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Abstract

The morphological and molecular characterisations of two lance
nematode species isolated from the rhizosphere of banana,
Hoplolaimus seinhorsti and H. pararobustus, are provided based
on an integrative study that includes light and scanning electron
microscopy, phylogenetic analysis and two tree-based molecular
species delimitation methods (GMYC and bPTP). Nineteen new
sequences were obtained, including 5 partial 18S rRNA, 6 D2-
D3 of 28S rRNA, 1 ITS rRNA and 7 COl mtDNA (the first COI
sequences of H. seinhorsti and H. pararobustus), and an updated
morphological character comparison of 37 Hoplolaimus species
is presented. The tree-based molecular species-delimitation
approaches employed gave markedly differing results, and also
showed remarkable discrepancies among the investigated genes,
although the bPTP output was found to agree well with established
morphological species delimitations. Both species-delimitation
approaches did, however, provide the same output for the COI
mtDNA sequences, and the COl mtDNA gene sequence was also
found to correspond better to established morphological species. It
is therefore recommended by this paper as representing the most
suitable barcode marker for Hoplolaimus species identification. This
integrative study also resulted in the corrective reassignment of 17
gene sequences that were previously unidentified or incorrectly
classified, as well as concluding that H. pararobustus consists of two
cryptic species.
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and Golden, 1992; Tiwari et al.,, 2001; Ali et al.,

Hoplolaiminae Filipjev, 1934 and family Hoplolaimidae
Filipjev, 1934 was established based on a single
female of Hoplolaimus tylenchiformis Daday, 1905
from Paraguay (Sher, 1963). To date, 37 valid species
within this genus have been described (Handoo
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2009; Nguyen et al., 2015; Ma et al., 2019; Ghaderi
et al., 2020). The descriptions of these species are
primarily based on morphology and morphometrics
alone, as molecular data are unavailable for all but
for ten of these Hoplolaimus species. Commonly
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referred to as lance nematodes, species of the genus
Hoplolaimus are known for their well-developed and
robust stylet with ‘tulip-shaped’ knobs. These plant-
parasitic nematodes represent an important group of
semi-endo to endo-parasitic nematodes that cause
considerable damage to the host plant’s cortex and
vascular tissue as well as inducing root necrosis.
They are widely-distributed worldwide, and target a
broad range of host plants including cotton, citrus,
sugarcane, mango, tamarind, cowpea, baobab tree,
banana, corn and soybean (Sher, 1963; Bridge, 1973;
Robbins et al., 1987, 1989; Henn and Dunn, 1989;
Koenning et al., 2004; Ahmadi et al., 2016; Holguin et
al.,, 2015). The infective stages of Hoplolaimus species
are from J2 to adult (Bridge and Starr, 2007). Some
species reproduce sexually (amphimictic), while
others reproduce asexually with females producing
offspring without fertilization (parthenogenetic) (Bae
et al., 2008).

The identification of Hoplolaimus species
is facilitated by the key proposed by Handoo
and Golden (1992), which was developed using
information resulting from a comparative study of 29
valid Hoplolaimus species. The species-informative
morphological characters include, among others,
the number and the pattern of lateral field incisures,
the number of labial annuli, the position of scutella
along the body, the number of esophageal gland
nuclei, and the hemizonid position with respect to the
secretory-excretory (SE) pore. Ghaderi et al. (2020)
recently published a comprehensive book on the
systematics of the genus Hoplolaimus, in which they
presented an updated key for Hoplolaimus species
identification. This new key incorporates a broader
range of informative morphological characteristics
compared to the earlier key proposed by Handoo
and Golden (1992). However, Bae et al. (2008, 2009)
have previously indicated that a relatively large
intraspecific variation vs minor interspecific variation
of the diagnostic characters renders the identification
of Hoplolaimus species difficult when based solely
on morphology and morphometrics, leading them
to develop molecular identification tools for some
Hoplolaimus species from the USA based on duplex
and multiplex PCR and PCR-RFLP. Prior to Bae’s
work on Hoplolaimus, several authors had already
deposited sequences of genes from this genus in
GenBank, including the partial 18S rRNA from H.
galeatus (AY912054, AY912053) and H. columbus
(AY912052, AY912051) by Powers, et al. (2008) and
H. galeatus (AY146452) by Mullin et al. (2005). In
addition, Subbotin et al. (2008) sequenced the D2-D3
of 28S rBNA from H. seinhorsti (DQ328752) and Chen
et al. (2006) deposited partial 18S rRNA gene and
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complete ITS1-5.85-ITS2 sequence with partial 28S
rRNA from H. columbus (DQ309584) in GenBank.
Additionally, Powers et al. (1997) reported that some
congeneric Hoplolaimus species exhibit TS size
length variation and this variation can affect the
accuracy of identifying Hoplolaimus species based
solely on molecular methods that rely on this region.

The aims of this current study were to (1)
characterise ~ Hoplolaimus  pararobustus  and
H. seinhorsti from the rhizosphere of banana (Musa
spp.) in Nigeria and Indonesia, respectively, based on
morphology (light microscopy and scanning electron
microscopy) and molecular data (partial 18S rRNA,
D2-D3 expansion segment of 28S rRNA, ITS rRNA
and COI mtDNA sequences); (2) investigate the
phylogenetic relationships of the Hoplolaimus species
in combination with tree-based species-delimitation;
and (3) update the existing morphological comparison
of the 37 known Hoplolaimus species.

Materials and Methods

Soil sampling and nematode extraction: Bulk soil
samples were collected using a shovel around
the upper 20-30 cm rhizosphere of banana (Musa
sp.) from Jayapura, Papua (2°40'47.5"S latitude,
140°49'20.9"E longitude), and from the rhizosphere
of banana (Musa sp.) plant in Onne, Rivers State,
Nigeria (4°42°57.7”N latitude, 7°10’34.0”E longitude).
The soil samples were stored at 4°C until nematode
extraction. Live nematodes (mixed stages) were
extracted using the modified Baermann’s method
(Whitehead and Hemming, 1965).

Morphological — analysis:  Morphological and
morphometric characterization of the two nematode
species was conducted based on fresh and fixed
specimens. For the preparation of permanent slides,
a small suspension of nematodes in an embryo dish
were killed and fixed by adding a few drops of Trump’s
fixative (2% paraformaldehyde, 2.5% glutaraldehyde
in 0.1IM Sorenson buffer (Sodium phosphate buffer
at pH = 7.5)). Subsequently, the embryo dish was
heated in a microwave (700 Watts) for about 5 sec,
left to rest for 1 h at room temperature followed by
24 h at 4°C to ensure maximum penetration of the
fixative as described in Singh et al. (2018). Afterwards,
the nematodes were gradually transferred to
anhydrous glycerin for permanent slides following the
protocol of Seinhorst (1959) and mounted on glass
slides, for further morphological study. Nematodes
were examined, photographed, and measured
using an Olympus BX51 DIC Microscope (Olympus
Optical, Tokyo, Japan) equipped with an Olympus
C5060Wz camera. Scanning electron microscopy



(SEM) was performed for H. seinhorsti specimens
(n = 3) fixed in Trump’s fixative, washed in 0.1M
phosphate buffer (pH = 7.5), dehydrated in a graded
series of ethanol solutions and critical-point-dried
with liquid CO,. The specimens were mounted on
stubs with carbon tabs (double conductive tapes),
coated with gold of 25 nm and photographed with
a JSM-840 EM (JEOL) at 12 kV (Singh et al., 2018).
The H. pararobustus population was compared with
lectotype and paralectotype material of the Ghent
University Museum, Zoology Collections, Belgium
(UGMD 100061-63).

Molecular analysis: Nematode morphological
vouchers were prepared prior to DNA extraction.
These vouchers were made of LM pictures of
individual nematodes in temporary slides with distilled
water. Each nematode was subsequently removed
from the temporary mount and cut into pieces in
distiled water using a blade and the pieces were
transferred to a PCR tube with 20 pl of worm lysis
buffer (50 mM KCI, 10 mM Tris at pH = 8.3, 2.5 mM
MgCl,, 0.45% NP 40 (Tergitol Sigma), 0.45% Tween
20). The PCR tube was then incubated at -20°C (10
min) followed by adding 1ul proteinase K (1.2 mg/
ml), incubation at 65°C (1 h) and 95°C (10 min) and
ending by centrifuging the mixture at 14000 rpm
for 1 min (Singh et al., 2018). PCR ampilification of
partial ITS and 18S regions of rDNA was conducted
using the primer pairs Vrain2F: 5-CTT TGT ACA CAC
CGC CCG TCG CT-3" / Vrain2R: 5-TTT CAC TCG
CCG TTA CTA AGG GAA TC-3 (Vrain et al., 1992)
and SSU18A: 5-AAA GAT TAA GCC ATG CAT G-3
/ SSU26R: 5-CAT TCT TGG CAA ATG CTT TCG-3
(Mayer et al., 2007) with thermal profile described in
Singh et al. (2018, 2019). For amplification of the D2-
D3 expansion segment of the 28S rDNA sequence,
the primer pair 391: 5-AGC GGA GGA AAA GAA
ACT AA-3"/ 501: 5-TCG GAA GGA ACC AGC TAC
TA-3" was used as described in Nadler et al. (2006)
and for the ampilification of the COI region of mtDNA,
the primer pair JB3: 5-TTT TTT GGG CAT CCT GAG
GTT TAT-3 / JB4.5: 5-TAA AGA AAG AAC ATA ATG
AAA ATG-3" was used as described in Derycke et al.
(2010). The PCR products were enzymatically cleaned
with alkaline phosphatase (1 U/ml) and exonuclease |
(20 U/ml) for 15 min at 37°C, followed by 15 min at
8°C and sent for sequencing at Macrogen (https:/
dna.macrogen.com).

Phylogenetic and species delimitation analysis:
The construction of a supermatrix for the phylogenetic
analysis of Hoplolaimus species was not possible due
to the limited availability of relevant sequence data on
GenBank. At the time of writing, only a few species
were associated with both nuclear and mitochondrial

sequences. Therefore, each genetic marker was
analysed separately.

The phylogenetic relationship of H. seinhorsti
with other related species was analyzed based on
the D2-D3 of 28S and ITS of rDNA and partial COI
sequences of mtDNA, while that of H. pararobustus
was analyzed based on the partial sequences of
28S and 18S of rDNA and partial COl sequences of
miDNA.

All sequences were analysed using a suite
of programs implemented in Geneious 10.0.9
(https://www.geneious.com). The newly generated
sequences were first subjected to a Basic Local
Alignment Search Tool (BLAST) search against a
closely related set of species on GenBank to identify
and collect homologous sequences for multiple
sequence alignment and phylogenetic analysis.
Multiple sequence alignments were constructed
using MUSCLE with default parameters. The poorly
aligned regions were manually trimmed to obtain
high-quality alignments for subsequent analysis.
Bayesian inference was performed using MrBayes
3.2.6, with the general time reversible substitution
model and estimation of invariant sites, assuming a
gamma distribution with four categories gene (GTR +
I + G) model. The analyses were run under 1 x 108
generations with four independent chains to ensure
convergence and to obtain the posterior probabilities
for the phylogenetic tree. Convergence of the runs
was also checked using Tracer v1.7.2 (Rambaut and
Drummond, 2010), and the effective sample size
(ESS) values were well above 200 (>3000) for each
run, indicating that the chains had converged and
that the results were reliable. The Markov chains were
sampled at every 100 generations, and 20% of the
converged runs regarded as burn-in (Huelsenbeck
and Ronquist, 2001).

Molecular species-delimitation of Hoplolaimus spp.
in this study was performed using two tree-based
methods, a Bayesian implementation of the Poisson
tree processes (bPTP; Zhang et al, 2013) and the
generalized mixed-yule coalescent (GMYC; Pons
et al., 2006). For the bPTP approach, the phylogenetic
trees created by MrBayes were uploaded to the online
server of bPTP (http:/species.h-its.org/ptp/) excluding
outgroups, with default parameters. For the GMYC
analysis, ultrametric trees were constructed using
BEAST v1.10.4 (Drummond et al., 2012). Strict clock
model with a lognormal distribution for the clock rate
prior, a Speciation: Yule process for the tree prior, and
a Hasegawa-Kishino-Yano (HKY) Substitution Model
rate prior were used, and analyses were run for 1 x 107
generations, saving trees every 1 x 10° generations. The
final trees were produced after removing 2000 samples
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(20%) as burn-ins, and the maximum clade credibility
tree was calculated using TreeAnnotator 1.10.4. Finally,
GMYC species delimitation was performed using a
python re-implementation of the single threshold GMYC
model in the GitHub repository (https:/github.com/
iTaxoTools/GMYC-pyqgth), using TreeAnnotator trees as
input.

Results

Handoo and Golden (1992) have previously tabulated
a comparison of the various important morphological
characters and morphometrics of 29 Hoplolaimus
species, resulting in an identification key for the
species. Entries for eight more Hoplolaimus species
have been added to this table as a result of this
study and Ghaderi et el. (2020) (H. diadematus,
H. igualaensis, H. intermedius, H. johani, H. maggentii,
H. smokyensis, H. puriensis and H. bachlongviensis;
Table 2).

Systematics Hoplolaimus seinhorsti
Luc, 1958

Figures 1-2, Table 1.

Description

Females: Vermiform cylindrical body slightly tapering
at both the ends. Body slightly curve to open
C-shape after fixation. Head with prominent cephalic
framework, hemispherical, four labial annuli and
distinctly set-off from the body by a deep constriction.
In SEM, head region divided into six equal sectors.
Irregular longitudinal indentations or striae can be
seen on the basal lip annule. Slightly raised ovoid
oral disc with a central oral opening. Lateral sectors
smaller than the sub-ventral and sub-dorsal sectors
and visible amphidial apertures. Lateral field, around
the mid-body, four to eight not well-delineated
irregular incisures with breaks, and towards the
anterior and the posterior regions reduced to one
incisures. Stylet strong and large with prominent
tulip-shaped knobs. Metacorpus rounded with
sclerotized valve. Esophageal glands overlapping the
intestine dorsally with five to six gland nuclei. SE-pore
at isthmus level anterior to hemizonid and hemizonid
about three cuticular annuli long. Two scutella, one
anterior to the vulva (about 520 um from the anterior
end) and the other posterior to the vulva (about
1170 pm from the anterior end). Oval vulval opening
around mid-body surrounded by unsculptured
lips and vulva sometimes appears swollen in live
specimens. Posterior epiptygma more conspicuous

than the anterior epiptygma. Reproductive system
didelphic amphidelphic with two equally developed
outreached ovaries, spermathecae round to oval. Tall
hemispherical to conoid-hemispherical, 13-16 annuli
long.

Male: Not found

Hoplolaimus pararobustus (Schuurmans
Stekhoven & Teunissen, 1938) Sher, 1963

Figure 3, Table 1

Description

Females: Vermiform cylindrical body, 1161-1552 pm
long, and near C-shape when heat relaxed. Head
with prominent cephalic framework, hemispherical,
four-five labial annuli and distinctly set-off from
the body by a deep constriction. The lateral field is
relatively inconspicuous under the light microscope
with irregular incisures or broken lines, not well
delineated around the mid-body and at the level of
vulva and reduced to merely a single incisure towards
the posterior part of the body. Stylet strong and large
with  prominent tulip-shaped knobs. Esophageal
glands overlapping intestine dorsally with three
gland nuclei. SE-pore above hemizonid and relatively
opposite the median bulb. Hemizonid about two to
three cuticular annuli long. Two scutella, one anterior
to (about 410 pm from the anterior end) and the other
posterior to the vulva (about 880 pm from the anterior
end). Vulva at 54-70%, reproductive system didelphic
amphidelphic with two equally developed outreached
ovaries. Spermathecae round to oval with sperm. Tail
short (15-30 um) hemispherical, 13-16 annuli long.

Male: Similar to female except for reproductive
structures with broad enveloping bursa, and body
length generally shorter. Long and prominent spicule
and gubernaculum with large and conspicuous bursa
extending to the tail tip.

Molecular characterization

28S rDNA

The D2-D3 domains of the 28S rRNA gene alignment
(721 bp long) included 43 Hoplolaimus sequences and
two outgroup species. Two 100% similar sequences of
H. seinhorsti (MK521870, MK521871; 581 & 591
bp long) from Indonesia and four sequences of
H. pararobustus from Nigeria were generated
(OP459420-0P459423; 778 to 779 bp long; 0-3
nucleotides intraspecific variation) (Fig. 4). The
H. seinhorsti sequences in the current study are within
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Figure 1: Light microscopy images of females of H. seinhorsti (A) whole bodies; (B-G) anterior
body in lateral view showing SE pore opening and hemizonid (indicated by arrows), stylet and
stylet knobs. DGO and median bulb; (H-K) esophageal region showing five gland nuclei (pointed
by arrows); (L,M) scutella, lateral view; (N,O) vulva region in lateral view; (P) lateral incisures
around mid-body; (Q-T) tail region showing anal opening, tail annuli number and lateral incisure.
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Figure 2: Scanning electron microscopy images of females of H. seinhorsti (A) whole body; (B-D)
head region; (E,F) vulva region in ventral and lateral views; (G) scutellum anterior to vulva in lateral
view; (H) scutellum posterior to vulva along with lateral incisures around the posterior region; (I-K)

tails in lateral view showing anal openings.

a maximally supported clade with H. indicus Sher,
1963, H. dubius Chaturvedi, Singh and Khera, 1979
and H. columbus Sher, 1963; however, without internal
resolution. This clade has a sister position to a poorly
supported H. pararobustus clade. Sequences of
H. seinhorsti in this study differ by 3-4 nucleotides to
the other sequences of H. seinhorsti from GenBank
(KF443213, DQ328752, MN462842, EU626791,
KX446969). Remarkably, our sequences only differ
two nucleotides to the sequence of H. dubius
(MF421901), 2-15 nucleotides to the sequences of
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H. indicus (MW361276, MF421900, MN462843,
OM514916, OM514919, OM514918, OM514917)
and 5-68 nucleotides different to H. columbus
sequences (HQ678713-HQ678716). In line with
this, the molecular species delimitation results
(generalized mixed-yule coalescent - GMYC and
Poisson tree process - bPTP) do not provide an
unequivocal answer to the species delimitation
of the concerning species. The GMYC approach
recognized several putative species in clade la,
although not agreeing with morphologically delimited
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Hoplolaimus seinhorsti and Hoplolaimus pararobustus from banana: Olajide et al.

Figure 3: Light microscopy images of females and males of H. pararobustus (A) whole body
of female and male; (B-D) anterior body in lateral view showing SE-pore opening, stylet and
stylet knobs. DGO and median bulb; (E) vulva region with no epiptygma in lateral view;

(F) oocytes and ovary with sperm; (G) lateral incisures around mid-body; (H) scutella, lateral
view; (I-M) female and male tail region showing anal opening, tail annuli number and lateral

incisure.

species; for example our two H. seinhorsti sequences
are appointed as different from the other H. seinhorsti
sequences. While, remarkably, the bPTP species
delimitation recognized H. seinhorsti, H. dubius,
H. indicus, H. columbus as one single species.

The H. pararobustus sequences generated in
this study form a maximally supported clade with
Hoplolaimus sp. (KY639326) from Kolombia et al.

12

(2017), which is only 0-2 nuclectides different and
Hoplolaimus sp. (KYB39326) is therefore likely also
H. pararobustus. However, our sequences are 24-25
nucleotides different to the Namibian population of
H. pararobustus (MT302643) previously characterized
by Marais et al. (2020) (Fig. 4). The GMYC approach
indicated that the four H. pararobustus sequences
generated in this study belong to two putative species,
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Hoplolaimus indicus (MF421900)
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0.831 Hoplolaimus pararobustus (OP459422)
1|t Hoplolaimus pararobustus (KY639326)
Hoplolaimus pararobustus (OP459423)
Hoplolaimus pararobustus (OP459421)
Ib Hoplolaimus pararobustus (MT302643)
0.931 Hoplolaimus stephanus (HQ678722)
0941 Hoplolaimus stephanus (HO678724)
0851 Hoplolaimus stephanus (EU586798)
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11 Hoplolaimus stephanus (EU626794)
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0.83 Hoplolaimus seinhorsti (EU626791)
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—— Globodera rostochiensis (AY592993)
Heterodera schachtii (MG598810)

0.05

Figure 4: Bl phylogenetic tree inferred from analysis of the D2-D3 expansion segment of 28S

rDNA sequences from nine known and three unknown Hoplolaimus species using the GTR + | +

G model. Bayesian posterior probabilities are given next to each node and H. seinhorsti and

H. pararobustus is presented in bold. Intraspecific variation of a clade indicated by a bar is given

to the right of the gray bars, nucleotide differences between sister clades is provided left to the
gray bars. Red and blue bars represent species boundaries estimated by GMYC and bPTP
methods, respectively. A star indicates data with too many non-nucleotide characters in the

sequences.
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despite the fact that all four sequences were from the
same population. The bPTP approach indicated the four
H. pararobustus generated in this study together with
Hoplolaimus sp. (KYB39326) as one species, and the
Namibian population of H. pararobustus (MT302643)
as a different species. For clade Il, H. stephanus
(HQB78722, HQ678724, HQE78717, KX347887) forms
a maximally supported clade with Hoplolaimus sp.
(EUB86798, EU5S86797, EU626794, EUB26795) and it is
also confirmed by bPTP that these sequences belong
to a single species, ie. H. stephanus. H. galeatus
(KY849910) forms a maximally supported clade with
H. magnistylus, also supported by bPTP as being two
putative species, and thus one of these species is likely
to be mislabeled (Table 4). It is clear that both species
delimitation results (GMYC and bPTP) provide highly
different outcomes with 27 vs 9 putative Hoplolaimus
species respectively (Table 3).

CO/ mtDNA

The COI gene of mtDNA gene alignment (357 bp
long) included 26 Hoplolaimus sequences and two
outgroup species. Two 100% similar sequences of
H. seinhorsti (MK521873, MK521874; 324 & 327
bp long) from Indonesia and five sequences
of H. pararobustus (OP487531, 0OP482497,
0OP482491, OP487530, 0OP482295; 309 to 353
bp long) from Nigeria were generated. For H.
pararobustus, intraspecific variation was detected,
consisting of 0-19 nucleotides (Fig. 5). The
phylogenetic tree inferred revealed a maximally
supported sister relationship of H. seinhorsti with
H. columbus, and our H. seinhorsti sequences differ
by 39-40 nucleotides to H. columbus sequences
(KP864617, KP864585, KP864584, KP864587).
Thus, in contrast to the D2-D3 analyses, CO/
sequences are able to differentiate H. seinhorsti and
H. columbus. However, the results of both molecular
species delimitation revealed 13 putative species,

based on morphology; only the species delimitation
of H. seinhorsti, H. magnistylus, H. concaudajuvenis
and H. colombus agrees for all approaches.

The H. pararobustus sequences generated in this
study form a maximally supported clade with Hoplolaimus
sp. (KYB39326) from Kolombia et al. (2017), which is
17-23 nucleotides different from the five H. pararobustus
sequences obtained (Fig. 5). Remarkably, both species-
delimitation results indicated the five COl sequences of
H. pararobustus of Nigeria and Hoplolaimus — sp.
(KYB39374) as three separated species.

ITS rDNA

The ITS rBNA gene alignment (1094 long) included
42 Hoplolaimus sequences and two outgroup
species. One ITS rDNA sequence was obtained for
H. seinhorsti from Indonesia (MK521872; 1017 bp
long) while ITS sequences for H. pararobustus from
Nigeria were not obtained. The phylogenetic tree
resolved two major clades, and the H. seinhorsti
(MK521872) sequence of the current study is within
a maximally supported clade with H. columbus and
other H. seinhorsti sequences from GenBank without
internal resolution (Fig. 6). Our H. seinhorsti sequence
differ by 17-26 nucleotides to the other H. seinhorsti
(KF486504, KX446971, EU515327, (ON123806,
ON123807) and 15-25 nucleotides to the sequences
of H. columbus (KF247223, KF275666, DQ309584,
AB933480, KP835339, KP835340, KP303639,
FJ766014, KJ934150). The results of both molecular
species delimitation approaches showed a high
discrepancy, i.e. 16 putative Hoplolaimus species
based on GMYC vs 7 species based on bPTP
(Table 3). For clade |l, H. concaudajuvencus
(KP303685, KP303686) is in a maximally supported
clade with H. magnistylus (KP303623, KP303634,
KP303681, KP303682, EU515325, EU515326) and it is
confirmed by bPTP and GMYC that these sequences
belong to a single species (i.e. H. magnistylus),

which did not correspond to 8 species demarcation  H. concaudajuvencus is therefore mislabeled
Table 3. Number of species according to the two species-delimitation methods

(GMYC vs bPTP).

Gene region Number of species

Morphospecies (unidentified GMYC bPTP
species included)

D2-D3 of 28S rRNA 10 27 9

COI mtDNA 8 13 13

ITS rRNA 7 16

18S rRNA 4 6
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Hoplolaimus stephanus (KP230589)

1
0.99 Hoplolaimus stephanus (KP230571)
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-
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—_
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0.87

-

0.79

0.07

Hoplolaimus stephanus (KP230591)

1 [ Hoplolaimus stephanus (KP230598)
Hoplolaimus stephanus (KP230606)

0.83 { Hoplolaimus magnistylus (KP230572)

Hoplolaimus magnistylus (KP230575)

- Hoplolaimus magnistylus (KP230584)
0.77 { Hoplolaimus concaudajuvencus (KP230660)
Hoplolaimus concaudajuvencus (KP230668)
- Hoplolaimus concaudajuvencus (KP230662)
1 [ Hoplolaimus smokyensis (KP230658) .

Hoplolaimus smokyensis (KP230659)

Hoplolaimus galeatus (KP230556)

Hoplolaimus galeatus (KP230563)

1 —— Hoplolaimus galeatus (KP230647)
Hoplolaimus columbus (KP864584)
Hoplolaimus columbus (KP8645835)
Hoplolaimus columbus (KP864617)
Hoplolaimus columbus (KP864587)

11 Hoplolaimus seinhorsti (MK521873)

[ Hoplolaimus seinhorsti (MK521874)
0.881 Hoplolaimus pararobustus (OP482497)
11" Hoplolaimus pararobustus (OP487531)

0.91 Hoplolaimus pararobustus (OP482491)

1 Hoplolaimus pararobustus (KY639374)

Hoplolaimus pararobustus (OP482295)

Hoplolaimus pararobustus (OP487530)

Globodera rostochiensis (MK798162)

Heterodera schachtii (MK134702)

0-38 bp

35-44 bp

1-4 bp
40-43 bp

14 bp

0 bp

48-58 bp

57-66 bp
0-1 bp
39-40 bp
0bp
69-79 bp

0-23 bp

|15-22 bp

Figure 5: Bl phylogenetic tree inferred from analysis of COl mtDNA sequences from seven known
and one unknown Hoplolaimus species using GTR + | + G model. Bayesian posterior
probabilities are given next to each node, H. seinhorsti and H. pararobustus are given in bold.
Intraspecific variation of a clade indicated by a bar is given to the right of the gray bars,
nucleotide differences between sister clades is provided left to the gray bars. Red and blue bars
represent species boundaries estimated by GMYC and bPTP methods, respectively.

in  GenBank (see Table 4, including further
argumentation). Similarly, H. stephanus (KP303639)
forms a maximally supported clade with H. columbus
(DQ309584, AB933480, KP835339, KP835340,
FJ766014, KJ934150) and this clade is further
supported by bPTP as being one putative species
(i.e. H. columbus). H. stephanus (KP303639) should
therefore be H. columbus (see Table 4, including
argumentation). Most remarkably, H.

seinhorsti

and H. columbus were, as was the case for D2-
D3, delineated as the same species by bPTP, while
GMYC delineated them as 11 separate species.

18S rDNA

The 18S rBNA gene alignment (923 bp long)
included 13 Hoplolaimus sequences and two
outgroup species. Five new 18S rDNA sequences
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0.91; Hoplolaimus stephanus (KP303614)
1| Hoplolaimus stephanus (KP303646)
1[1 Hoplolaimus sp. (EU515330)
111 - Hoplolaimus sp. (EU515331)
Hoplolaimus stephanus (KX347888)
1 [- Hoplolaimus stephanus (KP303660) 0-36 bp
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0.99
1
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Hoplolaimus sp. (EU515329)
0.93; Hoplolaimus magnistylus (KP303623)
Hoplolaimus magnistylus (KP303634)
0.571 Hoplolaimus magnistylus (KP303685)
0.58] Hoplolaimus magnistylus (KP303686)
0.67 } Hoplolaimus magnistylus (KP303681)
1|l Hoplolaimus magnistylus (KP303682)
Hoplolaimus magnistylus (EU515325)
Hopfo!a;mus magnistylus (EU515326)

1
0.99
[ Hoplolaimus smokyensis (KP303683) I

0-12 bp

Hoplolaimus smokyensis (KP303684) 28p I I

i 0.95 Hoplolaimus galeatus (KP303598)
0.63| Hoplolaimus galeatus (KP303674)
Hoplolaimus galeatus (KP303673)
Hoplolaimus galeatus (KP303672)
Hoplolaimus galeatus (KP303613)
Hoplolaimus seinhorsti (KF486504)
Hoplolaimus seinhorsti (KX446971)
Hoplolaimus seinhorsti (EU515327)
o0.981| Hoplolaimus seinhorsti (ON1238006)
) Hoplolaimus seinhorsti (ON123807)
0.81\; Hoplolaimus columbus (KF247223)
0.67| ' Hoplolaimus columbus (KF275666)
~ Hoplolaimus seinhorsti (MK521872)
Hoplolaimus columbus (DQ309584)
1|— Hoplolaimus columbus (AB933480)
0.9 Hoplolaimus columbus (KP835339)
I I Hoplolaimus columbus (KP835340)
0.84{} Hoplolaimus columbus (KP303639)
Hoplolaimus columbus (FJ766014)
Hoplolaimus columbus (KJ934150)
Heterodera sinensis (AY873803)
Globodera pallida (EF153836)

0.09

0-17 bp

—_
20
o1

= B

0-29 bp

0-15 bp

Figure 6: Bl phylogenetic tree inferred from analysis of ITS rDNA sequences from seven known
and four unknown Hoplolaimus species using the GTR + | + G model. Bayesian posterior
probabilities are given next to each node and H. seinhorsti is provided in bold. Intraspecific
variation of a clade indicated by a bar is given to the right of the gray bars, nucleotide differences
between sister clades is provided left to the gray bars. Red and blue bars represent species
boundaries estimated by GMYC and bPTP methods, respectively.



‘I;Hop!alaimus columbus (KJ934150)
1
Hoplolaimus columbus (KJ934149)

- Hoplolaimus columbus (OM218727)

|

- Hoplolaimus columbus (OM218726)

[ “ Hoplolaimus columbus (OM218725)

Hoplolaimus sp. (MK292131) I I
1
‘ 7 bp

Hoplolaimus galeatus (KJ934131)

Hoplolaimus pararobustus (OP464452)
0.97

1|* Hoplolaimus pararobustus (OP464453)

Hoplolaimus pararobustus (OP464450)

- Hoplolaimus pararobustus (OP464451)

- Hoplolaimus pararobustus (OP464454)
23-27 bp

— Hoplolaimus pararobustus (MT302753)

Heterodera schachtii (KJ636281)

- Globodera rostochiensis (EU855120)

0.02

Figure 7: Bl phylogenetic tree inferred from analysis of 18S rDNA sequences from three known
and two unknown Hoplolaimus species using GTR + | + G model. Bayesian posterior
probabilities are given next to each node and H. pararobustus is given in bold. Intraspecific
variation of a clade indicated by a bar is given to the right of the gray bars, nucleotide differences
between sister clades is provided left to the gray bars. Red and blue bars represent species
boundaries estimated by GMYC and bPTP methods, respectively.
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of H. pararobustus were generated from Nigeria
(OP464450-0OP464454; 879 to 906 bp long) with
an intraspecific variation of 0-4 nucleotides (Fig. 7);
18S sequences of H. seinhorsti from Indonesia were
not obtained. The phylogenetic tree inferred (Fig. 7)
revealed a sister relationship of the H. pararobustus
from Nigeria and all other Hoplolaimus species,
except H. pararobustus from Namibia. Above
the different phylogenetic position, the Nigerian
H. pararobustus sequences were 23 to 27 bp
different from that of the Namibian H. pararobustus
(MT302753). The GMYC and bPTP, species
delimitation methods suggested respectively 6 and
5 putative species. Both methods recognized the
Namibian population of H. pararobustus as a different
species, while the bPTP approach recognized all our
five H. pararobustus sequences as a single species
vs two separate species according to GMYC.

Discussion

Hoplolaimus seinhorsti and H. pararobustus were
isolated from the rhizosphere of banana from
Indonesia and Nigeria, respectively. The root
material of the host plants were not investigated in
this study and the damage this nematode species
might cause to its host remains to be determined.
Nevertheless, both species have already been
identified on Musa plants; H. seinhorsti from banana
in India, Martinique and Sri Lanka (Van den Berg
1976; Mukherjee et al., 1983; Larizza et al., 1998;
Quénéhervé et al.,, 2006; Sikora et al., 2018) and
H. pararobustus from Musa plant in several Asian
and African countries, including Nigeria (Saeed et
al., 1979; Coomans 1983; Fargette and Quénéhervé,
1988; Gowen and Quénéhervé, 1990; Liu and
Feng 1995; Vovlas and Lamberti, 1985; Larizza
et al., 1998; Speijer et al., 2001; Van den Berg et
al., 2003; Loubama et al., 2007; Gaidashova et al.,
2009). Other Hoplolaimus species have also been
found associated with banana (Musa sp.), including
H. bachlongviensis (Nguyen, Bui and Trinh, 2015)
from Vietnam (Nguyen et al., 2015), H. columbus
from Pakistan (Magbool and Ghazala, 1988; Pathan
et al.,, 2004), H. indicus from India and Iran (Maafi
and Kheiri 1993; Sundaram 1997; Tilwari et al.,
2000; Khan & Hasan, 2010), and other undescribed
Hoplolaimus species (Khan 1999; Sawadogo et al.,
2001; Cannayane et al., 2007; Adriano-Anaya et al.,
2008).

It is to be remembered that the results of using
morphometrics  in  species-level  identification
of nematodes must be examined carefully, as
morphometrics of nematodes in general can be
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influenced by several factors such as environment,
host type, geographical origin etc. (Lax et al,
2004; Loubama et al., 2007). In the case of this
study, H. seinhorsti and H. pararobustus could not
be unequivocally differentiated by morphometric
measurements, but instead with identification
being based rather on the number and pattern of
lateral incisures, number of labial annuli, number of
esophageal gland nuclei, position of SE pore, the
absence or presence of an intestinal post-rectal sac
and the absence or presence of males. According
to Fortuner (1991), the genus Hoplolaimus may be
divided into two groups based on several phenotypic
traits that are either ancestral or derived, including
the number of esophageal gland nuclei (3 vs 6),
number of lateral incisures (4 vs <4), position of SE
pore (below the hemizonid vs above the hemizonid),
and the presence of either regular or irregular striae
on the basal lip annulus. However, this supposed
division between ancestral and derived traits was not
reflected in the phylogenetic results obtained in this
study.

The D2-D3 of 28S rDNA distinguish between
closely-related species in clade la (H. seinhorsti,
H. columbus, H. indicus, H. dubius), a finding that
agrees with previous observations (Bae et al,
2008; Ahmadi et al., 2016). For 18S rDNA, the data
obtained are too limited to draw clear conclusions.
While results based on ITS rDNA agreed fairly well
with  morphologically-based species delimitation,
H. seinhorsti and H. columbus were not able to be
resolved. The current study revealed that only the use
of COI mtDNA supplied a means of resolving these
species, and even then it was only for CO/ that both
species-delimitation approaches provided the same
output. It is therefore based on this evidence that
we propose that the COl mtDNA as representing the
most suitable barcode region for Hoplolaimus, in line
with previous observations (Holguin et al., 2015; Ma
et al., 2019; Shokoohi et al., 2022).

Remarkably, all phylogenetic and molecular species
delineation results indicate that the H. pararobustus
population from Nigeria and the H. pararobustus
population from Namibia are not appointed as one
single species. However, both populations/species
do only differ in morphometrics from each other,
the Namibian population has a shorter body length,
stylet length and mid-body diameter compared to
the Nigerian population. The morphometrics of the
Nigerian population are more close to the syntypes
according to Sher (1963) and no differences were
observed between the H. pararobustus population
from Nigeria and the type material. This might indicate
that the Nigerian population is more likely represents



the genuine H. pararobustus. However, given the
large morphological variation (e.g. the lateral field of
the lectotype material ranges from a clear singular
line in combination with irregular lines to only unclear
irregular lines), it is not obvious to separate the type
population and the Nigerian population from the
Namibian population on morphological grounds.
Therefore, the H. pararobustus population from
Nigeria and the H. pararobustus population from
Namibia must at present be considered as cryptic
species.

Cryptic species represent a significant component
of biodiversity, and are an important factor in
quarantine decisions and management strategies
(Palomares-Rius et al., 2014). In such cases, if
morphological data cannot give a conclusive answer,
molecular data of the type specimens are needed,
i.e. non-fixed topotype material of H. pararobustus
(Kanyabayongo, Parc National Albert, Congo;
Sher, 1963). This is the only way to conclude the
determination of which Hoplolaimus population
(Namibia vs Nigeria) represents the genuine H.
pararobustus.

In spite of the increasing use of the coalescence
models to study closely-related species that
are difficult to differentiate using phenotypic
characteristics, these models have only rarely been
applied to plant-parasitic nematode investigations
(Palomares-Rius et al., 2014; Singh et al., 2021;
Nguyen et al, 2022). The present study has
investigated putative species boundaries using
coalescent-based approaches based on two
different models (GMYC and bPTP) and four gene
fragments (D2-D3 of 28S, ITS, 18S rBNA and CO/).
Results of these observations show remarkable
discrepancies among the genes as well as compared
to morphologically-established species (Table 3).
Only the COI-based results provided identical species
delimitation results for both approaches, which is in
agreement with the findings of Singh et al. (2021).
The GMYC approach revealed many more putative
species, while the bPTP is more conservative and
agrees better with established species delimitations
(Table 3). The GMYC algorithm is based on the time
interval to the most recent common ancestor of
species and an inherent assumption of monophyly,
which is not always the case (Fujisawa et al., 2013),
whereas the bPTP algorithm delimits species based
on the number of nucleotide substitutions (Prevot
et al, 2013). Furthermore, species delimitation
methods that are based on single gene trees, for
example for the bPTP and GMYC algorithms referred
to herein, suffer from serious limitations due to gene
tree/species tree incongruence (Zhang et al., 2013).

When gene tree topologies are incongruent with
one another, it is difficult to determine whether this
incongruence is due to incomplete lineage sorting,
trans-species  polymorphism,  hybridisation,  or
introgression (Leliaert et al,, 2014). Therefore, the
simultaneous acquisition of several gene sequences
will allow for a more precise and substantiated
coalescence-based, multilocus species delimitation
for plant-parasitic nematodes (Singh et al., 2021).
A multilocus approach was not possible in the current
study as, at the time of writing, data for only very
few multi-loci species are available that have been
obtained from the same population, and furthermore,
very few such species are associated with both
nuclear and mitochondrial sequences.

The findings of this work reinforce the proposals
made by Singh et al. (2021) and Nguyen et al.
(2022) concerning the need to unambiguously
link comprehensive morphological data with both
nuclear D2-D3 of 28S rBNA and mitochondrial
COI gene sequences at the very least. This is
clearly particularly necessary for certain species,
a case in point being the genus Hoplolaimus, an
important group of highly damaging plant-parasitic
nematodes that were found to display remarkable
molecular variations that render their identification
especially challenging.
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