
Prediction of functional
characteristics of gari (cassava
flakes) using near-infrared
reflectance spectrometry

Michael Adesokan1, Emmanuel Oladeji Alamu1,2*, Segun Fawole1

and Busie Maziya-Dixon1

1Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan,
Nigeria, 2International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub
(SARAH) Campus, Lusaka, Zambia

Gari is a creamy, granular flour obtained from roasting fermented cassavamash. Its
preparation involves several unit operations, including fermentation, which is
essential in gari production. Fermentation brings about specific biochemical
changes in cassava starch due to the actions of lactic acid bacteria.
Consequently, it gives rise to organic acids and a significant reduction in the
pH. Consumer preferences for gari are influenced by these changes and impact
specific functional characteristics, which are often linked to cassava genotypes.
Measurement of these functional characteristics is time-consuming and
expensive. Therefore, this study aimed to develop high-throughput and less
expensive prediction models for water absorption capacity, swelling power,
bulk density, and dispersibility using Near-Infrared Reflectance Spectroscopy
(NIRS). Gari was produced from 63 cassava genotypes using the standard
method developed in the RTB foods project. The prediction model was
developed by dividing the gari samples into two sets of 48 samples for
calibration and 15 samples as the validation set. The gari samples were
transferred into a ring cell cup and scanned on the NIRS machine within the
Vis-NIR range of 400–2,498 nm wavelength, though only the NIR range of
800–2,400 nm was used to build the model. Calibration models were
developed using partial least regression algorithms after spectra pre-
processing. Also, the gari samples were analysed in the laboratory for their
functional properties to generate reference data. Results showed an excellent
coefficient of determination in calibrations (R2

Cal) of 0.99, 0.97, 0.97, and 0.89 for
bulk density, swelling power, dispersibility, and water absorption capacity,
respectively. Also, the performances of the prediction models were tested
using an independent set of 15 gari samples. A good prediction coefficient (R2

pred) and low standard error of prediction (SEP) was obtained as follows: Bulk
density (0.98), Swelling power (0.93), WAC (0.68), Dispersibility (0.65), and
solubility index (0.62), respectively. Therefore, NIRS prediction models in this
study could provide a rapid screening tool for cassava breeding programs and
food scientists to determine the food quality of cassava granular products (Gari).
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1 Introduction

Cassava (Manihot esculenta Crantz) is an essential staple crop
grown throughout the tropics by more than 800 million people
(Teeken et al., 2018), and it is the third primary source of calories
after rice and maize (Adetoro et al., 2018). Nigeria, Brazil,
Thailand, Indonesia, and the Democratic Republic of Congo
(DRC) are responsible for about 60% of cassava production,
and Nigeria is the leading producer (Ohimain, 2015).
Cassava’s global production in 2015 and 2016 was estimated
to be around 281 million tons and 288.4 million tons, respectively
(FAO, 2016), while Nigeria was reported to have engaged over
four million farmers in cassava production (FAO, 2018). Cassava
roots are drought tolerant; hence they are widely cultivated for
their ability to withstand harsh environmental and agronomic
conditions. As a result of its ability to survive in the face of
adverse climatic conditions, cassava is often called Africa’s food
insurance (Jarvis et al., 2012; Belalcazar et al., 2016). The root
crop is the second most important food staple in sub-Saharan
Africa, while in Nigeria, it is a primary staple food which is
consumed by more than 100 million people daily because it is an
efficient and easy source of carbohydrate food energy (Tarawali
et al., 2012; Adetoro et al., 2018). Due to the versatility of the
crop, it can be prepared into various foods, used as animal feeds,
and produce as industrial materials such as starch (Bechoff et al.,
2018). It has been used to manufacture plywood, paper, textiles,
and adhesives (Tonukari et al., 2015). In the food industry,
cassava has been processed into numerous products like bread,
pasta, and couscous-like products (Mtunguja et al., 2019). In
Nigeria, the major cassava-based products are gari, fufu and
lafun, produced and consumed by the farmers (Teeken et al.,
2018).

Gari, one of the significant products from cassava roots in the
West Africa sub-region, is a dry, crispy, and granular food
product (Udoro et al., 2014; Awoyale et al., 2021a). It is the
most traded cassava food product in West and Central Africa,
with Nigeria as the largest producer (FAO, 2018). The cassava
roots are peeled, washed, and grated during gari production. The
grated mash is then dewatered by pressing, fermented (optional),
sieved and roasted (Escobar et al., 2018). The optional
fermentation and addition of palm oil influence the
classification of gari, usually “Ijebu gari” and “yellow gari.”
Ijebu gari is produced by fermenting the cassava mash before
roasting, while yellow gari is processed without fermentation but
by adding red palm oil before roasting (Erukainure et al., 2022).
The granular product is a versatile and convenient food due to its
cheapness, ease of storage, long shelf-life, and short preparation
time for consumption, making it extremely popular among urban
dwellers in Nigeria and other West African countries (Irtwange
and Achimba, 2009). It is the most consumed cassava food
product in West Africa, and Nigeria is the largest consumer
(Ndjouenkeu et al., 2021). In Nigeria, gari production has
contributed immensely to the nation’s economic growth, a
substantial portion of small and medium enterprises (SMEs) is
occupied by gari processing firms (Ogundipe et al., 2013). The
versatility of gari is reflected in the various ways it can be
consumed, such as soaking in cold water and consumed
directly with sweeteners, groundnut and fish. It can be

consumed as a dough by sprinkling it into a measured
quantity of boiling water with continuous stirring until a
consistent dough is formed. The dough, popularly called
“eba,” is the most widely eaten form of gari in Nigeria
(Irtwange and Achimba, 2009; Adinsi et al., 2019; Teeken
et al., 2021). These primary forms in which gari is consumed
take advantage of one of its functional properties, specifically the
swelling power, which is a critical factor that influences the
overall acceptability of the product by consumers (Ndjouenkeu
et al., 2021, Becerra Lopez-Lavalle et al., 2018). The functional
properties of food materials, such as bulk density, water
absorption capacity, swelling power, and dispersibility, often
indicate how the food materials interact with other food
components, affecting food quality and consumer acceptability
(Awoyale et al., 2021b). The bulk density of food material is a
crucial determinant of the packaging materials suitable for such
food material and influences its handling. Whereas the extent to
which gari swells affects its final quality (Awoyale et al., 2020).
Also, the swelling power of starch indicates its specific functional
properties when utilized in food products, which is often a
function of the amylopectin content of the starch (Noranizan
et al., 2010). The functional properties of cassava food products
are essential to the breeders because it influences their
acceptability by processors and consumers; hence the need for
a technology that can rapidly evaluate these properties.

One of the significant obstacles to developing rapid screening
and quality control in the agricultural and food industry is the need
for more simple, reliable, and non-destructive methods for
determining chemical composition in agricultural products
(Cozzolino et al., 2013). Near-infrared reflectance spectroscopy
(NIRS) is a non-destructive, high throughput technique which
measures the interactions between electromagnetic radiation and
vibrational properties of chemical bonds (Alamu et al., 2021). It is
an important method that has led to more efficient breeding as it
offers the advantage of characterizing a more significant number of
samples in shorter time than other wet laboratory techniques
(Belalcazar et al., 2016). NIRS spectroscopy determined whole-
grain barley’s swelling properties and water solubility (Cozzolino
et al., 2013). Mbanjo et al. (2021) also reported that NIRS
technology could predict cassava or cassava-based products’
functional and physicochemical properties. Other applications
of NIRS were reported in literature, Chen et al. (2014) have
developed a stable quantitative model for the rapid quality
evaluation of Lonicera japonica based on its ethanol
precipitation process. The protein and glucose content of flour
from roots and tubers were determined using NIRS (Masithoh
et al., 2021). Also, short wavelength near infrared reflectance
spectroscopy was used to determine the starch content of fresh
cassava roots (Bantadian et al., 2020).

Apart from its contributions in the agricultural and food
industries, NIRS has also found many practical applications in
other industries such as medicine, forensic science, and
pharmaceuticals (Heise, 2021; Sacré et al., 2021; Chen et al.,
2022). Several authors have reported the application of NIRS for
predicting the quality parameters of cassava and its products
(Sanchez et al., 2014; Fu et al., 2017; Ikeogu et al., 2017; 2019; Su
and Sun, 2017; Alamu et al., 2019). However, no work has been
reported on using NIRS to predict gari’s functional properties.
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Therefore, this study seeks to evaluate the application of NIRS in
predicting the selected functional properties of gari.

2 Materials and methods

2.1 Source of materials and sample
preparation

The cassava roots (which were processed into gari) were
obtained from the experimental field plots of the International
Institute of Tropical Agriculture (IITA). Sixty-three gari samples
were used for this study, and to prepare the gari (cassava flakes), the
fresh cassava roots were peeled, washed, and grated using a
mechanical grater. The grated mash was transferred into a jute
bag and pressed under a jack for 72 h to eliminate the water. Pressed
mash was collected, sieved, and roasted under a controlled heat
source until desired gari quality was formed. Roasted gari was
allowed to cool and then milled using an electric laboratory
blender. The finely ground gari was packed in well-labelled
plastic containers and transferred for subsequent analysis. See
Figure 1.

2.2 Laboratory analysis

Water absorption capacity (WAC; g mL−1) and Dispersibility
(%) of gari were determined using methods described by AOAC
(2006). For WAC, about 1 g of each gari was transferred to a clean
15 mL centrifuge tube with 10 mL of distilled water, centrifuged
at 512 g for 15 min (GLC-1, Chicago, United States). After
centrifugation, the supernatant was decanted, and the weight
of the sediment was taken to determine the WAC. Dispersibility

was determined by weighing 10 g of the sample into a 100-mL
measuring cylinder and distilled water added to reach a volume of
50 mL. The mixture was stirred vigorously, particles were allowed
to settle for 3 h, and the percentage volume of settled particles
was calculated to determine the percentage dispersibility. Bulk
density (BD, g mL−1) was determined using the method that
Ashraf et al. (2012) reported, where 10 g of the sample was
weighed into a 50 mL graduated measuring cylinder and
tapped gently on a benchtop about ten times. Bulk density
was recorded as grams per millilitre. The swelling power (SP;
g mL−1) and solubility index (SI, %) were determined using the
method described by Riley et al. (2006) with a slight modification,
where 50 mL of distilled water was added to 1 g of the sample in a
centrifuge tube and incubated for 30 min in a water bath at 95°C.
The mixture was centrifuged at 512 g for 15 min, and the
difference in the mass of the sediment calculated the mass of
soluble substances in the supernatants.

2.3 Spectra collection and calibration
development

The gari samples were scanned in duplicate within the
wavelength range of 400–2,498 nm, registering the absorbance
values log (I/R) at 0.5 nm intervals for each sample and using a
NIRS monochromator (model FOSS XDS, solid module) and a
stationary cell cup. Though only the NIR range of 800–2,400 nm
was used to build the model. Data and statistical analyses were
performed using Win-ISI 4.9 software (Infrasoft International
and FOSS, Hillerod, Denmark). NIR spectra are often affected by
instrumental noise, sample particle size, and other
environmental factors; therefore, preprocessing of the spectra
is important before model development. Using appropriate

FIGURE 1
A workflow of sample processing and analysis using NIRS.
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preprocessing methods is critical to eliminating interferences
and background noise, which will help to improve the model
prediction accuracies. In this experiment, the spectra data were
subjected to various preprocessing methods to correct the effects
of light scattering and increase the signal-to-noise ratio. Several
mathematical treatments, including 1,4,4,1; 2,10,10,2; 2,10,5,1;
2,5,5,1; 1,25,10,1; 1,10,10,1; and 0,0,1,1 respectively and
combined with standard normal variate and detrend (SNVD)
was implemented to optimise the equation. Model performance
from each pretreatment was evaluated to decide the best
treatment that gives a reliable model. The first and second
numbers represent the derivative and gap, while the last two
are smoothings. Outliers’ eliminations were conducted using the
neighborhood Mahalabonis distance (NH) and the GH, which is
the distance of each spectrum from the mean spectrum of the
sample populations. The NH calculates how close each sample is
to every other sample in the population. The GH determines
whether the calibration model can accurately forecast the value
of an unknown sample and allow for the removal of unnecessary
spectra from the calibration population. Outliers are eliminated
based on the standard residuals with a cutoff of GH > 2.5 and
NH < 0.6. The calibration was set up using the first derivative of
SNVD corrected spectra, calculated on four data points, and
smoothed using Savitzky–Golay polynomial smoothing on the
four data points. The calibration model was developed using the
modified partial least square (MPLS) regression algorithm using
a spectral range between 800 and 2,400 nm (Figure 2). A set of
63 samples with their reference results were split into
48 calibrations and 15 validation sets. The spectra data for
the samples collected on the NIRS device correlated with the
reference values for each constituent. The model developed was

tested using an independent set of samples to compare the
prediction of the functional properties and the results of
standard laboratory methods.

2.4 Model performance evaluations

The performance of the calibration model was evaluated using
performance indicators such as the coefficients of determination in
calibration (R2cal), coefficients of determination in prediction
(R2pre), root mean square error in calibration (RMSEC), root
mean square error in prediction (RMSEP), and cross-validation
(RMSECV) and residual prediction deviation (RPD). The model’s
performance is better when R2 is close to 1 and RMSE is close to zero.
Higher RPD also indicates a good prediction model. According to
He et al. (2018), R2 values between 0.61 and 0.80 indicate a decent
model for prediction, whereas R2 values above 0.90 show an

FIGURE 2
Near infrared reflectance spectrum for gari samples. (NIR wavelength region of 800–2,400 nm was used for the model).

TABLE 1 Summary statistics of functional properties of gari samples.

N = 63

Constituent Minimum Maximum Mean SD

SP 6.05 16.70 13.63 2.53

SI 3.33 16.94 9.16 3.75

DISP 29.00 72.00 51.74 14.00

BD 0.70 66.67 23.06 30.09

WAC 375.95 658.83 511.09 68.32

N, sample number; SD, standard deviation.
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outstanding model for more accurate determination. Smaller
RMSEs indicate better model fitting. RPD values between 1.8 and
2.0 is good for quantitative predictions; whereas RPD between

2.0 and 2.5 implies very good and, RPD >2.5 indicates an
excellent prediction (Chadalavada et al., 2022).

2.5 Statistical analysis and software package

All spectra preprocessing, calibration model development and
prediction analysis were conducted using the WIN ISI Software
Version 4.0.

3 Results and discussion

The summary statistics of the functional properties of the analyzed
gari samples are shown in Table 1. Swelling power and Solubility index
ranged from 6.05% to 16.70% and 3.33% to 16.94%, respectively, with
average values of 13.63% and 9.16%. The average swelling power
(13.63%) reported in this study is comparable with values reported
by Awoyale et al., 2021b. Swelling power is the ability of gari particles to

TABLE 2 Calibration statistics for the functional properties of gari samples.

Calibration N = 48

Constituent SEC R2cal SECV Outliers

SP 0.43 0.97 1.12 0

SI 2.29 0.64 2.46 1

DISP 2.31 0.97 6.59 0

BD 3.36 0.99 6.38 0

WAC 21.10 0.89 43.34 5

N, sample number; SEC, standard error of calibrations; SECV, Standard error of cross-

validation; R2cal, coefficient of determination in calibrations.

TABLE 3 Validation statistics for the functional properties of gari samples.

Validation N = 15

Constituent R2pred SEP Bias Slope Outliers RPD

SP 0.93 0.89 0.67 0.91 3 2.6

SI 0.62 2.16 1.47 0.73 3 2.4

DISP 0.65 7.50 3.96 0.78 3 2.1

BD 0.98 4.42 3.83 0.98 3 2.2

WAC 0.68 40.89 26.00 26.48 3 1.9

N, sample number; SEP, standard error of prediction; R2pred, coefficient of determination in validations. RPD, Ratio of prediction to standard deviation of reference values.

TABLE 4 Model optimization using different spectra pre-treatments.

0,0,1,1 2,10,5,1 1,4,4,1

Constituent SEC R2cal SECV SEC R2cal SECV SEC R2cal SECV

SP 0.59 0.95 1.08 0.38 0.98 0.83 0.46 0.97 1.03

SI 2.36 0.56 2.45 2.28 0.59 2.37 2.29 0.59 2.37

DISP 5.42 0.85 6.97 4.47 0.90 6.21 4.47 0.90 5.71

BD 3.12 0.99 5.22 1.88 0.99 4.90 1.90 0.99 4.99

WAC 43.79 0.58 47.79 46.33 0.53 48.07 45.68 0.55 47.40

1,25,10,1 1,10,10,1 2,5,5,1

SEC R2cal SECV SEC R2cal SECV SEC R2cal SECV

SP 0.94 0.87 1.16 0.59 0.95 1.08 0.17 0.97 0.81

SI 2.29 0.59 2.37 2.36 0.56 2.45 2.27 0.64 2.38

DISP 4.48 0.90 5.58 5.42 0.85 6.97 5.03 0.97 6.45

BD 2.74 0.99 5.51 3.12 0.99 5.22 1.60 0.99 4.99

WAC 45.46 0.55 47.05 43.79 0.58 47.79 46.05 0.89 48.07

SEC, standard error of calibrations; SECV, Standard error of cross-validation; R2cal, coefficient of determination in calibrations.
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absorb water and swell; a quality gari should swell considerably well
(Udoro et al., 2014). Awoyale et al. (2020) also reported that a quality
gari should swell three times its original volume. Gari is often consumed
by soaking in water. Therefore, the swelling of gari is a critical quality
criterium consumer’s desire. Also, the results showed a range of 29%–
72% and 0.70%–66.67% for dispersibility and bulk density, respectively.
The functional properties of food are essential to the end users because
they affect food behaviours during preparation and storage (Awoyale
et al., 2020). Some functional properties of food also depend
predominantly on the product’s particle size and other physical
characteristics (Nwancho et al., 2014). The bulk density of food
material determines its handling requirement and packaging
materials. The particle size of the food materials influences their
bulk density because they are inversely related (Nwancho et al.,
2014). Lower BD reported in this study implies that more gari could
be packaged in a specific container volume, decreasing the space
occupied during packaging (Komolafe and Arawande, 2010).
Average dispersibility was in line with values reported by Awoyale
et al. (2020) while the average WAC in this study was higher than the
value reported by Udoro et al. (2014).

Tables 2, 3 show the calibration and validation statistics of the
functional properties of gari. The calibration of gari samples using
48 samples with wide variations in their functional properties shows

thatNIRS closely correlateswith the standard laboratory analysismethod.
Spectra pretreatments are an important step in model development to
eliminate other factors, such as instrumental noise; and detector drift
which could interfere with model performance. Therefore, this study
tested several pretreatments to establish the best equation. Table 4 shows
different treatments and their respective performance statistics, including
the model with no treatments (0,0,1,1). The coefficient of determination
in calibration (R2cal) of SP for all the mathematical treatments tested
(0,0,1,1; 2,10,5,1; 1,4,4,1; 1,25,10,1; 1,10,10,1 and 2,5,5,1) were 0.95,
0.98,0.97,0.87,0.95 and 0.97 respectively. The best R2cal for SP was
obtained from 2,10,5,1 pre-treatment followed by 1,4,4,1 and 2,5,5,1,
but the standard error of cross-validation in other treatments was higher
than 2,5,5,1. Therefore, 2,5,51 was preferred as the appropriate treatment
for Swelling power. Comparatively, the pre-treatment 2,5,5,1 gives better
prediction performance regarding high R2cal and low SECV for most
functional properties. Bulk density had the highest R2cal of 0.99, followed
by SP (0.97) andDispersibility (0.97) for treatments 2,5,51. The least R2cal
was obtained for the solubility index across all the treatments tested. Lu
et al. (2006) reported R2cal of 0.92 and 0.88 for Swelling power and
solubility of sweet potato starch using NIR spectrometry; the results for
SP (0.97) and SI (0.88) for gari reported in this study are similar to their
findings. The coefficient of determination in prediction should typically
be in the range of 0.66–0.81 for the NIR prediction to be adequate for

FIGURE 3
Graph of predicted vs. laboratory values for the functional properties of gari samples.
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quick screening. It should have a range of 0.83–0.90 for quality control
and an accurate determination (Lebot et al., 2013). Therefore, the R2cal
for the parameters analyzed in this study is considered adequate and
suitable for screening large samples in breeding programs. The model’s
performance was further tested using an independent set of samples not
included in the calibration sets by comparing the results from the
standard laboratory method with the predicted values using the
developed model. The coefficient of determination in validation
(R2pred) followed the same trend as the calibration statistics; the BD
had the highest R2pred of 0.98, followed by SP (0.93). In contrast, SI had
the lowest R2pred of 0.62 (Figure 3).

The performance of a model is not determined only by the
coefficient of determination but also by the closer the standard
prediction error is to zero. The least SEP was reported for SP,
followed by SI and BD. The R2cal of calibration models could be
affected by several factors, such as lack of genetic variability, poor
representativeness of the samples within the calibration data sets and
the accuracy of the reference method (Alamu et al., 2022). Therefore,
the relatively low R2cal observed for SI could be improved by
increasing the training population used for the calibration. Also,
the low SEC (2.29) and SEP (2.16) values for SI indicate the
potential to improve the model by introducing more samples into
the calibration data set. Model performance was also evaluated by the
bias in the prediction statistics; bias indicated similarities between the
reference results and the predicted values. The ideal value for bias
should be zero, that is, when the reference results of a parameter are
the same as the predicted values. The bias becomes negative when the
model underestimates the constituent’s information, while it is
positive when the values are overestimated. The functional
properties in this study were not underestimated, but SP, SI and
Dispersibility were slightly overestimated by the positive values of the
bias. Though the RDP, which is the ratio of the standard deviation of
the reference value and the standard error of prediction, is greater
than 2 for all the parameters except forWAC, showing that the model
is promising in the accurate prediction of most of the parameters.

4 Conclusion

NIRS offers a high throughput and less expensive alternative to
the elaborate and time-consuming wet chemical analysis methods in
the laboratory for determining the functional composition of gari.
These functional parameters are critical indicators of the final
product quality of gari, which influences consumers buying
decision. A rapid method for their determination is important
for breeding programs and processors to assess the quality of the
products especially when larger number is to be considered. This
study has shown that Near-infrared reflectance spectroscopy has the
potential to predict the quality parameters of gari by using a few
samples sets but with wide variation in their functional properties.

The model developed with R2cal above 0.90 can be applied by
breeders and food scientists for rapid screening of the functional
properties of gari, especially swelling power and bulk density.
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