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Summary

� Chlorosis is frequently incited by viroids, small nonprotein-coding, circular RNAs replicating

in nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae). Here, we investigated

how chrysanthemum chlorotic mottle viroid (CChMVd, Avsunviroidae) colonizes, evolves and

initiates disease.
� Progeny variants of natural and mutated CChMVd sequence variants inoculated in chry-

santhemum plants were characterized, and plant responses were assessed by molecular assays.
� We showed that: chlorotic mottle induced by CChMVd reflects the spatial distribution and

evolutionary behaviour in the infected host of pathogenic (containing a UUUC tetranucleo-

tide) and nonpathogenic (lacking such a pathogenic determinant) variants; and RNA silencing

is involved in the initiation of the chlorosis in symptomatic leaf sectors through a viroid-

derived small RNA containing the pathogenic determinant that directs AGO1-mediated clea-

vage of the mRNA encoding the chloroplastic transketolase.
� This study provides the first evidence that colonization of leaf tissues by CChMVd is charac-

terized by segregating variant populations differing in pathogenicity and with the ability to

colonize leaf sectors (bottlenecks) and exclude other variants (superinfection exclusion).

Importantly, no specific pathogenic viroid variants were found in the chlorotic spots caused by

chrysanthemum stunt viroid (Pospiviroidae), thus establishing a clear distinction on how

members of the two viroid families trigger chlorosis in the same host.

Introduction

Viroids are the smallest RNAs replicons endowed with autono-
mous replication (Diener, 2003; Steger & Riesner, 2018).
Whereas viruses require that the proteins they encode interact
with some factors from the host for replication and movement,
viroid genomes – composed of a nonprotein-coding single-
stranded circular RNA of only 250–430 nucleotides (nt) – contain
all the information needed to manipulate the RNA transcription,
processing and trafficking machinery of their hosts, in which
they may cause a disease (Ding, 2009; Kovalskaya &
Hammond, 2014; Wang et al., 2018; Adkar-Purushothama &
Perreault, 2020; Wu et al., 2020; Navarro et al., 2021a). Viroids
are classified into two families. Those clustered in the Pospiviroi-
dae (Di Serio et al., 2021), type member potato spindle tuber

viroid (PSTVd) (Diener, 1971; Gross et al., 1978), have a central
conserved region (CCR) (McInnes & Symons, 1991), do not
contain hammerhead ribozymes, and replicate in the nucleus
through an asymmetric RNA–RNA rolling-circle mechanism.
On the contrary, those grouped in the Avsunviroidae (Di Serio
et al., 2018), type member avocado sunblotch viroid (ASBVd)
(Symons, 1981; Hutchins et al., 1986), lack a CCR. However,
embedded in their strands of either polarity, members of this vir-
oid family have hammerhead ribozymes that mediate co-
transcriptional self-cleavage of the oligomeric RNAs generated
during replication in plastids (mostly chloroplasts) through a
symmetric RNA–RNA rolling-circle mechanism (Navarro
et al., 2021a).

Viroid-derived small RNAs (vd-sRNAs) resembling the small
interfering RNAs (siRNAs) and microRNAs (miRNAs; Papaefth-
imiou et al., 2001; Martı́nez de Alba et al., 2002) have been
detected in plants infected by members of the two families. These
findings, combined with the observation that partial-length
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inverted repeats of PSTVd transgenically expressed in tomato eli-
cit viroid-like symptoms and accumulate PSTVd-sRNAs, have
led to deem that vd-sRNAs might target host mRNAs for inacti-
vation via RNA silencing (Wang et al., 2004). In this context, vd-
sRNAs would bind and guide Argonaute (AGO) proteins, at the
core of the RNA inducing silencing complex (RISC), to inacti-
vate complementary DNA or RNA resulting in transcriptional or
post-transcriptional gene silencing, respectively (Mallory &
Vaucheret, 2010; Poulsen et al., 2013; Fang & Qi, 2016; Ma &
Zhang, 2018). There is direct evidence that PSTVd-sRNAs bind
in vivo several AGOs (Minoia et al., 2014), including AGO1 that
has a clear preference for 21–22-nt sRNAs with a 50-terminal U
(Mi et al., 2008; Montgomery et al., 2008). More specifically,
the idea that the primary molecular lesion inducing peach calico
(PC, albinism) and peach yellow mosaic (PYM) is triggered by
vd-sRNAs containing the pathogenic determinants of some var-
iants of peach latent mosaic viroid (PLMVd, genus Pelamoviroid
within the Avsunviroidae; Hernández & Flores, 1992) has
received sound support (Navarro et al., 2012; Delgado
et al., 2019). These PLMVd-sRNAs target for cleavage, at the
sites predicted by RISC(AGO1)-mediated RNA silencing, the
mRNAs coding for proteins implicated in chloroplast biogenesis/
function, thus eliciting the initial lesions eventually resulting in
specific chloroses.

In this framework, the system formed by another pelamovir-
oid, chrysanthemum chlorotic mottle (CChMVd; Navarro &
Flores, 1997), infecting chrysanthemum offers important advan-
tages. The herbaceous nature of the host allows a more precise
capture of the viroid variants associated with early symptoms
(10–12 d) than in the PLMVd-peach system (wherein onset of
symptoms usually takes 1.5–2 months). Moreover, the patho-
genic determinant of CChMVd has been mapped at a tetraloop
within a branched conformation (de la Peña et al., 1999), with
the existence of a similar secondary structure similar to PLMVd,
stabilized by a kissing-loop interaction predicted in silico (Bus-
sière et al., 2000), supported by chemical probing in vitro
(Giguère et al., 2014) and by co-variation analyses in vivo (de la
Peña et al., 1999; de la Peña & Flores, 2002; Gago et al., 2005).
In addition, the mutation rate of CChMVd has been determined
and found to be one of the highest reported for any biological
entity (Gago et al., 2009). As a disadvantage, the chrysanthemum
genome is complex (hexaploid) and poorly annotated. Despite
this limitation, CChMVd, which induces the accumulation of
abundant vd-sRNAs in chrysanthemum (Martı́nez de Alba
et al., 2002), provides an excellent opportunity to test and get a
deeper insight into how viroids colonize, evolve and initiate dis-
ease in their hosts.

Here, we show that during host infection, CChMVd (Avsun-
viroidae) displays a ‘territorial behavior’ resulting in segregated
populations most likely derived from the concerted effects of the
extremely high mutation rate of this viroid and the ability of
some of its variants to colonize leaf sectors (via bottlenecks) and
exclude other variants (by superinfection exclusion). Therefore,
we provide the first evidence of the role of bottleneck and super-
infection exclusion dynamics in viroid evolution during host
colonization. Moreover, our data support that the chlorotic

mottle induced by the viroid is initiated by a 21-nt vd-sRNA
containing most of the pathogenic UUUC sequence, which
primes RISC(AGO1)-mediated cleavage of the mRNA encoding
the chloroplastic transketolase. Remarkably, a similar mechanism
does not operate in triggering the chlorotic spots incited by chry-
santhemum stunt viroid (CSVd, Pospiviroidae), thus setting a
clear difference on how members of both viroid families initiate
disease in a common host.

Materials and Methods

Plant material and bioassays

All trials in this study were conducted with chrysanthemum
(Dendranthema grandiflora Tzvelez, syn). Chrysanthemum morifo-
lium Ramat, ‘Bonnie Jean’ plants vegetatively propagated and
mechanically inoculated in the three upper leaves with viroid
RNA variants (40 ng per leaf) generated by in vitro transcription
as reported (Gago et al., 2005). The primary transcripts of head-
to-tail dimeric constructs were separated by denaturing (1× TBE
and 8M urea) 5% PAGE and the self-cleaved CChMVd mono-
meric RNAs and the CSVd dimeric RNAs (ID: AB679193) were
eluted and quantified. Inoculated plants were maintained in a
glasshouse at a constant temperature of 28°C and a photoperiod
of 18-h : 6-h, light : dark. Chlorotic and green sectors were sepa-
rately sampled and extracted from expanded leaves (longitudinal
size of the mid rib 5–6 cm). In the case of leaves infected with
CSVd, which generally induces smaller chlorotic areas than
CChMVd, sampling was carried out using a borer consisting of a
plastic tip. When needed, the plastic tip was transversally cut to
have an appropriate diameter covering an area smaller than the
chlorotic lesion to be collected, thus excluding the surrounding
green tissue. In the case of chlorotic lesions with a diameter of
< 3 mm, the samples were collected using a magnifying glass.

RNA extraction, Northern blot assays and characterization
of viroid progeny variants

Total RNA was extracted with TRIzol (Invitrogen) from 100
mg of leaves, resuspended in 100 μl, treated with 2 U of Turbo
DNase (Invitrogen) and quantified with a 2100 Bioanalyzer
Instrument (Agilent, Santa Clara, CA, USA). For Northern
blot hybridization, viroid-enriched RNA preparations were
obtained from leaves (1 g) by phenol extraction followed by
chromatography on nonionic cellulose (CF-11; Whatman,
Maidstone, UK) (Gago et al., 2005), separated in nondenatur-
ing (1× TAE) or denaturing (1× TBE and 8M urea) 5%
PAGE, electroblotted to positively charged nylon membranes
(Roche) and hybridized with specific digoxigenin-labelled
riboprobe as reported (Navarro et al., 2021b). To characterize
the progeny variants, viroid-enriched RNA preparations were
reverse-transcribed with Superscript II reverse transcriptase fol-
lowing the supplier (Invitrogen) protocol. The resulting cDNAs
were amplified with Pfu DNA polymerase (Agilent) by 30
amplification cycles (95°C for 30 s, 60°C for 30 s and 72°C for
40 s) using specific primers (Supporting Information Table S1).
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Amplification products of the expected size were cloned and
sequenced with an ABI 3100 Genetic Analyzer (Applied Biosys-
tems, Waltham, MA, USA).

Site-directed mutagenesis, construction of CChMVd
dimeric cDNA clones and in vitro transcription

The mutant plasmid pCM20-U89mut was generated by site-
directed mutagenesis from a plasmid containing the full-length
sequence of CChMVd CM20 variant, following a PCR-based
protocol reported previously (Gago et al., 2005) and using pri-
mers RF-1425 and RF-1424 (Table S1). Head-to-tail dimeric
cDNA constructs of natural and mutated CChMVd variants
were obtained by ligation with T4 DNA ligase of the respective
monomeric cDNAs amplified by PCR from the appropriate plas-
mids using the primers RF-959 and RF-958 (Table S1) and Pfu
DNA polymerase (Agilent). The resultant dimeric molecules
were cloned and sequenced.

Transcriptome and sRNAs sequencing and bioinformatics
analyses

Total RNA preparation treated with Turbo DNase (see above)
were used to generate RNA-Seq libraries using TruSeq Stranded
mRNA Sample Preparation kit (Illumina, San Diego, CA, USA)
and sequenced (2 × 150 bp paired-end) on the HiSeq 4000 sys-
tem (Fasteris, Geneva, Switzerland). After adapter trimming, de
novo assembly was performed using VELVET v.1.2.10 (Zerbino &
Birney, 2008) and OASES v.0.2.08 (Schulz et al., 2012), and the
obtained contigs were used to identify the sequences of the gene
of interest by BLASTN, BLASTX and searches in the recently relased
C. morifolium genome (http://210.22.121.250:8880/asteraceae/
browse/genomePage/Cmo).

cDNA libraries of sRNAs (16–30 nt) were generated and
sequenced (1 × 50 bp) on an Illumina Genome HiSeq 2500 Ana-
lyzer (Fasteris). After trimming and filtering by quality control,
the reads were mapped to CChMVd sequence variants with an
in-house pipeline (Navarro et al., 2012). Putative mRNAs tar-
geted by vd-sRNAs were searched using psRNATarget program
(Dai et al., 2018) on the FASTA collection of chrysanthemum
RNA contigs. Chloroplastic transit peptides in the encoded pro-
teins were predicted by CHLOROP (Emanuelsson et al., 1999).
Sequence alignments were carried out with CLUSTAL OMEGA (Sie-
vers & Higgins, 2014).

50 RNA ligase-mediated rapid amplification of cDNA ends
(RLM-RACE)

RLM-RACE were performed as reported previously (Delgado
et al., 2019). Briefly, an RNA adaptor (50-CGACUGGAGCAC
GAGGACACUGACAUGGACUGAAGGAGUAGAAA-30) was
ligated to DNA-free total RNA and used for cDNA synthesis
using the primer RF-3400 (complementary to TKT mRNA) that
was amplified by a first PCR, using the primers RF-3400 and
RF-553 (homologous to the RNA adaptor). The expected pro-
duct of c. 242 bp was gel purified and subjected to a second

(nested) PCR with primers RF-3402 (internal with respect to
RF-3400) and RF-554 (internal with respect to RF-553). The
expected product of c. 196 bp was eluted, cloned and sequenced.

Quantification of mRNA accumulation by RT-qPCR

Aliquots (2.5 μl) of DNA-free total RNA preparations were
reverse transcribed (RT) with Superscript II (Invitrogen) and ran-
dom hexanucleotides as reported previously (Delgado
et al., 2019). Aliquots (1 μl) of the RT reaction were used to per-
form qPCR with specific primers (Table S1 and Dataset S1) and
SYBR green PCR master mix following supplier instructions
(Applied Biosystems). Amplification efficiency of all primers was
between 90% and 110%, with R2-value between 0.98 and 1.
Each qPCR was repeated at least in triplicate on three biological
replicates. Controls without template were included for each pri-
mer pair. Ct values were used to analyse relative gene expression
in symptomatic and nonsymptomatic sectors of the same
CChMVd-infected leaves and in leaves from mock-inoculated
plants. The relative expression level of the selected transcripts was
calculated by the 2�ΔΔC t method (Livak & Schmittgen, 2001)
using the elongation factor 1α (EF1α) as the internal reference
gene. Relative quantification data were subjected to a logarithm
transformation to resemble a normal distribution, and statistical
significance was assessed by One-way ANOVA with Duncan’s
multiple-range test for comparison between groups (Bewick
et al., 2004). Statistical analyses were performed using the STAT-
GRAPHICS CENTURION software.

Protein extraction and Western blot

Total proteins were extracted with 100 mM Tris–HCl, pH 6.8,
containing 0.3% β-mercaptoethanol and 1 mM phenyl-
methyl-sulfonyl fluoride from 1 g of leaves. Aliquots of protein
preparations were subjected to 12% SDS-PAGE, transferred to
polyvinylidene difluoride (PVDF) membranes (Roche), and
immunoblotted with antisera against transketolase (chloroplastic;
anti-TKL-1; Agrisera, Vännäs, Sweden) at a 1 : 5000 dilution.
Goat antirabbit horseradish peroxidase (HRP) conjugated (Agri-
sera) at a 1 : 10 000 dilution was used as secondary antibody, and
immunoreactive bands were revealed with the chemilumines-
cence ECL Plus kit, following supplier recommendations (GE
Healthcare, Chicago, IL, USA). Signals were recorded by autora-
diography.

Results

CChMVd symptomatic and nonsymptomatic variants
behave differently during host colonization

To learn how CChMVd colonizes, evolves and incites disease in
its natural/experimental host (chrysanthemum), two viroid var-
iants, one with a UUUC tetraloop strictly associated with symp-
toms and the other nonsymptomatic and just differing in an
alternative GAAA tetraloop (Fig. 1; de la Peña et al., 1999; de la
Peña & Flores, 2002), were assayed. Upper noninoculated leaves
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were collected 20-d postinoculation (dpi) to characterize the
infecting viroid population.

As expected, the variant with the GAAA tetraloop induced no
phenotype, while the variant with the UUUC tetraloop (the

pathogenic determinant; CChMVd-S) induced early symptoms
consisting in adjacent chlorotic and green leaf sectors (Fig. 2a).
Moreover, RT-PCR, cloning and sequencing showed that the
progeny of the variant with the GAAA tetraloop (IDs from

Fig. 1 Branched conformation adopted by chrysanthemum chlorotic mottle viroid (variant CM20, ID AJ878085). Plus (open symbols) and minus (close
symbols) self-cleaving domains are delimited by flags, residues conserved in most natural hammerhead structures are indicated by boxes, and the self-
cleavage sites are marked by arrows. Residues between nucleotides at positions 220–224 and 255–259 involved in a kissing loop interaction stabilizing the
viroid conformation are indicated by lines. The UUUC tetraloop (positions 82–85), which was identified as the pathogenic determinant of CChMVd, is on a
gray background. The dotted line box indicates the hairpin containing the tetraloop shown in the inset (up). The variants in which the pathogenic determi-
nant is replaced by a GAAA tetraloop (inset, down) do not induce leaf symptoms in chrysanthemum.
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OP918729 to OP918758) consisted of most variants (28 of 30)
presenting the same GAAA tetraloop, with the remaining having
one single mutation, either UAAA (one of 30; ID: OP918740)
or AAAA (one of 30; ID: OP918743). The progeny of the
CChMVd-S variant differed in chlorotic and green sectors: var-
iants with the UUUC tetraloop predominated in chlorotic sectors
(19 of 23), together with minor proportions of others with one
substitution (generating the tetraloop UUUU; Fig. 2b); by con-
trast, in green sectors, the ratio of UUUC variants was low (six of
25) and they coexisted with others harbouring one (UUUU), two
(AUUU) or three (AAUU) substitutions in the pathogenic deter-
minant (Fig. 2b). Interestingly, Northern blot hybridization
assays showed that the viroid accumulated at similar levels in
both symptomatic and green sectors (Fig. S1).

Bioassays of the three latent variants (with a tetraloop UUUU,
AUUU and AAUU) resulted in nonsymptomatic infections (at
20 dpi), revealing that one single substitution in this tetraloop
annuls pathogenicity (Fig. S2). The UUUC tetraloop was not
found in the progeny variants of the mutants with the AUUU or
AAUU tetraloop, although other nucleotide changes were
observed (Fig. S2). However, a minor proportion (two of 12) of
variants with UUUC tetraloop was detected in the progeny of
the mutant containing the UUUU tetraloop. In one of the plants
inoculated with this variant, a small chlorotic sector was observed
at a late infection stage (4-wk postinoculation) and, remarkably,
the UUUC tetraloop reappeared in nine of 10 progeny variants
from the symptomatic tissue (Fig. S2). Hence, symptomatic and

nonsymptomatic CChMVd variants (hereafter denoted as
CChMVd-S and CChMVd-NS, respectively) follow distinct evo-
lutionary trajectories, with the latter prevalently evolving from
the former. The other way around, evolution from nonsympto-
matic to symptomatic CChMVd variants, is less frequent and
limited only to the inoculated variants containing a UUUU tetra-
loop. CChMVd thus shows a ‘territorial behavior’, with clearly
segregated populations in a single leaf. The finding that a single
substitution in the UUUC tetraloop disrupts pathogenicity is
consistent with the involvement of RNA silencing in initiating
the disease (see below).

To better assess these conclusions, we performed two
additional experiments. In the first one, we inoculated the
CChMVd-S variant CM20 (with the UUUC tetraloop) and just
5 dpi examined the progeny in upper noninoculated young
leaves. All variants recovered (12 of 12) did not show changes in
the tetraloop (Fig. S3). This result suggests that 5 dpi chrysanthe-
mum plants become systemically infected by variants containing
the pathogenic determinant. However, longer time intervals are
needed for the emergence of the variants with mutations in this
tetraloop shown in a previous experiment to preferentially accu-
mulate in green sectors of symptomatic leaves at 20 dpi (Fig. 2a).
In addition, symptom expression and sectorization of chlorotic
tissues may require an appropriate leaf developmental stage and/
or a minimum accumulation level of pathogenic variants in the
infected tissues and/or a certain time for the plant defence
responses to initiate the pathogenic process. Indeed, at this early

Fig. 2 Symptoms induced by the pathogenic
CChMVd variant (CM20) in chrysanthemum
leaves (a). The viroid progeny was
characterized by cloning and sequencing
viroid full-length cDNAs generated by RT-
PCR using RNA preparations extracted from
adjacent chlorotic and green sectors (red
circles) of symptomatic leaves. The hairpin
sequences containing the pathogenic
determinant (UUUC tetraloop) or a mutated
loop found in the progenies are reported,
with the fractions on the top indicating the
number of clones containing each reported
hairpin on the total number of sequenced
variants from the symptomatic (upper; IDs
from OP918681 to OP918703) and
nonsymptomatic (lower; IDs from OP918704
to OP918728) leaf sectors (b). Symptoms
induced on leaves (longitudinal size of the
mid rib 5–6 cm) in chrysanthemum ʽBonnie
Jeanʼ by CSVd (c).
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stage (5 dpi), tissues infected by variants containing the patho-
genic UUUC tetraloops did not show chlorosis.

In the second experiment, we turned our attention to the
well-defined chlorotic leaf spots induced in the same host
(chrysanthemum ʽBonnie Jeanʼ) by a nuclear-replicating viroid
(chrysanthemum stunt viroid, CSVd; Lawson, 1987; Fig. 2c).
The accumulation level (Fig. S1) and, particularly, the sequence
of the variants retrieved from both the yellow spots and the sur-
rounding green tissue in CSVd infected plants did not show sig-
nificant differences. In two sets of 20 sequence variants (10 from
each type of tissue, and each set obtained with a pair of adjacent
primers), only five showed a single point mutation, probably gen-
erated during the RT-PCR amplification (Fig. S4). Thus, in
sharp contrast with the situation found for CChMVd, the
CSVd-incited chlorosis is not associated with specific viroid var-
iants, most likely because it does not represent a primary lesion
but an intermediate/late symptom (see below).

CChMVd-sRNAs with the pathogenic determinant
accumulate predominantly in chlorotic sectors

Considering the uneven distribution of CChMVd variants
between chlorotic and green tissues of the same leaves, we antici-
pated a similar distribution for CChMVd-sRNAs with and with-
out the intact pathogenic determinant, respectively. To gather
evidence supporting this view, we generated four sRNA libraries
from symptomatic and nonsymptomatic sectors of two leaves
from chrysanthemum plants inoculated with the CChMVd
pathogenic variant (CM20). For each sample, we obtained from
c. 8 to 13 million reads of 18–26 nt, which showed a similar size
distribution with two major peaks of 21 and 24 nt (Fig. S5;
Table S2). CChMVd-sRNAs matching perfectly, or with one
mismatch, the infecting variant or its progeny represented
12.4–15.7% in the chlorotic sectors and 10.6–10.7% in the
green sectors (Table S2), thus confirming previous data from
RNA gel-blot hybridization indicating that CChMVd is heavily
targeted by the RNA silencing defensive response of its host
(Martı́nez de Alba et al., 2002).

Regarding size distribution of the CChMVd-sRNAs, the 21-nt
species clearly predominated (c. 70%), with those from either
polarity strands accumulating at similar rates (Fig. S5). The
CChMVd-sRNAs from the four libraries spanned the whole
genomic strands, with a coverage mean depth of 220–225
(Fig. S5), thus attesting to the reproducibility of the results.

The 21-nt CChMVd-sRNAs of either polarity strand contain-
ing the pathogenic determinant (positions 82–85; de la Peña
et al., 1999; de la Peña & Flores, 2002), accounted for 0.6–0.9%
of the total viroid-derived reads in the four samples. More specifi-
cally, 90% of CChMVd 21-nt reads from the yellow sectors had
the pathogenic determinant UUUC, whereas the rate was much
lower (56% and 17%) in the green sectors (Table S3). When the
nucleotide variability in the pathogenic determinant was assessed
considering this subset of CChMVd-sRNAs, mutations were
detected in all positions of the tetraloop, being the most abun-
dant mutation C85 to U (Table S3). This mutated tetraloop
(UUUU) only represented 7–8% in the reads from the yellow

sectors, while it was predominant (40–70%) in the green sectors
(Table S3). These results were congruent with data obtained by
cloning and conventional sequencing of the CChMVd progeny
from both kind of leaf sectors (Fig. 2).

A quest of CChMVd-sRNAs with the pathogenic
determinant unveils candidate targets in the
chrysanthemum transcriptome

Because the complete chrysanthemum genome was not available,
to search for potential targets of CChMVd-sRNAs containing
the pathogenic determinant, a transcriptome was assembled de
novo using mRNASeq data from a library generated from a non-
infected chrysanthemum plant of cultivar ‘Bonnie Jean’. A FASTA
collection of 584 917 contigs, with an average length of 496 bases
and a N50 value of 1151, was generated. The psRNATarget pro-
gram (Dai et al., 2018) was used to search for chrysanthemum
transcripts potentially targeted for inactivation, via RNA silen-
cing, by (+) vd-sRNAs containing the CChMVd pathogenic
determinant (UUUC; or part of it) and by (−) vd-sRNAs con-
taining the complementary sequence. We limited our search to
21-nt sRNAs, since this is the size of most CChMVd-sRNAs
(Fig. S5) and plant miRNAs (Rogers & Chen, 2013). For finding
vd-sRNA candidate targets, a cut-off score threshold of ≤ 2.5,
which is more stringent than the default parameters of psRNA-
Target program (expectation≤ 3) was adopted. This cut-off has
been successfully used previously for identifying peach transcripts
targeted by PLMVd-sRNAs initiating PYM (Delgado
et al., 2019). Additionally, another restriction was applied: the
CChMVd-sRNA should have a 50-terminal U, as those initiating
PC and PYM do (Navarro et al., 2012; Delgado et al., 2019).

Following this approach, eight CChMVd-sRNAs, six of (+)
and two of (−) polarity targeting eight chrysanthemum transcripts
for potential RNA silencing-mediated degradation were identified
(Table 1). Of these CChMVd-sRNAs, we focussed on CChMVd-
sRNA3, of (+) polarity, which potentially targets an mRNA
encoding a protein containing a chloroplastic transit peptide
according to predictions with CHLOROP1.1 software (Table 1).
CChMVd-sRNA3 is the only one having two terminal Us. Thus,
it resembles the PLMVd-sRNAs initiating PC and PYM in peach
(Navarro et al., 2012; Delgado et al., 2019); and the sRNA derived
from a satellite RNA initiating a yellow mosaic on tobacco
(Shimura et al., 2011; Smith et al., 2011; see the Discussion sec-
tion), which at least have two 50-terminal Us, strongly supporting
the involvement of RISC(AGO1) given that AGO1 recruits prefer-
entially sRNAs with such 50-termini (Mi et al., 2008; Montgomery
et al., 2008; Minoia et al., 2014). There are additional reasons sup-
porting this selection. First, the predominant mutation in the
pathogenic determinant (UUUC to UUUU in the CChMVd
genomic RNA) that abolishes pathogenicity (Figs 1, S2), maps at
the third position of the CChMVd-sRNA3 (counting from its 50-
end), position in which mismatches, bulges or G : U pairs in the
hybrids formed by miRNAs and their targets are barely or not tol-
erated at all (Fahlgren & Carrington, 2010). Second, the reads per
million of CChMVd-sRNA3 were at least 10-fold higher in the
chlorotic than in the green sectors (Table 1). And third, the
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predicted chrysanthemum target of CChMVd-sRNA3 codes for a
protein of 743 amino acids displaying high identity (82.51%) with
the chloroplastic transketolase (TKT) of Arabidopsis
(NP_567103.1) and of other plants (Fig. 3), a nuclear-encoded
protein that, when silenced transgenically in tobacco (Henkes
et al., 2001) or via virus-induced gene silencing in Nicotiana
benthamiana (Yuan et al., 2011), results in chlorotic phenotypes
resembling that incited by CChMVd. These data, collectively, sup-
ported that CChMVd-sRNA3 may downregulate the expression
of the TKT gene by directing cleavage of its mRNA.

A CChMVd-sRNA with the pathogenic determinant targets
for RISC(AGO1)-mediated cleavage the mRNA of the
chloroplastic TKT and reduces its protein levels

To test whether CChMVd-sRNA3 guides RISC(AGO1)-
mediated cleavage of the TKT mRNA, an RNA ligase-mediated
rapid amplification of 50-cDNA ends (RLM-RACE) protocol

was applied to two RNA preparations from chlorotic and green
sectors of the same chrysanthemum leaf. An amplification pro-
duct of expected size was obtained only from chlorotic sectors.
Sequencing of the cloned amplification products from the symp-
tomatic tissues showed that 15/15 clones indeed derived from the
TKT transcript and had the 50 termini predicted considering the
CChMVd-sRNA3-guided cleavage: between positions 10 and 11
counting from its 50 terminus (Fig. 4). This result also discards
RISC(AGO1)-mediated cleavage of the TKT mRNA by the
other candidate, CChMVd-sRNA2, because the cleavage site
guided by CChMVd-sRNA2 would be displaced one position
from the canonical site (Table 1). In addition, the involvement of
a CChMVd-sRNA identical to CChMVd-sRNA3 but with an
extra 50-U and, therefore of 22 nt, seems also unlikely because the
extra nucleotide does not form a canonical base-pair in the pre-
dicted hybrid and the predicted cleavage site in the TKT tran-
script is displaced one position. Altogether such data strongly
support our working hypothesis: TKT mRNA cleavage primed

Table 1 Predicted chrysanthemum mRNA targets of CChMVd-sRNAs containing the pathogenic determinant.

sRNAa
sRNA
50endb

Viroid
strandc RPMd

mRNA target:sRNA
duplexe mfef Scoreg Target predicted functionh

Chloroplast
localizationi

CChMVd-
sRNA2

84 (+) 1.8/1.4//0.5/0.1 UUGACGCUGUGGAGAAAGCGA
 ::: :::::::::: :::::
UACUCCGACACCUCUCUCGCU

−35.7 2.5 Transketolase, chloroplastic Yes

CChMVd-
sRNA3

83 (+) 4/3.9//0.4/0.2 UGACGCUGUGGAGAAAGCGAA
::: :::::::::: ::::::
ACUCCGACACCUCUCUCGCUU

−35.8 2.5 Transketolase, chloroplastic Yes

CChMVd-
sRNA10

76 (+) 4.3/2.1//0/0 UCGGAGAGAUUGAAAGCUUUA
  ::::::: .::::::::::
CACCUCUCUCGCUUUCGAAAU

−32.2 2.0 Ferric reduction oxidase 4-like No

CChMVd-
sRNA18

68 (+) 0.1/0//0/0 CGUGGAAGCUUUACUCCCGGA
:.:.:::::::::::::: :

UCGCUUUCGAAAUGAGGGCGU
−37 2.5 Probable pectinesterase/

pectinesterase inhibitor 34
No

CChMVd-
sRNA20

66 (+) 16.8/20.7//7.8/5.9 UGGAAGCUUUACUCCCGGACA
.:.:::::::::::::: :::
GCUUUCGAAAUGAGGGCGUGU

−37.9 2.0 Probable pectinesterase/
pectinesterase inhibitor 34

No

CChMVd-
sRNA20

66 (+) 16.8/20.7//7.8/5.9 AAAAACCUUUGUUUCCGCACA
 ::: ::::..:.:::::::

GCUUUCGAAAUGAGGGCGUGU
−24.2 2.5 ABC transporter E family

member 2
No

CChMVd-
sRNA21

65 (+) 39.8/45.2//18.3/10.8 UGAGACUUUAUUCCUGCACAA
 .:. :::::.:::.::::::CUUUCGAAAUGAGGGCGUGUU

−32.1 2.5 Disease resistance protein No

CChMVd-
sRNA21

65 (+) 39.8/45.2//18.3/10.8 GGAAGCUUUACUCCCGGACAG
:.:::::::::::::: :::.CUUUCGAAAUGAGGGCGUGUU

−36.6 2.0 Probable pectinesterase/
pectinesterase inhibitor 34

No

CChMVd-
sRNA24

103 (−) 79.5/76.3//24.6/15.5 UUUGCUCUCUUCACAGUCUCG
::.:::::::.:::::.:::.AAGCGAGAGAGGUGUCGGAGU

−40.1 2.0 Cysteine proteinase RD21A-
like

No

CChMVd-
sRNA32

95 (−) 0.4/0.4//0.1/0.2 UUAAAGAUUUUGCUUUCUUCA
 ::::: :::.:::.:::.::
CAUUUCGAAAGCGAGAGAGGU

−26.9 2.5 U-box domain-containing
protein 17-like

No

CChMVd-
sRNA32

95 (−) 0.4/0.4//0.1/0.2 UCAAAGGUUUUGCUUUUUCCA
  :::: :::.:::.:.::::
CAUUUCGAAAGCGAGAGAGGU

−28.1 2.5 Ubiquitin-conjugating
enzyme E2

No

aCChMVd-small RNAs with 50 terminal U and containing at least one nucleotide of the pathogenic determinant.
bPosition of the CChMVd-sRNA 50 termini in the genomic RNA of CChMVd variant CM20.
c(+) and (−) indicate plus and minus sRNA polarity, respectively.
dReads per million (RPM) of the vd-sRNA in symptomatic//non-symptomatic sectors (two samples).
emRNA:CChMVd-sRNA duplexes predicted by psRNATarget (Dai et al., 2018); host targeted mRNAs on top (50–30 orientation) and CChMVd-sRNAs are
on the bottom (30–50 orientation). Nucleotides spanning the CChMVd pathogenic determinant are in bold; (:) Watson–Crick base pairs; (.) G : U wobble
base pairs.
fMinimum free energy (kcal mol−1) of the vd-sRNA:mRNA target duplex predicted by RNA hybrid (Rehmsmeier et al., 2004).
gScore of the mRNA target:sRNA duplex, estimated by psRNATarget (Dai et al., 2018); the lower the score, the more reliable the prediction.
hTarget function predicted by sequence homology.
iChloroplast targeting of the protein predicted by CHLOROP software (http://www.cbs.dtu.dk/services/ChloroP).
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Fig. 3 Multiple alignment of choroplastic transketolase (TKT) proteins encoded by the genomes of Chrysanthemum morifolium Ramat (Cm), Artemisia
annua L. (Aa), Helianthus annus L. (Ha), Nicotiana benthamiana Domin (Nb), Nicotiana tabacum L. (Nt), Arabidopsis thaliana (L.) Heynh. (At), andOryza

sativa L. (Os). Positions in the TKTs are reported on the right. In red, hydrophobic amino acids (aa) (AVPMIL) and the aromatic F and W; in blue, acidic aa
(DE); in magenta, basic aa (RK) except H; in green, polar aa (CSTNQ and Y), H and G. The arrow on the top indicates the C-terminal amino-acid of the
chloroplast transit peptide predicted by the CHLOROP Program (Emanuelsson et al., 1999).
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by CChMVd-sRNA3 takes place predominantly in the chlorotic
sectors, where the latter accumulates preferentially.

It has been previously shown that in viroid-infected tissues the
mRNAs targeted by vd-sRNAs-mediated cleavage may not neces-
sarily accumulate at lower levels than in noninfected controls
(Navarro et al., 2021b). Therefore, we estimated by reverse
transcription-quantitative polymerase chain reaction (RT-qPCR)
the accumulation of the TKT and three other control mRNAs in
chlorotic and green sectors from the same leaf, as well as from a
leaf of a mock-inoculated plant. Whereas no significant changes
were observed between the green leaf tissues from the CChMVd-
infected and the mock-inoculated plants, significant differences

in the mRNA accumulation were detected between green and
chlorotic tissue (Fig. 5). More specifically, the relative levels of
two plastid-encoded transcripts (the mRNAs of the rpoB subunit
of the bacterial-like RNA polymerase and of the psbA component
of photosystem II) and of one nuclear-encoded transcript (the
mRNA of cHSP90, the chloroplastic heat-shock protein 90),
remained essentially the same. By contrast, a pronounced reduc-
tion in the TKT transcript was specifically observed in the
chlorotic tissue (Fig. 5).

Finally, to further discard that the remaining mRNA encod-
ing the chloroplastic TKT might still serve to produce the cor-
responding protein at the physiological level, we took
advantage of the existence of a commercially available antibody
against this enzyme. Western blot analyses revealed that its
accumulation was significantly lower in the chlorotic sectors
than in their green counterparts of the same CChMVd-infected
leaves and of leaves from mock-inoculated plants (Fig. 6). Alto-
gether, these results firmly uphold the notion that CChMVd
initiates disease via a viroid-sRNA containing the pathogenic
determinant, which guides RISC(AGO1) to cleave the mRNA
encoding the chloroplastic TKT, thus downregulating its
accumulation.

Fig. 4 Site-specific cleavage of the chrysanthemum transketolase (TKT)
mRNA through RNA silencing machinery guided by CChMVd-sRNA3. Tar-
geted region within the TKT mRNA (a). Hybrid formed by CChMVd-
sRNA3 and the targeted TKT mRNAs sequence (with CChMVd-sRNA3
nucleotides containing the pathogenic motif reported in red and the
expected cleavage site marked by the red arrow; all sequenced clones (15/
15 in red) of the 50 RNA ligase-mediated rapid amplification of cDNA ends
(RLM-RACE) amplification products from the symptomatic tissues con-
firmed the predicted cleavage site (b). Position of the pathogenic motif
(UUUC, in red) in the viroid secondary structure (c). Sequencing electro-
pherogram of RLM-RACE products obtained from symptomatic tissues
(RNA adaptor is boxed) (d).

Fig. 5 Accumulation levels of psbA, rpoB, cHSP90 and transketolase (TKT)
mRNAs in symptomatic (a) and non-symptomatic (b) tissues with respect
to mock-inoculated chrysanthemum plants determined by RT-qPCR. The
reported data are the mean of at least three independent experiments. The
elongation factor 1α (EF1α) was used as the internal reference gene for
normalization. Results are presented as log10 fold-change. Bars indicate SE.
Duncan’s multiple range test: *, P≤ 0.05.
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A gain-of-function mutant of CChMVd supports the
proposed mechanism of disease initiation

Our previous data, showing that even a single substitution in the
UUUC tetraloop results in loss-of-function mutants (conversion
of a pathogenic variant into a latent one; Figs 1, S2), support that
the formation of the hybrid between the CChMVd-sRNA3 and
the TKT mRNA is crucial for initiating disease. In such mutants,
the stability of the hybrid is compromised in the positions proxi-
mal to the 50 terminus of the CChMVd-sRNA3, which are
known to be critical for proper hybrid formation between miR-
NAs and their targets (Fahlgren & Carrington, 2010).

To further strengthen the involvement of RNA silencing in
initiating disease, we focussed on constructing a gain-of-function
mutant. Since in the hybrid between the mRNA encoding the
chloroplastic TKT and the CChMVd-sRNA3, there is a mis-
match at position 7 (counting from the 50-terminus of the latter;
Fig. 7b), we reasoned that replacing the C at this position by a U
would result in a U–A Watson-Crick base-pair that should
increase the stability of the hybrid and favour a more efficient
cleavage. If so, earlier or more severe symptoms should be
expected. Importantly, this position 7 in the CChMVd-sRNA
corresponds to position C89 in the genomic viroid RNA (variant
CM20), with such substitution resulting in the conversion of a
C–G base-pair into a U–G wobble pair (Fig. 7a) that should not
distort the proposed secondary structure of the viroid and its
infectivity.

Inoculation of chrysanthemum blocks (containing 10 plants
each) with equal amounts of in vitro dimeric head-to-tail tran-
scripts from the wild-type symptomatic variant (CM20) or its
C89→U variant (CM20-U89mut), showed that: the latter was as
infectious as the former, since all plants of each block eventually
expressed symptoms; and the C89→U variant incited earlier and

more severe symptoms than its wild-type counterpart (Fig. 7c,d).
Therefore, the phenotype incited by the mutant variant agreed
with the proposed mechanism of pathogenesis. To add further
credence to this view, we analysed the resulting progeny
(Fig. S6). In early symptomatic leaves (14 dpi), four of six var-
iants from the chlorotic sectors preserved the C89→U substitu-
tion, while this position reverted to the wild-type C89 in five of
six variants from the green sectors. In intermediate symptomatic
leaves (21 dpi), two of six variants from the chlorotic sectors pre-
served the C89→U substitution, while in six of six variants from
the green sectors, this position reverted to the wild-type C89.
Finally, in late symptomatic leaves (28 dpi), the mutated position
reverted to the wild-type C89 in all variants from the chlorotic
and green sectors. These results clearly indicate that, although
viable, variants with the C89→U change have a lower fitness
(consistent with their lower progeny accumulation, see above)
than those with the wild-type C89, with the latter eventually
coming to dominate the progeny. Regarding the pathogenic
determinant (the tetraloop UUUC, positions 82–85), it was pre-
served in all variants from chlorotic sectors, while point muta-
tions were detected in the corresponding tetraloop in 4/6, 6/6
and 4/6 variants from the green sectors of symptomatic leaves at
early, intermediate and late stages, respectively, in agreement with
previous observations (Fig. 2).

Discussion

Viroids accumulate in an infected host as populations of slightly
different sequence variants, thus showing the typical features of
quasispecies (Codoñer et al., 2006; Brass et al., 2017). Sequence
variability in a viroid population is mainly generated by the
error-prone polymerases involved in replication and, on such a
variability, natural selection acts to generate the observed infect-
ing viroid populations. How combination of variability and selec-
tion pressure may affect host colonization and viroid
pathogenesis is largely unknown. In this study, we analysed the
progeny viroid variants in the leaves of chrysanthemum, the
CChMVd natural host, inoculated with a single symptomatic
variant of this viroid, which contains the pathogenic determinant
previously mapped at a UUUC tetraloop (de la Peña
et al., 1999). At 20 dpi, the progeny was already composed of
variants containing the original pathogenic determinant
(CChMVd-S) and variants in which such a motif was mutated
(CChMVd-NS). These different variants showed a clear spatial
segregation even in a single symptomatic leaf: CChMVd-S var-
iants were prevalent in the chlorotic sectors of symptomatic
leaves, while the CChMVd-NS variants were prevalently present
in nonsymptomatic tissues. Therefore, a strict association
between variants containing the pathogenic determinant and the
symptoms was observed. Importantly, both type of variants accu-
mulated at similar levels in the symptomatic and nonsympto-
matic sectors, excluding a possible direct role of the pathogenic
determinant on the viroid variants accumulation in the infected
tissues. These findings showed that, although the inoculated
CChMVd (S) variants persisted in the plant and preserved their
ability of eliciting the specific symptom, the progeny in the

Fig. 6 Western blot analysis detection of transketolase (TKT) in protein
extracts from symptomatic (S) and non-symptomatic (NS) sectors of leaves
infected with CChMVd-S (CM20) variant and from a mock-inoculated (M)
chrysanthemum plant. Equal loading was assessed by Coomassie blue
staining (lower panel). Broken vertical lines indicate irrelevant lanes
removed from the gel and membrane.
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nonsymptomatic leaf tissues evolved mainly in variants lacking
the pathogenic determinant. The nonsymptomatic infections
resulting from inoculation of CChMVd-NS variants (replacing
the tetraloop UUUC with another one) and the absence of the
UUUC pathogenic determinant in the progeny from the infected
plants further confirmed this conclusion. Moreover, the identifi-
cation of CChMVd-S variants (with a tetraloop UUUC) in the
progeny from a very small chlorotic area that appeared at a late
infection stage (28 dpi) in a plant inoculated with a CChMVd-
NS, showed that the evolution of S from NS variants is also
possible, although it is quite rare. Bioassays and early characteri-
zation of viroid progeny populations highlighted that the S
variants move systemically within the host in the first 5 dpi and
that a longer period of time (between 5 and 20 dpi) is needed for
the new symptomless CChMVd-NS variants to be generated and
become prevalent in green tissues of plants inoculated with
CChMVd-S variants. Altogether, these findings showed
CChMVd segregating populations even in a single leaf. The fact
that only one tetraloop at the pathogenic domain is able to trigger
symptoms, while most variants lacking such a motif are non-
symptomatic, generates a population bottleneck in the infected

hosts that correlates with the symptom expression and may repre-
sent the different evolutionary trajectories observed in S and NS
CChMVd variants.

In the absence of an annotated chrysanthemum genome, the
de novo assembly of the transcriptome of ‘Bonnie Jean’ chry-
santhemum leaves was performed in this study. This effort pro-
vided a data set of mRNAs actually expressed in our experimental
host that, by adopting very stringent constraints, allowed the
identification of the TKT mRNA as the target of CChMVd-
sRNA3 for its RNA silencing-mediated degradation. This finding
is supported by several solid evidence: RLM-RACE experiments
showed that TKT mRNA is cleaved at the expected site according
to an AGO-mediated cleavage driven by CChMVd-sRNA3 in
chlorotic tissues, but not in green tissues; a single-nucleotide
change at a position that increases the stability of the hybrid
between the CChMVd-sRNA3 and the TKT mRNA, while not
affecting viroid infectivity, does enhance symptom severity; and
RT-qPCR and Western blot revealed that the TKT mRNA and
protein, respectively, accumulate at lower levels in the chlorotic
tissues, a finding fully consistent with the chlorosis incited by the
reduction in transketolase activity in tobacco and N. benthamiana

(a)

(b)

(c)
(d)

Fig. 7 Earlier and more severe symptoms induced by a gain-of-function CChMVd mutant variant in chrysanthemum. Schematic representation of the
pathogenic region containing the tetraloop UUUC (in blue) of the variant CM20 (left) and of the mutant variant CM20-U89mut (right), in which the C at
position 89 has been replaced by a U (in red) (a). Hybrid between the mRNA encoding the chloroplastic TKT and the CChMVd-sRNA3 from the CM20
(left) and CM20-U89mut (right) variants (b). Time course (days postinoculation, dpi) of symptom expression in chrysanthemum plants inoculated with the
CM20 and CM20-U89mut variants (c). Representative mock-inoculated and symptomatic chrysanthemum plants infected by the CM20 and CM20-
U89mut variants (d).
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reported previously (Henkes et al., 2001; Yuan et al., 2011). The
direct correlation between the lower steady state level of mRNA
and the encoded protein should not be taken for granted because
transcript profiling neither accounts for post-transcriptional
modifications nor for non-translated transcripts during some
developmental stages, thus highlighting the importance of asses-
sing protein levels (Shrestha et al., 2020).

It is worth noting that lower accumulation of TKT mRNA
and protein were restricted to the chlorotic tissues of the mottled
leaves infected by CChMVd. In these tissues, both the variants
containing the pathogenic determinant and the CChMVd-
sRNA3 were prevalent with respect to the green sectors, thus pro-
viding a consistent picture linking the segregation pattern of
CChMVd-S and -NS variants with the molecular lesion incited
through RNA silencing by the CChMVd-sRNA3 and the
observed chlorotic macroscopic symptom. In short, these results
support that RNA silencing has a major role in triggering the
initial lesion caused by CChMVd.

We have recently established a distinction between viroid-
induced symptoms: whereas those typically incited by PSTVd
and related members of the Pospiviroidae are non-specific and sys-
temic, those elicited by most members of the Avsunviroidae are
specific and local, for example closely associated with variants
containing a specific pathogenic determinant (Flores et al., 2020;
Navarro et al., 2021a). We have shown that PLMVd variants
causing PC and PYM initiate disease (distinct chloroses) by vd-
sRNA-induced RNA silencing of mRNAs that encode proteins (a
heat-shock protein and a thylakoid translocase subunit, respec-
tively) mediating chloroplast biogenesis/development (Navarro
et al., 2012; Delgado et al., 2019). Here, we have extended this
view to CChMVd, which we propose triggers its characteristic
mottle by silencing the mRNA coding for the chloroplastic TKT.
CChMVd-sRNAs are mostly of 21 nt, as those generated by
other pelamoviroids, such as PLMVd (Di Serio et al., 2009; Bol-
duc et al., 2010; Navarro et al., 2012; Delgado et al., 2019) and
apple hammerhead viroid (Zhang et al., 2014; Serra et al., 2018).
By contrast, the most abundant vd-sRNAs produced by typical
members of the family Pospiviroidae are of 21- and 22-nt accom-
panied by significant levels of the 24-nt species (Machida
et al., 2007; Navarro et al., 2009; Di Serio et al., 2010; Martı́nez
et al., 2010; Wang et al., 2011; Zhang et al., 2014; Adkar-
Purushothama et al., 2015). Thus, the defensive RNA silencing
machinery operates differently in the two families (Flores
et al., 2020). The analyses of CChMVd-sRNAs further showed
that those containing the pathogenic determinant accumulated
prevalently in the chlorotic sectors, paralleling the biased accu-
mulation in these tissues of CChMVd-S.

For PSTVd and related viroids (inducing non-specific pheno-
types like stunting but also some chloroses), the situation appears
different (Flores et al., 2020). Particularly, the chlorosis induced
by the nuclear replicating viroid CSVd (family Pospiviroidae) in
chrysanthemum (Fig. 2) is not associated with specific viroid var-
iants. This is in sharp contrast with the situation observed for
CChMVd (family Avsunviroidae) in the same host, thus exclud-
ing a specific correlation between evolutionary routes of the
inocula and the appearance of chlorotic areas in the symptomatic

leaves. This also points out a clear distinction between members
of the two viroid families.

Remarkably, the symptom incited by the yellow satellite RNA
(Y-sat) of cucumber mosaic virus (CMV) in tobacco (a bright yel-
lowing) (Takanami, 1981), resembles the above-mentioned char-
acteristics of some members of the Avsunviroidae. Furthermore, a
common mechanism has been posited: Y-sat sRNA, PC- and
PYM-sRNAs, and now CChMVd-sRNA of 22- or 21-nt with
the corresponding pathogenic determinants have 50-terminal Us,
involving RISC(AGO1)-mediated cleavage of their cognate
mRNAs in what likely are the primary lesions eventually eliciting
disease symptoms (Shimura et al., 2011; Smith et al., 2011;
Navarro et al., 2012; Delgado et al., 2019; this work). The obser-
vation that all these sRNAs have more than one 50-terminal U
(while AGO1 needs only one for loading) is intriguing. By
becoming thermodynamically unstable, the corresponding end of
the vd-sRNA/mRNA duplexes could provide some advantage
(e.g. recruiting regulatory factors that remodel the duplex or
affect AGO strand loading preference in a context-dependent
mode; Medley et al., 2021).

However, when it comes to the host colonization, there is an
important difference between the Y-sat on the one side, and
PLMVd and CChMVd on the other. The first one appears
genetically stable, with the difference between yellow and green
tissues probably reflecting whether or not they have been invaded
by the satellite RNA. By contrast, symptomatic and nonsympto-
matic tissues (including sectors of the same leaf) are infected by
pathogenic and latent variants of the two viroids, respectively
(Navarro et al., 2012; Delgado et al., 2019; this work). This
uneven distribution of variants most likely results from: the extre-
mely high mutation rate of CChMVd and possibly of PLMVd;
the strong competition between variants leading to superinfection
exclusion; and the existence of bottlenecks during host coloniza-
tion. In support of the first point, there is direct and indirect evi-
dence for CChMVd (Gago et al., 2009) and PLMVd (Ambrós
et al., 1999; Glouzon et al., 2014) or AHVd (Serra et al., 2018;
Chiumenti et al., 2019), respectively. Regarding the second
point, co-infections or consecutive (separated by a time interval)
experimental infections with two variants of either CChMVd or
PLMVd has revealed distinct peaks in the fitness landscape (de la
Peña & Flores, 2002; Serra et al., 2017). On the third point,
symptomatic variants of CChMVd can evolve into nonsympto-
matic ones accumulating in green leaf sectors (this work), despite
the higher fitness of the former with respect to the latter (de la
Peña & Flores, 2002). This result strongly suggests that, as pre-
viously discussed for plant viruses (Gutiérrez et al., 2012; Zwart
& Elena, 2015), a small number of viroid molecules infect differ-
ent leaf sectors and may exclude colonization by other variants,
thus unveiling the role of random effects of genetic drift in viroid
evolution during host colonization. In plant viruses, the mechan-
istic framework involved in bottleneck and superinfection
dynamics is far from being completely understood, although
there is evidence that it is a complex phenomenon relying on
both specific virus-encoded proteins/ORFs and RNA silencing
(Donaire et al., 2016; Qu et al., 2020). In the case of positive-
sense RNA viruses, which possess a genome from which viral
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proteins are directly translatable, a major role has been attributed
to virus-encoded bottleneck-enforcing proteins (BNEPs;
reviewed by Perdoncini Carvalho et al., 2022). Bottleneck-
enforcing proteins are viral proteins that, when accumulate at
high intracellular concentration, are able to repress the replication
of their own encoding genomes, thus determining strong popula-
tion bottlenecks that allow only few bottleneck-escaping genome
copies to succeed in embarking replication and become prevalent
in the cell (Perdoncini Carvalho et al., 2022). Interestingly,
sometimes BNEP are proteins involved also in virus replication,
thus exerting two opposite functions (Zhang et al., 2017; Perdon-
cini Carvalho et al., 2022). In the case of viroids, which do not
encode proteins but are still targeted by RNA silencing machin-
ery, the bottleneck and superinfection exclusion dynamics take
place in the absence of pathogen-derived proteins, thus suggest-
ing a major contribution of RNA-based mechanisms and/or
host-derived proteins to this phenomenon. Therefore, viroids
may provide useful experimental systems to further assess the
mechanisms involved in the sequence variability of infectious
RNAs during host colonization.

In summary, we present data supporting that the chlorotic
mottle incited by CChMVd variants with a specific tetranucleo-
tide (UUUC) is initiated by a CChMVd-sRNA harbouring most
of this pathogenic determinant. Moreover, the distribution pat-
tern of such chlorosis reflects the spatial and evolutionary beha-
viour of the pathogenic variants in the infected host, thus being
clearly distinguished from the chloroses incited by nuclear-
replicating viroids such as CSVd (this work) and by many viruses
(Zhao et al., 2016; Seo et al., 2018). In these cases, chloroses are
possibly elicited by signalling routes between chloroplasts (with a
major role in defence) and nuclei (Seay et al., 2009; Chi
et al., 2013; Chan et al., 2016). This different ‘colonization beha-
vior’ likely depends, among other factors, on the significantly
diverse viroid mutation rate shown by members of the two viroid
families (López-Carrasco et al., 2017; but see Wu &
Bisaro, 2020).

Acknowledgements
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