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Drivers of maize yield variability at household level in
Northern Ghana and Malawi

Stella Gachoki and Francis Muthoni

International Institute of Tropical Agriculture (IITA), Arusha, Tanzania

ABSTRACT
Maize is a staple food, but productivity has stagnated due to lim-
ited access to advanced farming methods and knowledge. To pro-
mote sustainable agriculture, understanding the factors affecting
maize yield at the farm level is crucial. This study used panel data
on maize yield and agronomic practices in Northern Ghana and
Malawi from 2014 to 2020. Satellite-based environmental variables
were extracted at household locations, and Random Forest mod-
eling was used to identify factors influencing maize yield variabil-
ity. The models performance was sub-par with low R2 values
(�0.1 and �0.24 for Northern Ghana and Malawi). Fertilizer and
precipitation were the most important factors explaining maize
yield variability. Spatial maps showed that Malawi’s maize yield
can increase with more fertilizer, but rainfall is essential. In
Northern Ghana, relying solely on fertilizer may not be enough to
boost maize production.

KEY POLICY HIGHLIGHTS

� Survey data on maize is limited in making accurate yield
predictions.

� Fertilizer use can increase maize yield in both Northern Ghana
and Malawi.

� Fertilizer use intervention strategies should be region-specific.
� The efficiency of fertilizer use is dependent on adequate rainfall
availability.
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1. Introduction

Increased agricultural productivity is critical for Sub-Saharan Africa’s (SSA) economic
growth, poverty alleviation, and improved nutrition for the region’s growing population.
Maize (Zea mays L) is the second most cultivated and staple crop among SSA families,
and it is primarily grown by small-scale farmers (Oluoch et al. 2022). Maize yield variance
in SSA is influenced by agronomic, biophysical, and socio-economic factors such as var-
iety type, soil fertility, fertilizer application, intercropping, crop rotation, irrigation, farm
labour allocation, minimum tillage, input costs, and climatic shifts, among others
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(Danquah et al. 2020). However, the effect of these factors at the field level is lacking in
most SSA countries because maize yield data is typically aggregated to larger administra-
tive units, which averages out salient features of spatial and temporal variability in yield
data (Vergopolan et al. 2021). For example, even in farms with similar environmental
conditions, a farmer’s choice of maize cultivar, fertilizer, or pesticides can result in inter-
farm yield variability (Muthoni 2021). Therefore, characterizing the drivers of crop pro-
duction at the farm level is crucial for enabling evidence-based scaling out of sustainable
agronomic methods that boost maize productivity.

Globally, machine learning algorithms such as Random Forest (RF) have proven to be
more accurate in predicting and characterizing crop yield drivers because they can handle
large amounts of data and decode complex non-linear relationships between the response
variable and the predictor variables (Delerce et al. 2016). For example, Lohitha Reddy and
Siva Kumar (2023) employed three different machine learning techniques (decision tree
classifier, random forest classifier, and gradient boosting) to forecast crop yields using
weather and soil properties as predictor variables. Their study revealed that the random
forest classifier outperformed other algorithms in accurately predicting yield. Cai et al.
(2019) found that ML methods outperformed than Ordinary Least Square regression
when predicting wheat yield in Australia and also reported that combining climatic and
vegetation indices data improved prediction of wheat yield. Additionally, other studies
have utilized RF machine learning techniques to predict crop yield with high precision,
such as Charoen-Ung and Mittrapiyanuruk (2019) predicted sugarcane yield using RF
and forward feature selection, Jeong et al. (2016) forecasted the yields for maize, wheat,
and potato tubers, Everingham et al. (2016) predicted sugarcane yield in Tully, Australia,
and Ahmad et al. (2018) who predicted maize yield in Pakistan.

It is commonly assumed that machine learning methods like RF are immune to overfit-
ting. However, including skewed training samples, and irrelevant and redundant predictor
variables can significantly overfit the model when extrapolating beyond the areas where
the model was trained (Meyer et al. 2018, Meyer et al. 2019; Meyer and Pebesma 2021).
Furthermore, most data in nature are geographically dependent. Ignoring spatial depend-
encies in machine learning models might result in models that perform well on training
data but fall short on spatial predictions (Meyer et al. 2019). As a result, applying feature
selection approaches that incorporate target-oriented cross-validation (CV) processes,
such as Leave-Location-Out (LLO), is critical for improving the model’s performance
beyond the training area and preventing spatial overfitting (Meyer et al. 2019).

In this study, we used a panel household survey data on maize yield and agronomic
practices from Ghana and Malawi to 1) identify the target-oriented feature selection and
cross-validation strategies that improve the performance of the RF model for predicting
maize yield; 2) identify the most important sustainable agriculture intensification practices
and socio-economic factors that explain variance in maize yield; and 3) predict the spatial
distribution of maize yield under different management practices. The results of this
research will provide information on where to scale out specific bundles of sustainable
agriculture intensification (SAI) technologies with a low probability of failure.

2. Materials and methods

2.1. Study area

The study area covers two countries in SSA i.e. Ghana and Malawi (Figure 1). Maize is a
crucial crop in both countries, and its growth is heavily dependent on rainfall. Around
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90% of smallholder farmers in Ghana and 97% in Malawi rely on maize farming as their
primary source of income (Msowoya et al. 2016; Scheiterle and Birner 2018; White 2019).
In Ghana, approximately 85% of maize production is consumed by humans, providing
about 30% of the combined calorie intake when combined with other cereals such as rice
and wheat, while the remaining 15% is used for animal feed to supplement poultry and
livestock production (Andam et al. 2017; Adu et al. 2021). In Malawi, maize makes up
more than half of the total calorie intake, with the central region having the largest har-
vested area, followed by the southern region (Warnatzsch et al. 2020). Soil infertility and
inadequate use of improved cultivars are the two major obstacles to maize productivity in
Ghana (Marfo-Ahenkora 2020), while in Malawi, the total family income and off-farm
employment are the major determinants of maize yield productivity (Tamene et al. 2016).
Climate variability has exacerbated maize productivity, resulting in malnutrition, poor
human development, and a higher poverty index among small-scale farmers who rely on
maize production for a living (Shi and Tao 2014; Parkes et al. 2018; Ngcamu and Chari
2020). As a result, determining the best agronomic strategies for increasing maize yield at
the farm level will allow these countries to make data-driven decisions to increase yield.

The Palmer Severity Drought Index (PDSI) is a reliable measure used to assess the
level of dryness or wetness in comparison to a historical average for a specific time
period. In our study we utilised the PDSI (Abatzoglou et al. 2018) to evaluate the weather
conditions for the two regions and seasons. We observed that the 2018–2019 growing sea-
son in Malawi was very wet while rainfall in all other seasons of both regions was below
the normal ranges with extreme droughts in Ghana during 2019 season (Figure 2).

Figure 1. Map of the study showing the location of the survey households and zones with relatively similar rainfall
patterns. The rainfall zones were generated from long-term (2014–2020) aggregation of annual TerraClimate satellite
rainfall estimates.
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2.2. Agronomic data

A panel household survey was conducted in Ghana and Malawi in 2013 and 2019 under
the Africa RISING program (https://africa-rising.net/; Tinonin et al. 2016). During the
two surveys, respondents provided information on household demographics and produc-
tion practices (Table 1).

2.3. Remote sensing variables

The gridded earth observation data were extracted using Google Earth Engine (GEE)
cloud computing platform (Gorelick et al. 2017). These variables include the vegetation
indices, meteorological, topography, socio-economic, hydrological, and soil properties
(Table 2). Vegetation indices and meteorological data were generated for each month dur-
ing the respective country’s maize growing season.

2.4. Model training and evaluation

Eliminating irrelevant and redundant predictor variables in machine learning models is
important because their inclusion can reduce the model’s performance. While many

Figure 2. The average Palmer Drought Severity Index (PDSI) values for the growing seasons of Malawi and Ghana in
2013–2014 and 2018–2019. The growing season for Ghana spans from April to October, while for Malawi, it takes
place between October and April of the following year.

Table 1. Variables used in the models.

Class Continuous variables Categorical variables

Demographics Household size (Hhsize), age of the household head
(Headage), the number of education years for the
household head (Headedu), maximum years of
adult education (Edumax), average years of adult
education (Meanedu) and plots fully managed by
female (FempltsF).

Female headed households (Femhead)

Production
practices

Area intercropped (intercropHa), fertilizer kg/ha
(FertHa), pesticide value/ha (PestHa), area under
maize cultivation (MaizeA), land size (Landsize),
number of plots owned (Nplots), livestock units
(TLU), number of crops farmed (Ncrop), crop
diversity (CropD), livestock diversity (LvstD) and
total income (Totincome).

Practice intercropping (Intercrop), applies
manure (Manure), uses hired labour
(Labour), uses pesticides (Pest), any residue
left on farm (Residue), practices crop
rotation (Rotation), can get credit (Credit),
applies fertilizer (Fertilizer), practice
fallowing (Fallow), soil erosion (Erosion).

The text in brackets indicate how the variables are referred to in various figures.
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feature elimination techniques are available, we used the VSURF feature elimination
method, which is included the VSURF package (Genuer et al. 2022) in the R program-
ming (R Core Team, 2020), to eliminate irrelevant or redundant variables. VSURF elimi-
nates feature in three processes i.e. thresholding, interpretation and predictive step. The
first step eliminates irrelevant variables from the dataset. The second step selects all varia-
bles related to the response for interpretation purpose. The third step refines the selection
by eliminating redundancy in the set of variables selected by the second step, for predic-
tion purpose. We focused on variables that were retained at the thresholding step, which
retains or drops variables based on how important they are in explain the response varia-
bles. Because most continuous household survey data lacked corresponding raster data,
we developed models that included all household survey data and those that only had cat-
egorical data to enable spatial predictions under various agronomic scenarios. To elabor-
ate, the categorical household survey data allowed these variables to be converted into
dummy variables, which could then be combined with the gridded raster data and toggled
on (1) or off (0) to visualize the impact of using or not using the respective agronomic
variable. What ‘appending dummy variables to gridded data’ does is create a grided layer
of zeros for each pixel (not using agronomic practices), and this layer can be turned on
by replacing all values with 1, indicating that all spaces use the agronomic variable. The
VSURF elimination method was applied to the two sets of the dataset (all predictors and
only categorical household survey data) independently. We used the ‘ranger’ method, as
implemented by the train function in the caret R package (Khun 2022), to train the maize
yield models and used the permutation method to rank the variable importance. Before
training the model, we used the CAST package to generate training and testing folds of
Leave-Location-Out (LLO) cross-validation. The LLO methodology internally subsets the
testing and training set and thus we did not withhold any data for independent testing of
the models. We then optimized the model by calculating the best mtry for each dataset
separately. The Root Mean Square Error (RMSE) and R-squared (R2) values were used to

Figure 3. Boxplots showing the distribution of the maize yield data for Ghana and Malawi with (a) and without (b)
outliers were removed. The blue text is the number of households per cluster. The clusters are as described in
Figure 1.
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assess the model’s performance where higher R2 and lower RMSE values indicate a better
model performance. We employed the varmImp function in the caret package to deter-
mine and rank the significance of the variables. To gain insights into the relationship
between maize yield and the predictors, we generated partial dependence plots for the top
six predictors using the pdp R package (Greenwell 2022). These plots provide a visual rep-
resentation of the direction of the relationship between the response and the predictor
variable.

3. Results

3.1. Descriptive analysis

We investigated the distribution of maize yield for each season and country at different
rainfall clusters using box plots (Figure 3). To annotate the various datasets, we will refer
to Ghana data as D1 and D2 for the 2013 and 2019 surveys, respectively, and Malawi
data as D3 and D4 for the 2013 and 2019 surveys, respectively.

To better understand the distribution of maize yield data based on all the predictor
variables, we created histograms (Appendix 1) for various continuous variables for each
country and season individually. The total number of predictor variables for D1 and D3
was 43, while D2 had 56 predictors and D4 had 57 predictors.

3.2. Feature elimination

The count of predictor variables that remained after elimination is presented in Table 3.
Additional information on the actual names of the predictors that were retained can be
found in the supplementary information (SS1).

3.3. Model performances, variable importance, partial dependence plots and spatial
predictions

The models only explained a small variability in maize yield with low R2 values across all
seasons for each country (Table 4). When continuous household data were used, the
explained variability was greater (11–15% in Northern Ghana and 24–35% in Malawi)
than when only categorical data were used (6–10% in Northern Ghana and 7–14% in

Table 3. The number of retained predictor variables after the VSURF thresholding step.

Model D1 D2 D3 D4

All predictors 49 51 52 52
Categorical HHþ satellite data 37 39 39 42

Table 4. Model performance metrics when all predictors were used and when only the categorical household survey
was used.

Ghana Malawi

All Categorical All Categorical

D1
l¼ 712.28 D2 D1

D2
l¼ 820.43

D3
l¼ 1663.03 D4 D3

D4
l¼ 1210.15

RMSE 415.88 407.20 426.89 418.72 906.48 635.99 1038.53 703.88
nRMSE 0.58 0.57 0.52 0.51 0.54 0.52 0.62 0.58
R2 0.11 0.15 0.06 0.10 0.35 0.24 0.14 0.07
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MalawiThis implies that the quantity of measurable agronomic practices used explains
yield variability better than whether or not that agronomic variable is used. For both
countries and seasons, the RMSE values obtained were consistently high, with normalized
RMSE values (nRMSE; RMSE/mean yield) exceeding 50%. These values suggest that the
model predictions were either overestimating or underestimating the actual yield by a sig-
nificant margin, often by as much as twice or half the true value. The results underscore
the necessity of refining the predictive model to enhance its accuracy and practical
applicability.

Previous studies have reported the usefulness of fertilizer application in increasing
maize yield in Northern Ghana (Braimoh and Vlek 2006; Kanton et al. 2016; Buah et al.
2017). Our analysis identified the amount of fertilizer used per hectare and total income
(Figure 4a) as the most significant agronomic practices that positively (Figure 4c) influ-
enced maize yield in Ghana in 2013. Interestingly, when considering only the categorical
version of the agronomic practices, the importance of these two variables was relatively
low (Figure 4b), indicating that the quantity used mattered more than simply their pres-
ence or absence. Both datasets showed that the total amount of rainfall experienced in
October - which marks the end of the season - had a positive influence on maize yield
(Figure 4c and d). Agronomic practices were found to be poorly correlated with maize
yield variability in 2019 (Figure 5a and b). Instead, the most significant factors influencing
yield productivity were August precipitation, which had a positive effect, and temperature,
which had a negative impact (Figure 5c and d). The observed dynamics may be attributed
to the exceptionally dry season (Figure 2), which resulted in reduced soil moisture and
likely exacerbated the effects of temperature on yield.

The spatial prediction maps indicated that introducing fertilizer as an agronomic prac-
tice resulted in minimal improvements in maize yield in both seasons (Figure 6a and b).
The yield gain observed was relatively low (<50kg/ha) but parts of the upper west and
northern region had higher yield gain of more than 50 kg/ha (Figure 6c). The limited
yield gain observed may be attributed to two key factors: first, the relatively dry

Figure 4. Variable importance and partial dependence plots for Ghana in 2013. (a) and (b) All predictor and categor-
ical variables importance plots respectively. (c) and (d) Partial dependence plots for the top 6 predictors with all pre-
dictors and only with categorical variables respectively.
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conditions during the two seasons (Figure 2); and second, the low ranking of fertilizer use
(yes/no) as a significant predictor of yield.

While recent studies have found a limited yield response to fertilizer use in Malawi
(Burke et al. 2022; De Weerdt and Duchoslav 2022), several other studies have demon-
strated that applying fertilizer and improving access to it can significantly boost maize
yield productivity (Sauer and Tchale 2009; Wang et al. 2019; Burke and Jayne 2021;
Cairns et al. 2021; Cassim and Pemba 2022). According to the 2013 season analysis, fertil-
izer usage per hectare and the extent of land devoted to maize cultivation were the pri-
mary factors accounting for yield variability (Figure 7a), with the former exerting a
positive effect and the latter having a negative impact. respectively (Figure 7c). Although
soil moisture was identified as the most critical variable affecting maize yield when cat-
egorical agronomic practices were employed for predictions (Figure 7b), the observation
that yield declined with increasing soil moisture (Figure 7d) during a relatively dry season
(Figure 2) is perplexing. Fertilizer use (both quantity and yes/no) was an important factor
in 2019 (Figure 8a and b) with a positive effect on maize yield (Figure 8c and d). Total
household income and labor were significant factors as continuous variables this season,
but labor was less important in categorical analysis (Figure 8a and b). Livestock density
had the most significant positive impact in categorical analysis, likely due to manure use
and its positive effect on maize yield (Wang et al. 2019).

Spatial predictions based on agronomic models demonstrated that the introduction of
fertilizer in the 2019 growing season resulted in a significantly greater increase in maize
yield as compared to the 2013 season (Figure 9). This outcome may be attributed to the
favorable soil moisture conditions in 2019 (Figure 2), which allowed for enhanced fertil-
izer uptake by crops and ultimately contributed to improved yield. Even so, it is impor-
tant to note that the average maize yield was higher in 2013 as compared to 2019. Two
possible reasons could explain this phenomenon: Firstly, the prevalence of extreme floods
and soil erosion in Malawi (McCarthy et al. 2021) may have reduced crop yield,

Figure 5. Variable importance and partial dependence plots for Ghana in 2019. (a) and (b) All predictor and categor-
ical variables importance plots respectively. (c) and (d) Partial dependence plots for the top 6 predictors with all pre-
dictors and only with categorical variables respectively.
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particularly given the excessively wet weather in 2019. Secondly, excessively moist envi-
ronments can increase the incidence of corn ear infections (Wang et al. 2019), thereby
leading to a decline in yield.

4. Discussion

This study examined the factors that affect the maize yield in different regions and peri-
ods in northern Ghana and Malawi. To do this, we looked at various biophysical, socio-

Figure 6. The spatial maize yield prediction and yield gain for Ghana in 2013 and 2019 when fertilizer use was incor-
porated as a useful agronomic practice. (a) When no agronomic practice was used. (b) Fertilizer use and (c) yield
gain/loss (Figure 6b – Figure 6a).
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economic and farm management practices as potential predictors and used a random for-
est machine learning algorithm with spatial blocking cross-validation. Despite efforts to
develop accurate models, the performance was suboptimal, with explained variability
ranging from 6 to 15% in Ghana and between 7 to 35% in Malawi over the course of two
seasons (Table 4). While it is true that spatial blocking cross-validation can lead to

Figure 7. Variable importance and partial dependence plots for Malawi in 2013. (a) and (b) All predictor and categor-
ical variables importance plots respectively. (c) and (d) Partial dependence plots for the top 6 predictors with all pre-
dictors and only with categorical variables respectively.

Figure 8. Variable importance and partial dependence plots for Malawi in 2019. (a) and (b) All predictor and categor-
ical variables importance plots respectively. (c) and (d) Partial dependence plots for the top 6 predictors with all pre-
dictors and only with categorical variables respectively.
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reduced R2 values (Meyer et al. 2018; Meyer et al. 2019; Meyer and Pebesma 2021), there
may be other factors that may have contributed to the underperformance of the models.
For example, farmers reported yields from a different number of plots that were spatially
displaced. These imprecise locations of farmer plots could have introduced errors when
matching with remote sensing variables (Burke and Lobell 2017; Lobell et al. 2020). This
can be resolved by aggregating the yield data into larger administrative zones although
the practice can mask details in heterogeneous farms. Alternatively, we recommend that
household surveys should endeavour to precisely map the plot boundaries to enable
matching with satellite data. Also, the maize yield data was based on self-reported esti-
mates and numerous studies have shown that self-reported estimates are frequently
inaccurate when compared to farm-level estimates derived from actual harvest measure-
ments (Jin et al. 2017; Scheiterle et al. 2019; Burke et al. 2020; Li et al. 2022).

The low spatial resolution of the predictor variables used in the models, which were
resampled from about 4 to 0.03 km, could also be a contributing factor to the poor per-
formance of the models. Generating reliable satellite-based productivity estimates for
smallholder farms in sub-Saharan Africa, which are typically characterized by small land
size and intercropping, is unlikely when using low spatial resolution data due to the pres-
ence of mixed crops within a single pixel (Jin et al. 2017; Li et al. 2022). Studies have
demonstrated that utilizing higher spatial resolution satellite data, such as those provided
by the Sentinel-2 mission (10m) and PlanetScope (3m), has resulted in improved model
performance (R2>0.5; Li et al. 2022). However, the utility of such high-resolution data is
limited by frequent cloud cover and requires significant computational resources, particu-
larly when analyzing vast areas. Furthermore, the choice of satellite-based predictor varia-
bles used in this study may have been insufficient in explaining the variations in maize
yield. According to Jin et al. (2017) and Burke and Lobell (2017) Green Chlorophyll
Vegetation Index (GCVI) is more effective at predicting maize yield than other vegetation
indices, likely due to its ability to capture nutrient deficiency, which is highly correlated

Figure 9. The spatial maize yield prediction and yield gain for Malawi in 2013 and 2019 when fertilizer use was incor-
porated as a useful agronomic practice. (a) When no agronomic practice was used. (b) Fertilizer use and (c) yield
gain/loss (Figure 9b – Figure 9a).
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with yield. In addition, factors such as Leaf Area Index (LAI), radiation, and sowing
period have been identified as good predictors of maize yield in several studies (Srivastava
et al. 2017; Lambert et al. 2018; Danquah et al. 2020; Li et al. 2022).

Maize farming in the sub-Saharan Africa region heavily relies on adequate rainfall, which
may explain why precipitation and soil moisture emerged as significant factors in explaining
the variability of maize yield. Both Malawi and Ghana have made significant investments in
fertilizer subsidy programs as part of their efforts to increase maize productivity (Mapila
et al. 2012; Fearon et al. 2015; Ragasa and Chapoto 2017; Scheiterle and Birner 2018;
Andani et al. 2020; Cassim and Pemba 2022; De Weerdt and Duchoslav 2022). There is a
debate on the usefulness of fertilizer subsidy programs, with some studies reporting low
yield response (Benin et al. 2013; Fearon et al. 2015; Andani et al. 2020; Burke et al. 2022),
while others suggest that these programs have led to improved maize productivity by mak-
ing fertilizers more accessible and increasing their usage (Braimoh and Vlek 2006;
Chibwana et al. 2014; Kanton et al. 2016; Buah et al. 2017; Wang et al. 2019). Our results
suggest that the application of fertilizer can significantly enhance maize production in both
Malawi and Ghana during seasons with adequate soil moisture. This could be attributed to
the fact that both countries face challenges of low soil fertility caused by a combination of
factors such as low nutrient levels, continuous cropping, overgrazing, deforestation, and
poor soil and water management practices (Tittonell and Giller 2013; Vuntade et al. 2022).

In terms of yield gain/loss, Malawi saw the highest increase in maize yield (Figure 9)
when fertilizers were used, while Ghana experienced a much smaller increase (Figure 6).
The high yield gain in Malawi could be because several studies have linked the use of fer-
tilizer, urea, and manure to high maize yield (Snapp et al. 2014; Tamene et al. 2016; Liu
and Basso 2017; Wang et al. 2019), as well as intercropping, which acts as a soil fertility
replenishment (Akinnifesi et al. 2006; Silberg et al. 2017). The difference in yield gain
between Ghana and Malawi in 2019 may be attributed to Ghana’s comparatively dry sea-
son and Malawi’s comparatively wet season, which likely explains why Ghana’s yield
increase was low (<50 kg/ha) while Malawi’s was high (> 400 kg/ha). Another possible
reason why the Ghana season had a lower yield increase could be the limited access to
modern agricultural practices, such as mechanization and the use of improved seed vari-
eties, which continue to constrain productivity (Ragasa and Chapoto 2017).

The presence of parasitic weeds like Striga (Scheiterle et al. 2019; Adu et al. 2022;
Martey et al. 2022) and pests like fall armyworm (Agboyi et al. 2020; Nagoshi et al.
2021; Yeboah et al. 2021) outbreaks in maize farms and increased cost of pesticide that
hinders their control could also be a contributing factor to why fertilizer use does not
necessarily result in increased yields. Although hand-picking of the striga weed is a
commonly used method, it is not sustainable in the long term (Kabambe et al. 2008;
Wang et al. 2019). Therefore, an integrated approach that incorporates different control
methods is necessary to effectively manage the weed. Push-Pull technology, which
involves planting desmodium and bracharia grass, has been shown to effectively reduce
striga weed infestation and ultimately increase maize yield, offering a sustainable and
integrated approach to weed control (Niassy et al. 2022). To potentially enhance maize
yield productivity, factors such as timely fertilizer application, adjusting planting dates
to accommodate climate variability (Fosu-Mensah et al. 2019; Warnatzsch and Reay
2020), educating farmers on the appropriate fertilizer amounts (Addai and Owusu 2014;
Asante et al. 2019; Wang et al. 2019; Andani et al. 2020; Cairns et al. 2021; Setsoafia
et al. 2022), and promoting the adoption of improved seed varieties may also be
beneficial.
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Despite the poor performance of the models in this study, we have identified impor-
tant variables that are consistent with existing knowledge and previous studies on maize
yield. To enhance the model performance, we recommend the following: 1) include
satellite-based factors like GCVI and LAI, which have shown better performance in
predicting yield; 2) integrate a crop classification map that distinguishes maize and non-
maize fields; 3) refine yield data using simple thresholds and generate categorical
predictive maps rather than actual yield; and 4) explore simple regression models that
directly correlate yield data with vegetation indices, as these have been found to better
explain variations in maize yield in sub-Saharan African countries (Jin et al. 2017; Li
et al. 2022).

5. Conclusion

The identification of maize yield determinants through the use of household survey data
and low spatial resolution satellite-based estimates of the environment has produced a
model that performs moderately. Nonetheless, the significant variables identified align
with existing knowledge of the factors that affect maize yield variability both at the farm
and larger administrative levels. The findings of this study suggest that promoting the use
of fertilizers is a viable option for improving maize yield in Ghana and Malawi.
Additionally, since precipitation plays a crucial role in determining yield, it is recom-
mended that measures such as rainwater harvesting be promoted to help cushion against
the impact of extreme dry seasons.
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Appendix 1. Histograms showing the distribution of the continuous
household and satellite-based across the different households in Ghana and
Malawi
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Appendix 2. Scatter plots for the predicted versus observed maize yield for
Northern Ghana and Malawi in 2013 and 2019 when using all predictor
variables
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