 was obtained for water
absorption capacity [97]. The textural characteristics of potatoes and sweet potatoes were
assessed during microwave baking using the MIR spectra (600–4000 cm−1); in this research,
the LWPLSR performed better than PLSR in determining associated textural qualities such
as chewiness, resilience, hardness, gumminess, cohesiveness, and springiness, with a maxi-
mum R2

P value of 0.88 [111]. However, limited literature using it for the textural qualities
of cassava and yam exists. Hyperspectral image spectroscopy can potentially support the
genetic improvement target for cassava and yam breeding programs by exploring intrinsic
quality traits such as color, texture, and selected biochemical parameters. These influence
the specific characteristics of root and tuber crops during processing and consumption,
with the advantage of nondestructive sampling. NIR-HSI could be adopted as a high
throughput method for assessing the food quality of cassava and yam food products. The
conventional techniques for texture measurement are destructive to the samples and are
sometimes influenced by human factors in the case of the sensory test [112]. However,
the hyperspectral imaging technique has found applications in evaluating the textural
attributes of potatoes and sweet potatoes [34,111].

6. Limitation of NIR-HSI Spectroscopy

Despite the importance of hyperspectral imaging techniques, it has certain limitations
in its applications. NIR-HIS has a vast amount of data, including redundant information
that poses challenges during data processing and computational analysis; such massive
data require enough storage space for the computer, which adds to the cost of accessories.
Second, like conventional spectroscopy, the accuracy of NIR-HSI, an indirect technique,
depends on the standard of the reference values; hence, the prediction accuracies depend
on the reliability of the wet laboratory analysis. Third, since the strength of imaging
resides in its capacity to discern spatial heterogeneity in models, hyperspectral imaging is
inappropriate for homogeneous materials such as liquid samples. In addition, providing
samples with a high water content, such as fresh foods, results in a strong absorption band
in a particular spectral area and obstructs the processing of spectra. Fourth, multicollinearity
is another known limitation of hyperspectral imaging. In addition, image pre-processing
and modeling could be time-consuming and affected by interferences from instrumental
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noise and other external factors, such as the ambient condition of the instrument room,
which are sometimes challenging to control.

7. Prospects

In the future, researchers should develop more efficient algorithms for data processing
and spectral band selection to solve the problem of high dimensionality. Reliable reference
values must be obtained for targeted parameters because prediction performances rely
on the quality of the reference values. It is imminent that more research on applying
NIR-HSI techniques to define and characterize the critical quality parameters for yam
and cassava should be conducted. It will contribute significantly to breeding programs
to incorporate the priority quality characteristics influencing consumers’ decisions on
adopting and utilizing pipeline varieties. Moreover, easy-to-use and accessible software for
image processing should be available for research to enhance the handling and processing
of spectra and image datasets.
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