¹ A global assessment of the state of plant

² health

3 Abstract

4 The Global Plant Health Assessment (GPHA) is a collective, volunteer-based effort to assemble 5 expert opinions on plant health and disease impacts on ecosystem services based on published 6 scientific evidence. The GPHA considers a range of forest, agricultural, and urban systems 7 worldwide. These are referred to as [Ecoregion × Plant System], i.e., selected case examples 8 involving keystone plants in given parts of the world. The GPHA focuses on infectious plant diseases 9 and plant pathogens, but encompasses the abiotic (e.g., temperature, drought, and floods) and 10 other biotic (e.g., animal pests, and humans) factors associated with plant health. Among the 33 11 [Ecoregion × Plant System] considered, 18 are assessed as in fair or poor health, and 20 as in 12 declining health. Much of the observed state of plant health and its trends are driven by a 13 combination of forces, including climate change, species invasions, and human management. 14 Healthy plants ensure (1) provisioning (food, fiber, and material), (2) regulation (climate, 15 atmosphere, water, and soils), and (3) cultural (re-creation, inspiration, and spiritual) ecosystem 16 services. All these roles that plants play are threatened by plant diseases. Nearly none of these three 17 ecosystem services are assessed as improving. Results indicate that the poor state of plant health in 18 sub-Saharan Africa gravely contributes to food insecurity and environmental degradation. Results 19 further call for the need to improve crop health to ensure food security in the most populated parts 20 of the world, such as in South Asia, where the poorest of the poor, the landless farmers, are at

21	greatest risk. The overview of results generated from this work enables identifying directions for
22	future research to be championed by a new generation of scientists and revived public extension
23	services. Breakthrough from science is needed to (i) gather more data on plant health and its
24	consequences, (ii) identify collective actions to manage plant systems, (iii) exploit the phytobiome
25	diversity in breeding programs, (iv) breed for plant genotypes with resilience to biotic and abiotic
26	stresses, and (v) design and implement plant systems involving the diversity required to ensure their
27	adaptation to current and growing challenges, including climate change and pathogen invasions.
28	
29	Key words: plant diseases, food security, climate change, global population, biodiversity,

30 sustainability

31 Introduction

32 Plants are extraordinarily important for the Earth's climate, its biological diversity, the shape of 33 our landscapes, the quality of the water we drink, the food we eat, and the air quality and 34 temperatures that prevail in our cities. Plants mean life on Earth. Plants generate the oxygen that humans, like all animals, need to live. Plants store carbon dioxide, and in so doing, cool the climate; 35 36 plants provide food and shelter for all forms of life. They filter the air we breathe and the water we 37 drink; and they produce and retain soil. Healthy living plants also are the very essence of re-38 creation, culture, inspiration, and of the natural beauty around us. Healthy living plants are essential 39 to the mind. With the urbanization of the world population, mostly in megacities (Dobbs 2010), 40 human beings are becoming increasingly disconnected from plants in their daily life. It seems that 41 humans take for granted the food, the air, the water, the beauty, and peace that healthy plants produce and maintain all around us. We believe that reconnecting humans with the reality of 42 plants, with plant life surrounding us, and with Nature in general, is a powerful way to improve the 43 44 well-being of individuals and human societies (Russell et al. 2013).

45 Three major drivers may be assumed to determine the global dynamics of plant-pathogen 46 relationships: the global population (and the needs of 8 billion humans today, projected to be 9 47 billion by 2037; United Nations, 2019), climate change (Skea et al. 2022), and pathogen invasions 48 (Hyatt-Twynam et al. 2017). A central question is whether, and to what extent, the growing human 49 populations can sustainably co-exist with nature in the biosphere. Some aspects of this question 50 may be addressed from the plant health standpoint, because the human appropriation of global 51 resources (Vitousek et al. 1986; Rojstaczer et al. 2001) has a powerful effect on plant health and the 52 state of ecosystems. Human population growth is the overarching force driving the evolution of the 53 biosphere and the health of its plants, whether directly (e.g., agriculture and other land use) or 54 indirectly (e.g., climate change and global exchange). 55 The state of plant health has a very large influence on the existence, functioning, and 56 performance of plant systems in the biosphere. Plant pathogens play an important role in plant 57 health. Yet, there seems to be no scientific reference that considers the current state of plant health 58 globally, or the evolution of plant health in the recent past. The objective of this article is to 59 contribute to filling this gap, based on the results of the Global Plant Health Assessment (GPHA; 60 GPHA 2022a; b). It also aims at addressing through examples the effects of global changes and 61 human activity on plant health, and the feedback of plant health on the performance of plant-based 62 systems. The GPHA is an initiative of the International Society for Plant Pathology (ISPP) motivated 63 by the International Year of Plant Health in 2020. It involves an international, volunteer, peer-64 reviewed evaluation of the state of plant health across ecoregions of the world, and of the effects of 65 plant disease on ecosystem services (Millennium Ecosystem Assessment; MEA 2005): provisioning 66 (food, fiber, and material), regulating (climate, water, and soils), and cultural (recreation, spiritual 67 renewal, and beauty).

This article first outlines the objective of the GPHA, then the approaches and methods it
 implemented. Reports generated by GPHA project teams involved in the Assessment (GPHA 2022a;

- 2022b), arranged according to 16 Plant Systems, are then summarized. Key elements derived from
- 71 the GPHA are addressed in a final section.

72 Objectives of the Global Plant Health Assessment

73 The GPHA is based on an array of [Plant System × Ecoregion] case studies (Table 1) to generate 74 insight into plant diseases in human-made and natural ecosystems. In these ecosystems, plant 75 diseases are considered through three lenses: ecological, agricultural, and evolutionary. 76 The goal of the GPHA is not to produce a comprehensive description of the state of health of 77 every plant system in each part of Earth. Instead, the goal is to assess the importance and 78 consequences of plant health in systems that (1) are iconic in their contribution to human cultures 79 and societies (cultural role); (2) that play critical roles in the mainstay of humanity, including, but not limited to, food security (provisioning role); and (3) that are vital in the sustainability of the 80 81 biosphere (regulating role). These characteristics are captured in the line-drawings of Table 1. Plant 82 systems in various ecoregions (i.e., distinct world regions defined on the basis of their ecological 83 and socio-economic characteristics; Bailey, 1995; MEA, 2005) were selected for their specific roles 84 towards these three services (MEA, 2005). Table 1 summarizes the choices of plant systems and 85 ecoregions that were made to provide an overall view of the importance and consequences of plant 86 health. The collection of [Plant System × Ecoregion] case studies is also expected to enable 87 comparisons among them and shed renewed light on questions such as the importance of plant diversity in disease management, the level of disease control that is acceptable in the management 88 89 of disease in ecosystems, and the consequences of pathogen invasions under climate change. 90 This global assessment thus addresses widely different plant systems (Table 1; Fig. 1) from very 91 simplified to extremely complex, with two dimensions: the diversity of plant species, and time. 92 While human-made plant systems such as agrosystems have time constants (i.e., broadly, the delay 93 for a given factor to cause measurable effect in a system; Leffelaar et al. 2012) in the range of 10° to

94 10³ years in their evolution, the time constants of ecosystems where human interventions are 95 limited are much longer (10²-10⁴ years). Primeval forests have evolutionary time constants in the range of 10⁴-10⁶ years. Evolutionary time constants are important to understand processes, 96 97 evolution, management, and vulnerability of plant systems to disease (Stukenbrock and McDonald, 98 2008). 99 The GPHA considers several forest systems, both temperate and subtropical (Table 1). It also 100 addresses urban forests (in one example only), which have become increasingly important in the 101 last century. The GPHA also considers a range of agricultural systems. There, farmers do battle 102 against plant diseases using three main instruments: host plant resistance, chemicals, and crop 103 management. The battle is unending. In some cases, humans seem to have the upper hand and 104 diseases are controlled durably; in other cases, it seems that the battle cannot ever be won, and 105 that relentless control efforts are increasingly costly economically and environmentally. When a 106 balance seems achieved between management efforts and returns to humans, considering benefits 107 other than just crop yield brings new insights; sometimes, apparent success may come with 108 overlooked and unexpected costs.

109 Approaches and methods

110 We developed an approach aimed at producing material grounded on scientific evidence that 111 will help in developing policies to ensure sustainability of plant health globally and locally. A detailed description of the aim, overall principles and organization, and steps taken in the GPHA is 112 113 provided in Supplementary file A. The key features of approaches and methods implemented are 114 presented here. The Assessment considers human-made ecosystems, including agrosystems, peri-115 urban horticulture, household (kitchen) gardens, and urban vegetation, and a range of forest 116 systems around the world. Plant health is seen through the lens of infectious plant diseases. The 117 GPHA therefore concentrated on viruses, bacteria, phytoplasmas, fungi, oomycetes, nematodes,

Page 6 of 88

118 and other organisms behaving as plant pathogens through dispersal, survival, specialization, and 119 adaptation (e.g., parasitic plants). Pathogen vectors were also considered. Because plant health is 120 not restricted to infectious diseases, attention was paid when relevant to the full range of factors 121 which may influence the course of the healthy life of plants, whether biological (e.g., insects), 122 physical (e.g., droughts, fires, and floods), or chemical (e.g., pesticides and ozone). 123 GPHA participants contributed in three different ways: to the overall coordination of the GPHA, 124 as Lead Experts of a given team, or as Experts involved in one of the GPHA teams. Teams were 125 established for each [Plant System × Ecoregion] combination, with a Lead Expert mobilizing two or

three Experts.

127 The Assessment is templated on the Millennium Ecosystem Assessment (MEA, 2005). A series of 128 ecoregions (Bailey 1996) of the world were selected (Fig. 1; Table 1); in each of these, key Plant 129 Systems were identified. Each team produced a report which was standardized in format and size 130 (Supplementary file A) through a specified set of questions. Each report is grounded on scientific, 131 published, and citable evidence. Critically, the assessment considers plant health as a whole, and 132 not specific plant diseases. Neither does a given report cover the entire set of plants or vegetation 133 in a given plant system: keystone plant species that play a critical role in ecosystems (Bond 1994) 134 were identified by each team, as indicated in Supplementary file C.

A standardized procedure was developed and shared with each team of experts in order to generate harmonized information on each chosen [Plant System x Ecoregion]. Teams of Experts followed an identical approach, from identification of a plant system in a given world ecoregion to answering and elaborating on a formatted set of questions as outline in Sidebar 1 (see details in Supplementary File A).

Questions pertaining to system states were to be answered on a five-point scale: "Excellent," "Good," "Fair," "Poor, or" Bad". These classes correspond to a series of colors from dark green to red (Supplementary file A). Questions pertaining to trends in states were to be answered on a three-point scale: "declining", "improving", or "stable". These classes correspond to arrows pointing

144 down, up, or level. Questions on system states may concern each of the different types of 145 ecosystem services: provisioning, regulating, or cultural. Responses to questions on trends in plant 146 health and in the affected delivery of ecosystem services are represented by colored boxes (states) 147 with arrows (trends) as shown in Supplementary file A. 148 As in the Millennium Ecosystem Assessment (2005), the information gathered was verified 149 internally as outlined in Sidebar 2. Each member of the Coordination Group acted as an Editor for a 150 given report, and had the report reviewed by a Reviewer. Lead Experts revised their reports based 151 on reviews. A total of 26 reports (two involving two plant systems, and one plant system addressed 152 in six ecoregions in a single report) was thus assembled, constituting the basis of the GPHA Report (GPHA, 2022a; 2022b) and of this article. This work was conducted by a number of teams and 153 154 involved over 80 scientists across the world.

155 Main results of the Global Plant Health Assessment

156 Overview of results

The GPHA includes 33 [Plant System × Ecoregion] combinations (Table 2), each considering one 157 158 or several keystone plant species in one given ecoregion (Figure 1). Among these (Figure 2), the health of 15 are rated "good", but 19 are rated "fair" (13) or "poor" (6). In 21 cases, health is 159 160 assessed as "declining", while it was assessed as "level" for 10 cases and "improving" in only 3 cases. 161 Not all three categories of ecosystem services (provisioning, regulating, and cultural) were assessed in each of the 33 [Plant System × Ecoregion] examples (Table 2, Fig. 2). With respect to 162 provisioning (documented in 32 cases), states were assessed as "excellent," "good," "fair," and 163 164 "poor" in 6, 13, 9, and 4 cases, respectively (Fig. 2). Only three trends of provisioning were assessed 165 as "improving", while 19 and 10 were assessed as "stable" or "declining," respectively. As for 166 regulating services (affected by plant diseases), assessed in 13 cases, states were assessed as 167 "excellent," "good," "fair," and "poor" in 3, 2, 5, and 3 cases, respectively. A decline was declared in

168	the majority (11) of the cases. With respect to cultural services (documented in 10 cases) states
169	were assessed as "excellent," "good," "fair," and "poor" in 4, 3, 0, and 3 cases, respectively. In no
170	case was an improvement reported, while cultural services were reported "stable" in six cases, and
171	"declining" in four cases.
172	Assessments of the status and evolution of plant health and of ecosystem services, as impacted
173	by disease, are displayed in Table 2 for all [Plant System × Ecoregion] considered. The main
174	wether and discourse involved are listed in Complementary file D. The accompany are described

174 pathogens and diseases involved are listed in Supplementary file B. The assessments are described

in more detail in Supplementary file C.

176 Pathogen invasions

177 The importance of invasions fueled by increasing human activities to the global state of plant 178 health is compelling. The GPHA reported pathogen incursions sometimes leading to pandemics 179 (Heesterbeek and Zadoks, 1987) for wheat in South Asia; rice in South Asia and East Asia; potato in 180 Western Europe; maize, cassava, and banana in sub-Saharan Africa; coffee in Central America; citrus 181 in North America, South America, and Western Europe; urban trees in Western Europe; oaks in 182 North America; softwood forests in North America; and eucalypts in Australia. In all, 15 of the 33 183 considered [Plant System × Ecoregion] examples refer to pathogen invasions as a factor, and sometimes the main cause, for poor plant health. The frequency of pathogen incursions in 184 185 ecosystems has increased with exchanges (e.g., Stukenbrock and McDonald 2008) during the highly 186 connected Anthropocene (Steiner, 2020).

The GPHA documents numerous examples of invasions (Fig. 3A; Supplementary file C) in forest systems. In the softwood forests of North America, white pine blister rust (*Cronartium ribicola*) causes extensive mortality in five-needle pine species (Geils et al. 2010) and is a cause for threatening the whitebark pine (*Pinus albicaulis*) in the wild. Sudden oak death (Grünwald et al. 2019), caused by *Phytophthora ramorum*, a pathogen with a very wide host range that was first recognized in the mid-1990s in coastal evergreen forests of the San Francisco Bay Area, has killed an

193 estimated 50 million oak and tanoak (*Notholithocarpus densiflorus*) trees along the Pacific Coast in

194 California and southern Oregon. In Australia, the most significant pathogen of eucalypt forests, 195 Phytophthora cinnamomi (one of the world's most invasive pathogen species), causes dieback and 196 tree mortality. The pathogen is known to infect more than 150 species of eucalypts, and is 197 recognized as a Key Threatening Process (Cahill et al. 2008; Keane et al. 2000). Forest pathologists 198 are extensively documenting the association of plant pathogens causing tree mortality worldwide, 199 along with other organisms (e.g., insects) and abiotic stresses (e.g., drought, heat, and excess 200 precipitation). Urban forests are vulnerable to pathogen invasions as shown by the epidemic of 201 canker stain disease (Panconesi, 1999), caused by Ceratocystis platani, which is decimating two-202 century-old plantations of London planes (Platanus × acerifolia (Aiton) Willd, syn. Platanus × 203 *hispanica* Mill. Ex Münchh.) bordering the Canal du Midi in southern France. 204 Pathogen invasions in field crops are widely reported in the GPHA. This includes for instance (Fig. 205 3A) the introduction of more aggressive strains of wheat stripe rust in Western Europe (Hovmøller 206 et al. 2016); incursions and establishment of wheat stem rust in Western Europe (Saunders et al. 207 2019), especially in Italy; the introduction of the maize chlorotic mottle virus, first detected in 2011 208 in Kenya, causing the maize lethal necrosis epidemic in East Africa if associated with endemic 209 potyviruses (Mahuku et al. 2015); the incursion of the wheat blast pathogen (Ceresini et al. 2018) in 210 Bangladesh; or the spread of false smut of rice (Ustilaginoidea virens; Fan et al. 2016), a 211 mycotoxinogenic flower disease, across the entire Asian ecoregions (Reddy et al. 2011). The latter 212 appears to have been human-engineered, through the widespread attempts of hybrid rice 213 cultivation rather than through transportation of inoculum (Reddy et al. 2011). The case of the viral 214 diseases in rice in East Asia seems especially important as it concerns the food-base of over a billion 215 and half people (Fig. 1). There, a regional coupled viral epidemic-climate system seems to have 216 established, involving several viruses (Rice Black-Streaked Dwarf Fijivirus and Rice Stripe Virus) and 217 their vectors (Sogatella furcifera and Laodelphax striatellus, respectively). Hotspots of these viruses 218 seem established in South-East Asia, where two or three rice seasons per year are practiced, and 219 amplify the virus populations. As the summer monsoon progresses from South-East Asia to South

Page 10 of 88

and Central China, the Koreas, and Japan, bringing the rains required for crop establishment,
typhoons also transport viruliferous insect vectors laden with viruses acquired in older plantings,
which infect young crop stands as they are being established (Supplementary File C; GPHA, 2022a;
2022b).

224 Dramatic examples of past pathogen invasions include the destruction of North American 225 chestnut forests by chestnut blight (Cryphonectria parasitica), the decimation of European and 226 American elms by the Dutch elm disease (Ophiostoma ulmi and O. novo-ulmi), the introduction of 227 fire blight in Europe's rosaceous trees (Brasier 2008), or the introductions of potato late blight 228 (Phytophthora infestans) into Europe starting in the 19th century. Weltzien's (1972) approach to 229 predicting disease occurrence at a given location still holds: this requires information about (1) the 230 pathogen's geographic distribution, (2) the distribution of its host, and (3) the ecological 231 requirements of pathogen and host. Whether an intruder will ever become a true disease threat is 232 hard to determine accurately. An issue for plant pathology concerns false positives, that is, cases 233 where pandemics were predicted, but did not (or not yet) actually occur. It seems that sometimes 234 the third of Weltzien's conditions has not been sufficiently considered.

235 Evolutionary biology of plant pathogens

Weltzien's (1972) suitable "environmental factors" for the disease has often been taken to refer 236 237 only to the local climate. However, this third condition concerns the whole biological life cycle of the 238 pathogen, and therefore the plant population on which an epidemic is observed, as well as possible 239 alternate hosts. The latter may enable sexual recombination and inoculum amplification, and may 240 constitute the main reservoir of the pathogen. A so-called "alternate" host may well be the main 241 one in the life strategy of the pathogen, which is only mirrored on the cultivated host of concern. 242 This may occur with wheat blast in South America (Ceresini et al. 2018). Too little is known of the 243 ecology of plant pathogens in natural or non-managed plant communities, especially with respect of 244 their life cycles (Dinoor and Eshed 1984; Kranz 1990; but see also Jeger, 2022). Knowledge of host 245 jumps (from a given host species to another one), and speciation processes may also be insufficient.

246 The introduction of wheat blast into South Asia does not seem to be causing the major pandemic 247 some feared (Singh et al. 2021), perhaps because of the absence of alternate hosts. Rice blast is 248 omnipresent in the Rice-Wheat System of South Asia, yet a blast-pathogen host jump from rice to 249 wheat has never been observed, presumably because the rice blast pathogen is not adapted to 250 wheat. From a biological speciation standpoint (Wilson 1992), there seems to be a barrier between 251 the two entities - wheat blast and rice blast - which evolved separately on different hosts, possibly 252 for millions of years. One species accomplishes its life cycle mainly on another host plant, and 253 accidentally has become able to infect wheat in South America. In another example, the failure of 254 soybean rust to invade most of North America (Goellner et al. 2010) may result from unsuitable 255 environmental conditions, including cold winters or non-host periods, and the absence of alternate 256 host(s), i.e., the absence of a "green bridge" (Zadoks and Schein 1979).

257 The unique flora and fauna of Australasia evolved in nearly complete isolation for about 100 258 million years (Crisp and Cook 2013). With reference to the combined Africa-Europe continents, 259 pathogens and plants co-evolved on the comparatively smaller land mass of Australasia, under 260 frequently glacial climatic conditions, and therefore under a relatively lower level of selection 261 pressure from pathogens (Wilson 1992). This system is extremely vulnerable to introduced and 262 polyphagous pathogens such as P. cinnamomi, which was presumably introduced at the beginning 263 of the 20th century. Another forest system, the Amazon, has evolved on a larger land mass for a 264 similar period of time, and under climatic conditions that remained almost constantly tropical. 265 There, the botanical hyperdiversity (Cardenas et al., 2014) of the Amazon rainforest emerged, 266 driven by a far more severe selection pressure of pathogens according to the Janzen–Connell 267 hypothesis (Eck et al. 2019) over extensive geological time (Boyce and Lee 2017). This system 268 appears impervious to the appearance of new pathogens because of the resilience of its plant 269 community. We may assume that (1) (following Gilbert 2002) pathogens are strong contributors to 270 plant evolution; and (2) the larger the land mass (Wilson 1992), the longer-lasting the plant-271 pathogen co-evolution, and the more resilient a forest system will be. Yet three other forest

systems (softwood forests in North America, and oaks in Western Europe and North America),

which have also been exposed to selection pressure from pathogens, also appear very vulnerable to

274 invasions. However, the forest systems of North America and Western Europe did not evolve under

275 conditions similar to that of the Amazon rainforest.

276 Climate change and plant health

277 Climate change is a recurrent theme of many reports of the GPHA (Fig. 3 B). The effects of 278 climate change on plant diseases have been addressed in many studies and reviews (e.g., 279 Chakraborty and Newton 2011; Sturrock et al. 2011; Garrett et al. 2011; Jeger, 2022). In all, 17 of 280 the 33 considered [Plant System × Ecoregion] case studies identify climate change as affecting the 281 evolution of plant health. These reports, however, do not always provide specific detail on the 282 processes involved. The effects of climate change on plant health are diverse, including: (1) direct 283 effects on the life-cycles of pathogens (e.g., rice and wheat in South Asia), (2) direct effects on 284 pathogen vectors (through increased vector activity; vegetables in sub-Saharan Africa), (3) indirect 285 effects via change in agricultural practices (maize in North America, wheat in South Asia), and (4) 286 indirect effects of disease combined with abiotic stresses such as drought and heat waves (wheat 287 and rice in South Asia, oak-based forests in North America, eucalypt forests in Australia) or 288 excessive rainfall (oak-based forests in North America). Except for the Amazon rainforest, all the 289 reports on forest systems refer to complex interactions among pathogens, insects, and climate 290 change. The causes for declining tree health in forest systems are complex (e.g., Desprez-Loustau et 291 al. 2006).

292 Climate change refers to changes in temperature, precipitation, and atmospheric chemical 293 composition on host plants and pathogens. These changes have effects at the hourly, daily, and 294 yearly scales on complex systems, encompassing a host, a pathogen (interacting and producing 295 disease), and a suite of micro-organismal components of the phytobiome (Leach et al. 2017). For 296 instance, endophytes, which have a positive effect on plant physiology, could turn into or facilitate 297 pathogens in response to abiotic stress (Busby et al. 2016). Little is still known of the dynamics

triggered by climate change on the functioning and the communications among components of thephytobiome.

It has been suggested that necrotrophic plant pathogens would especially be favored in a
 context of changing climate, where abiotic stresses are more frequent and severe (Chakraborty and
 Newton 2011). This hypothesis concurs with the observations collected on rice brown spot (Barnwal
 et al., 2013) and wheat blotch (Sharma et al., 2007). Both diseases are on the rise where climate
 change is having greater impact, and their causal pathogens have similar life strategies (survival
 between crop cycles, spore dispersal, or seed-transmission), population genetics, and host plant
 resistance patterns - and both pathogens are necrotrophs.

307 A reductionist approach to plant health

308 The Global Plant Health Assessment is restricted to infectious plant diseases. Infectious plant 309 diseases, however, depend on climate (in both their development and their effects on hosts), are 310 influenced by the state of plant physiology and by crop development stages, and often develop in 311 complex interactions between pathogens and other micro-organisms in the phytobiome and macro-312 organisms such as arthropods. As discussed in several reviews (e.g., Döring et al., 2012; Jeger, 313 2022), "plant health" is a loose term with numerous angles. Considering infectious diseases was 314 nevertheless judged an effective, concrete, and practical entry point to be addressed by plant 315 pathologists.

316 Plant diseases in an ecological perspective

The GPHA encompasses a range of ecosystems where human intervention varies widely, from natural systems to intensive farming of the Old and New Worlds. This enables comparisons and an analysis of the inspiration from nature which prevails, or re-appears, in some plant systems (Fig. 3C,

320 Tables 1 and 2, and Supplementary file C).

Perennial, complex, and multiple species plant systems generate food, income, and material
 goods, along with biodiversity and soil conservation in several ecoregions of the Global South. These
 systems often demonstrate resilience to disturbances, including plant diseases. The agroforestry-

Page 14 of 88

324 coffee system of Central America is one such example (Avelino et al., 2018). Inter-specific crop 325 diversity (Boudreau, 2013) is also widespread in many annual field crop systems of sub-Saharan 326 Africa, reflecting farmers' adaptation to uncertain weather (erratic rainfall), poor soils, and disease 327 risks (e.g., Savary et al., 1988). Diseased plane trees are replaced by non-susceptible trees along the 328 Canal du Midi, France, to generate botanical diversity and reduce epidemic spread (GPHA 2022a; 329 2022b). Biological control and Integrated Pest Management have made headway in Europe's 330 grapevines (Pertot et al. 2017), and environment-friendly technologies are being developed for the 331 peri-urban vegetable production systems of sub-Saharan, South, and South-East Asia (GPHA 2022a; 332 2022b). Inspiration from nature in crop and disease management may take many forms, involving 333 age-old practices (field crops in sub-Saharan Africa) to the latest technology advances (grapevine or 334 vegetable production). 335 The overall emerging picture from the GPHA is that ecosystems where chemical intervention is 336 least, where human labor and care greatest, are often the least diseased, whereas those where

337 chemical intervention is more frequent and human labor is the least are often the most vulnerable.

This contrasts strikingly with the overall state of the world's ecosystems (MEA 2005), where the

least anthropized systems are often the most at risk from human perturbations despite their

338

resilience to disease, as a result of climate change, fires, roads and dams, and urbanization.

341 Agriculture itself is a root cause for epidemics in cultivated plants (Savary 2014). A crop is a 342 cohort of individual plants growing in close proximity, of the same age and development stage, of 343 similar or identical genetic make-up, under similar physiological stimulants (fertilizers), of similar 344 physiology and similarly enhanced vulnerability to disease, and of similar shapes and sizes 345 (Stukenbrock and McDonald 2008). Such similarities enable optimized pathogen dispersal and 346 disease spread (extensification) (Willocquet and Savary 2004) and local multiplication 347 (intensification), which contribute to epidemic development. Then again, there are degrees to 348 individual proximity, genetic similarity (e.g., intercropping), and physiological vulnerability. The 349 differences in homogeneity - spatial, physiological, and host-genetic - between a maize field in the

US Midwest and a cassava plot in Côte d'Ivoire – are tremendous. Similarly, a wheat crop in
northwestern Europe growing on a very large piece of land, with genetically uniform seed, tillage,
fertilizers, herbicides, pesticides, and growth stimulators, differs profoundly from a small wheat plot
in central Uttar Pradesh, India, with its genetically diverse seeds, limited water and manure inputs,
hand-weeded, and with little or no pesticide. Weeds, an obstacle to wheat production in England,
are turned into a benefit in Uttar Pradesh, where they serve as fodder for cows which in turn
produce milk, cheese, and cow-dung.

357 Taking inspiration from nature to better manage agroecosystems is an old and important idea 358 (Zadoks and Schein 1979; Wulf 2015). A key attribute of natural systems is diversity: of genotypes 359 within and across crops and landscape, and over vegetational successions. Another attribute is 360 limited disruption, enabling biological regulations within an ecosystem to become established. 361 Disease management inspired from nature will not ensure total health, but may ward off 362 disasters in many cases. There is debate on how much agriculture should be re-natured, including 363 concerns about whether more natural agricultural systems could feed the world (Badgley and 364 Perfecto, 2007; Connor, 2008; Muller et al., 2017). The present work supports the view that 365 disappearance of ecological regulation through large-scale perturbations in agriculture can lead to 366 disasters. Such disasters have occurred, for example, in the gigantic citrus plantations in North and 367 South America with genetic homogeneity, intensive pesticide treatments, and successive waves of 368 plant disease epidemics. Another example is the large-scale, mechanized, input-extensive 369 cultivation of wheat on marginal wheat areas of South America where the crop often succumbs to 370 wheat blast. Yet inspiration from nature may sometimes go astray: stopping the eradication of 371 barberry triggered stem rust epidemics in Sweden (J. Yuen, pers. obs.), and a diversity of wild plants 372 growing close to cultivated landscapes may constitute a reservoir of inoculum, especially for vector-373 transmitted pathogens (Chadwick and Marsh 1993).

Page 16 of 88

374 Pesticide usage

Pesticide usage is addressed in numerous [Plant System x Ecoregion] reports (Supplementary File 375 376 C; GPHA 2022a; 2022b; Fig. 3D). Reports indicate a range of diverse issues: inadequate pesticide 377 usage (e.g., coffee in Central America); pesticide use as the sole alternative to disease control under given production contexts, leading to over-reliance (e.g., potato, Western Europe), chemical 378 379 protection becoming inadequate for lack of chemical (new compounds) innovation, or because of 380 regulations (e.g., grapevine, Western Europe), chemical protection being challenged by pathogen 381 adaptation (e.g., wheat, Western Europe), excessive pesticide use leading to multiple environmental 382 and/or health risks and problems (e.g., rice, potato, and wheat in East Asia; potato in Western 383 Europe; citrus in South America; vegetable production in sub-Saharan Africa, South Asia, and Southeast Asia), and banned pesticides, or pesticides that are dangerous to human health, which are still 384 385 commonly in use (vegetables in sub-Saharan Africa).

386 The state of plant health in sub-Saharan Africa

The reports of the GPHA indicate that plant health in sub-Saharan African agrosystems is in a 387 388 poor state (five reports of six), and mostly (four reports) declining. Some of the African disease 389 problems are formidable: mycotoxin-producing fungi and lethal necrosis in maize; viral diseases in 390 cassava; viral and soil-borne fungal and bacterial diseases in banana and plantain. These diseases 391 gravely damage the food base of the most food-insecure ecoregion in the world. They also have 392 indirect, but devastating, impacts on the natural environment. Considerable efforts will be needed 393 for their control. Labor-based disease control methods are unlikely to suffice. Chemicals often are 394 too dangerous, too costly, fail in controlling such diseases, or do so only temporarily (e.g., Coyle et al., 2017). All possible options need consideration to improve plant health in sub-Saharan Africa, 395 396 probably including the latest generation of genetic engineering instruments, since breeding for 397 resistance to multiple diseases is a massive challenge, especially when no resistance sources are 398 known. The use of dangerous or banned pesticides was commonplace in Africa 40 years ago (S.

- 399 Savary, unpublished data). Sadly, the GPHA indicates no progress in reversing this trend. This
- 400 problem requires immediate attention from policy-makers.

401 A critique of the concept of ecosystem services

402 A critique of the concept of ecosystem service may be framed using three standpoints: 403 agricultural (where the concept was born; Pingali and Heisey 1999), ecological, and evolutionary. 404 The concept enables an effective and convenient accounting for the many benefits humans derive 405 from Nature, allowing comparisons and hypothesis-making, which can for instance be applied to the 406 impacts of plant pathogens on plant systems (e.g., Cheatham et al. 2008; Paseka et al. 2020). Yet 407 one cannot help seeing the concept of ecosystem service as a very strange way indeed to see 408 Nature. Nature is not meant, or designed, to "service" humans. Instead, humans contribute to the 409 state of the Nature to which they belong. Sadly, human services to Nature often are negative. The 410 concept of ecosystem services is anthropocentric and utilitarian. When applied to food supply or 411 forestry, for example, the concept is particularly useful; it however becomes misplaced when 412 applied to peace of mind or beauty. Yet the concept of ecosystem service guided the assessment, 413 bearing in mind its limitations.

Lines of thoughts for future research

415 Like part of the Millennium Ecosystem Assessment (MEA, 2005), but unlike the IPCC 416 (https://www.ipcc.ch), the Global Plant Health Assessment has been faced with a dearth of hard 417 data. Assessing losses caused by diseases is costly, requiring trained experts and extensive field 418 work (Savary et al. 2006; Teshome et al. 2020). Quantitative measurements of losses at the global 419 scale do not exist; only expert assessments are available (e.g., Savary et al. 2019). Quantitative and 420 qualitative data to describe the impacts of diseases on natural ecosystems and agrosystems are 421 needed – in part to highlight the benefits of sustainable plant health management strategies. Data 422 on plant disease impacts should for instance include the loss of natural vegetation due to crop

Page 18 of 88

423 abandonment and relocation because of crop diseases, and economic estimates of disease impacts

424 on forests. We offer lines of thoughts to address these questions.

425 A first line of thoughts is that collective action (Nordman, 2021; among scientists and with 426 support of scientific societies), on a common good (e.g., plant health), may succeed in delivering 427 wide-ranging, public information (global plant health). The overall result exceeds what an individual 428 could possibly do, and may be useful for further action (Nordman, 2021), including the 429 development of policy recommendations for plant health globally. Such data are also required for 430 education, extension, and research prioritization, as well as for the development of disease 431 management strategies under climate and global changes. 432 A second line of thought may concern specific ecoregions. The present study highlights the 433 tragically poor overall status of plant health in sub-Saharan Africa, with massive crop losses, 434 pathogen invasions, human health risks (e.g., from mycotoxins, along with dangerous pesticides), 435 and dramatic collateral destruction of nature. This situation compounds the difficulties of the

436 continent to feed itself (van Ittersum et al. 2016). Basic training in field work, together with the re-

437 construction of public advisory systems to farmers (i.e., extension services), are urgent in the Global

438 South, sub-Saharan Africa in particular.

Global change might perhaps be slowed but is inexorable because of the inertia of Earth climate and its primary driver, human population. Resilience through botanical and genetic diversification seems essential to minimize the current and future impacts of global change. This has application in forestry (as in the softwoods in North America), urban trees (as on the plane trees of the Canal du Midi), and to global agriculture (Stukenbrock and McDonald 2008).

Despite accumulating evidence in a wide range of case studies (Jeger, 2022), the impacts of climate change on plant diseases are still mostly un-assessed and inadequately understood. The effects of climate variability combined with infection on plant physiology are complex. Much research is also needed to better understand tree decline. We still know too little of the effects of climate variability on the phytobiome, even for well-studied plants such as cereals, with the induced

449 changes in physiology, resistance, or susceptibility on a stressed phytobiome-plant system (Jeger, 450 2022). 451 Host plant resistance (HPR) remains the most reliable and environment-friendly disease 452 management instrument. Because HPR is seed-based, resistant crop varieties can be accessible to 453 farmers at an affordable cost with large benefits. HPR is pro-poor (if bred into varieties, not hybrids) 454 and makes pesticide use superfluous when resistance genes are effective enough. Many domains of 455 HPR are still open to further investigation; for instance, in multi-pathogen diseases, in the 456 interaction of HPR with the phytobiome, and in the relations of HPR with crop physiology in 457 agriculture. 458 The findings from the Global Plant Health Assessment exemplify the diversity in pathogens and 459 diseases which impair plant health, the diversity of their consequences on ecosystem services, and 460 the diversity of factors which impact or preserve plant health. Improving plant health, in turn, calls 461 for multidisciplinary research (plant pathology, ecology, economics, and sociology) to develop 462 cohesive and sustainable strategies involving diversity within and among plant systems. Challenges 463 met with improving plant health echo challenges to uphold global common goods (Hardin, 2011), 464 which have to urgently be simultaneously addressed: climate (Skea et al. 2022), food (FAO, IFAD, 465 UNICEF, WFP, and WHO, 2022), water, energy (Costanza et al. 2013), and biodiversity (Myers et al 2000). This is because plant health is also a common good. As such, plant health needs to be 466 467 investigated and nurtured through collective actions (Nordman, 2011); the Global Plant Health 468 Assessment is a step in this direction. Collective action to improve plant health requires changes in 469 the way scientists work, from competing individuals to co-operative collectives, and from discipline-470 focused investigations to multidisciplinary-oriented science.

471 472

473 Literature Cited

- 474 Avelino, J., Allinne, C., Cerda, R., Willocquet, L., and Savary, S., 2018. Multiple-disease system in
- 475 coffee: From crop loss assessment to sustainable management. Annu. Rev. Phytopathol.
- 476 56:611-635.
- Badgley, C., and Perfecto, I., 2007. Can organic agriculture feed the world? Renew. Agr. Food Syst.
 22(2):80-86.
- 479 Bailey, R. 1996. *Ecosystem Geography*. New York: Springer.
- 480 Barnwal, M. K., Kotasthane, A., Magculia, N., Mukherjee, P. K., Savary, S., Sharma, A. K., Singh, H. B.,
- 481 Singh, U. S., Sparks, A. H., Variar, M., and Zaidi, N. 2013. A review on crop losses, epidemiology
- 482 and disease management of rice brown spot to identify research priorities and knowledge
- 483 gaps. Eur. J. Plant Pathol. 136:443-457.
- 484 Bond, W. J. 1994. Keystone Species. Pages 237-253 in: Biodiversity and Ecosystem Function. Schulze,
- 485 ED., Mooney, H.A. (eds) Springer Science & Business Media.
- 486 Bonman, J. M., Khush, G. S., and Nelson, R. J., 1992. Breeding rice for resistance to pests. Annu. Rev.
- 487 Phytopathol. 30(1):507-528.
- 488 Boudreau, M.A., 2013. Diseases in intercropping systems. Annu. Rev. Phytopathol. 51:499-519.
- Boyce, C. K., and Lee, J. E. 2017. Plant evolution and climate over geological timescales. Annu. Rev.
 Earth Planet. Sci. 45:61-87.
- Brasier, C. M. 2008. The biosecurity threat to the UK and global environment from international trade
 in plants. Plant Pathol. 57:792–808.
- Busby, P. E., Ridout, M., and Newcombe, G. 2016. Fungal endophytes: modifiers of plant disease.
 Plant Mol. Biol. 90:645–655.
- 495 Cahill, D. M., Rookes, J. E., Wilson, B. A., et al. 2008. Phytophthora cinnamomi and Australia's
- 496 biodiversity: impacts, predictions and progress towards control. Aust. J. Bot. 56(4):279-310.

497	Cardenas, R.E., Valencia, R., Kraft, N.J., Argoti, A., and Dangles, O. 2014. Plant traits predict inter-and
498	intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest
499	tree community. J. Ecol. 102(4):939-952.

- 500 Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Eduardo Aucique-Pérez, C., Moreira, S.
- 501 I., et al. 2018. Wheat blast: past, present, and future. Annu. Rev. Phytopathol. 56:427–456.
- 502 Chadwick, D., and Marsh, J., eds. 1993. *Crop Protection and Sustainable Agriculture*. Chichester, UK:
 503 John Wiley & Sons.
- Chakraborty, S., and Newton, A. C. 2011. Climate change, plant diseases and food security: an
 overview: Climate change and food security. Plant Pathol. 60:2–14.
- 506 Cheatham, M. R., Rouse, M. N., Esker, P. D., Ignacio, S., Pradel, W., Raymundo, R., et al. 2009. Beyond
- 507 yield: plant disease in the context of ecosystem services. Phytopathology 99:1228-1236.
- 508 Coyne, D. L., Dubois, T., and Daneel, M. S. 2017. Integrated pest management in banana and
- plantain. Pages 229-245 in: Integrated Pest Management in Tropical Regions. Wallingford, UK:
 CABI.
- 511 Connor, D. J. 2008. Organic agriculture cannot feed the world. Field Crops Research 106(2):187.
- 512 Costanza, R., Alperovitz, G., Daly, H., Farley, J., Franco, C., Jackson, T., Kubiszewski, I., Schor, J. and
- 513 Victor, P. 2013. Building a sustainable and desirable economy-in-society-in-nature: Report to
 514 the United Nations for the 2012 Rio+ 20 Conference. ANU Press.

515 Crisp, M. D., and Cook, L. G. 2013. How was the Australian flora assembled over the last 65 million

516 years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44:303–324.

517 Delatour, C. 1983. Les dépérissements de chênes en Europe. Rev. For. Fran. 35:303–324.

- 518 Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D., and Vannini, A. 2006. Interactive
- 519 effects of drought and pathogens in forest trees. Ann. For. Sci. 63:597–612.
- 520 Dinoor, A., and Eshed, N. 1984. The role and importance of pathogens in natural plant communities.

521 Annu. Rev. Phytopathol. 22:443–466.

522 Dobbs, R. 2010. Mega Cities. Foreign Policy 181:132-135.

- 523 Döring, T. F., Pautasso, M., Finckh, M. R. and Wolfe, M. S., 2012. Concepts of plant health–reviewing
- and challenging the foundations of plant protection. Plant Pathol. 61(1):1-15.
- 525 Eck, J. L., Stump, S. M., Delavaux, C. S., Mangan, S. A., and Comita, L. S. 2019. Evidence of within-
- 526 species specialization by soil microbes and the implications for plant community diversity.
- 527 Proc. Natl. Acad. Sci. USA 116:7371-7376. doi: 10.1073/pnas.1810767116.
- 528 Fan, J., Yang, J., Wang, Y.-Q., et al. 2016. Current understanding on Villosiclava virens, a unique
- 529 flower infecting fungus causing rice false smut disease: A profile on the rice false smut
- 530 pathogen. Mol. Plant Pathol. 17:1321–1330. https://doi.org/10.1111/mpp.12362
- 531 Garrett, K. A., Forbes, G. A., Savary, S., Skelsey, P., Sparks, A. H., Valdivia, C., et al. 2011. Complexity in
- 532 climate-change impacts: an analytical framework for effects mediated by plant disease:
- 533 Complexity in climate-change impacts. Plant Pathol. 60:15–30.
- Geils, B. W., Hummer, K. E., and Hunt R. S. 2010. White pines, Ribes, and blister rust : A review and
 synthesis. For. Pathol. 40:147-185. Doi: 10.1111/j.1439-0329.2010.00654.x
- 536 Gilbert, G. S. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annu. Rev.
- 537 Phytopathol. 40:13–43.
- 538 Goellner, K., Loehrer, M., Langenbach, C., Conrath, U. W. E., Koch, E., & Schaffrath, U. 2010.
- 539 *Phakopsora pachyrhizi*, the causal agent of Asian soybean rust. Mol. Plant Pathol. 11:169-177.
- 540 GPHA 2022a. Global Plant Health Assessment. An international peer-reviewed evaluation of the state
- of plant health across ecoregions of the world, and of the effects of plant disease on
- 542 ecosystem services. Willocquet, L., Singh, M., Sah, S., Bove, F., Savary, S., Yuen, J. (Eds.) First
- 543 Edition, epub. ISBN: 978-91-988233-0-1. Available
- 544 at:https://www.isppweb.org/about_gpha.asp
- 545 GPHA 2022b. Global Plant Health Assessment. An international peer-reviewed evaluation of the state
- 546 of plant health across ecoregions of the world, and of the effects of plant disease on
- 547 ecosystem services. Willocquet, L., Singh, M., Sah, S., Bove, F., Savary, S., Yuen, J. (Eds.) First
- 548 Edition, pdf. ISBN: 978-91-988233-1-8. Available at: <u>https://www.isppweb.org/about_gpha.asp</u>

- 549 Grünwald N. J., LeBoldus J.M., and Hamelin R.C. 2019. Ecology and evolution of the sudden oak death
 550 pathogen *Phytophthora ramorum*. Annu. Rev. Phytopathol. 57:301-321.
- Hardin, G., 1968. The tragedy of the commons: the population problem has no technical solution; it
- requires a fundamental extension in morality. Science 162(3859):1243-1248.
- 553 Heesterbeek, J. A. P. and Zadoks, J. C., 1987. Modelling pandemics of quarantine pests and diseases:
- problems and perspectives. Crop Prot. 6(4):211-221.
- 555 Hovmøller, M. S., Walter, S., Bayles, R. A., Hubbard, A., Flath, K., Sommerfeldt, N., Leconte, M.,
- 556 Czembor, P., Rodriguez-Algaba, J., Thach, T., and Hansen, J.G. 2016. Replacement of the
- 557 European wheat yellow rust population by new races from the centre of diversity in the
- 558 near-Himalayan region. Plant Pathol. 65(3):402-411.
- 559 Hyatt-Twynam, S. R., Parnell, S., Stutt, R. O., Gottwald, T. R., Gilligan, C. A., and Cunniffe, N. J. 2017.
- 560 Risk-based management of invading plant disease. New Phytol. 214(3):1317-1329.
- Van Ittersum, M. K., van Bussel, L. G. J., Wolf, J., Grassini, P., van Wart, J., Guilpart, N., et al. 2016.
 Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. U.S.A. 113:14964–14969.
- 563 Jeger M. J. 2022. The impact of climate change on disease in wild plant populations and
- 564 communities. Plant Pathol. 71:111–130. https://doi.org/10.1111/ppa.134
- Keane, P., Gile, G., Podger, F., and Brown, B. 2000. *Diseases and Pathogens of Eucalypts*. Melbourne:
 CSIRO Publishing.
- 567 Kranz, J. 1990. Tansley Review No. 28 Fungal diseases in multispecies plant communities. New Phytol.
 568 116:383–405.
- Leach, J. E., Triplett, L. R., Argueso, C. T., and Trivedi, P. 2017. Communication in the phytobiome. Cell
 169:587–596.
- 571 Leffelaar, P.A. ed., 2012. On Systems Analysis and Simulation of Ecological Processes with Examples in
 572 CSMP and FORTRAN (Vol. 1). Berlin, Heidelberg: Springer Science & Business Media.
- 573 Mahuku, G., Lockhart, B. E., Wanjala, B., Jones, M. W., Kimunye, J. N., Stewart, L. R., Cassone, B. J.,
- 574 Sevgan, S., Nyasani, J. O., Kusia, E., and Kumar, P. L. 2015. Maize lethal necrosis (MLN), an

575 emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology

576 105(7):956-965.

577 MEA – Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis.

578 Washington, DC, USA: Island Press.

- 579 Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K. H., Smith, P., Klocke,
- 580 P., Leiber, F., Stolze, M., and Niggli, U., 2017. Strategies for feeding the world more sustainably
 581 with organic agriculture. Nat. Commun. 8(1):1-13.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. and Kent, J., 2000. Biodiversity
 hotspots for conservation priorities. Nature 403(6772):853-858.
- 584 Nordman, E. 2021. The Uncommon Knowledge of Elinor Ostrom Essential Lessons for Collective
- 585 Action. Washington, DC, USA: Island Press.
- Panconesi, A. 1999. Canker stain of plane trees: a serious danger to urban plantings in Europe. J.
 Plant Pathol. 81:3-15
- Paseka, R. E., White, L. A., Van de Waal, D. B., Strauss, A. T., González, A. L., Everett, R. A., et al. 2020.
- 589 Disease-mediated ecosystem services: Pathogens, plants, and people. Tr. Ecol. Evol. 35:731-590 743.
- 591 Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M.S., Gary, C., Lafond, D., Duso, C.,
- 592 Thiery, D., and Mazzoni, V., 2017. A critical review of plant protection tools for reducing
- 593 pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture.
- 594 Crop Prot. 97:70-84.
- 595 Pingali, P., and Heisey, P. 1999. *Cereal Crop Productivity in Developing Countries: Past Trends and*596 *Future Prospects. Economics Working Papers.* Mexico: CIMMYT.
- 597 Reddy, C. S., Laha, G. S., Prasad, M. S., Krishnaveni, D., Castilla, N. P., Nelson, A., and Savary, S. 2011.
- 598 Characterizing multiple linkages between individual diseases, crop health syndromes,
- 599 germplasm deployment, and rice production situations in India. Field Crop. Res. 120(2):241-
- 600 253.

- Rojstaczer, S., Sterling, S. M., and Moore, N. J. 2001. Human appropriation of photosynthesis
 products. Science 294:2549–2552.
- 603 Russell, R., Guerry, A. D., Balvanera, P., Gould, R. K., Basurto, X., Chan, K. M., Klain, S., Levine, J., and
- Tam, J. 2013. Humans and nature: how knowing and experiencing nature affect well-being.
- 605 Annu. Rev. Envir. Res. 38:473-502.
- Savary, S. 2014. The roots of crop health: cropping practices and disease management. Food Secur.
 607 6:819–831.
- Savary, S., Bosc, J.P., Noirot, M. and Zadoks, J.C., 1988. Peanut rust in West Africa: a new component
 in a multiple pathosystem. Plant Dis. 72(12):1001-1009.
- 610 Savary, S., Teng, P. S., Willocquet, L., and Nutter, Jr, F. W. 2006. Quantification and modeling of crop
- 611 losses: a review of purposes. Annu. Rev. Phytopathol. 44:89-112.
- Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. 2019. The global
 burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430–439.
- 614 Sharma, R. C., Duveiller, E., and Ortiz-Ferrara, G. 2007. Progress and challenge towards reducing
- 615 wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change
- 616 already taking its toll? Field Crop. Res. 103:109–118.
- 617 Singh, P. K., Gahtyari, N. C., Roy, C., Roy, K. K., He, X., Tembo, B., Xu, K., Juliana, P., Sonder, K., Kabir,
- 618 M. R., and Chawade, A., 2021. Wheat blast: a disease spreading by intercontinental jumps and 619 its management strategies. Front. Plant Sci. 1467
- 620 Skea, J., Shukla, P.R., Reisinger, A., Slade, R., Pathak, M., Al Khourdajie, A., van Diemen, R., Abdulla,
- 621 A., Akimoto, K., Babiker, M. and Bai, Q., 2022. Summary for policymakers. In: Climate Change
- 622 2022: Mitigation of Climate Change: Contribution of Working Group III to the Sixth Assessment
- 623 Report of the Intergovernmental Panel on Climate Change. University Press: Cambridge.
- 524 Steiner, A., 2020. The Next Frontier: Human Development and the Anthropocene (Foreword). United
- 625 Nations Development Program. <u>https://www.undp.org/belarus/publications/next-frontier-</u>
- 626 <u>human-development-and-anthropocene</u>. Retrieved 9 April 2022.

- 627 Stukenbrock, E. H., and McDonald, B. A. 2008. The origins of plant pathogens in agro-ecosystems.
- 628 Annu. Rev. Phytopathol. 46:75–100.
- 629 Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J., and
- 630 Woods, A. J. 2011. Climate change and forest diseases. Plant Pathol. 60:133-149.
- 631 Saunders, D. G., Pretorius, Z. A. and Hovmøller, M. S., 2019. Tackling the re-emergence of wheat
- 632 stem rust in Western Europe. Communications Biology 2(1):51.
- 633 Teshome, D. T., Zharare, G. E., and Naidoo, S. 2020. The threat of the combined effect of biotic and
- abiotic stress factors in forestry under a changing climate. Front. Plant Sci. 1874
- 635 https://doi.org/10.3389/fpls.2020.601009
- 636 Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., and Matson, P. A. 1986. Human appropriation of the
- 637 products of photosynthesis. BioScience 36:368–373.
- 638 Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. 2000. Global water resources:
- 639 vulnerability from climate change and population growth. Science 289:284–288.
- 640 Weltzien, H. C. 1972. Geophytopathology. Annu. Rev. Phytopathol. 10:277–298.
- 641 FAO, IFAD, UNICEF, WFP and WHO. 2022. The State of Food Security and Nutrition in the World 2022.
- 642 Repurposing food and agricultural policies to make healthy diets more affordable. Rome: FAO.
- 643 https://doi.org/10.4060/cc0639en
- 644 Willocquet, L., and Savary, S. 2004. An epidemiological simulation model with three scales of spatial
 645 hierarchy. Phytopathology 94:883–891.
- 646 Wilson, E. 1992. The Diversity of Life. Cambridge, USA: Belknap Press of Harvard University Press.
- 647 United Nations (2019) World Population Prospects 2019. https://population.un.org/wpp/. Accessed
- 648 9 Nov 2019.
- 649 Wulf, A. 2015. *The Invention of Nature The Adventures of Alexander von Humboldt, the Lost Hero of*650 *Science*. London, UK: John Murray.
- Zadoks, J. C., and Schein, R. D. 1979. *Epidemiology and Plant Disease Management*. New York, USA:
 Oxford University Press.

653 Authorship

- 654 Author: Global Plant Health Assessment Project (GPHA)*
- 655 Corresponding Author:
- 656 Serge Savary (ssavary01@gmail.com); INRAE, France; Honorary Professor of Plant Pathology,
- 657 GBPUAT, India; Visiting Scholar, University of California Davis, USA.
- 658 *Global Plant Health Assessment Project:
- 659 Coordination:

660 Serge Savary, INRAE, France, GB Pant University of Agriculture & Technology (GBPUAT), India, Visiting

661 Scholar, University of California - Davis, USA; Didier Andrivon, INRAE, France; Paul Esker, Penn State

662 University, USA; Pascal Frey, INRAE, France; Daniel Hüberli, Government of West Australia, Australia;

J Kumar, GBPUAT, Vice-Chancellor, Graphic Era University, India; Bruce A. McDonald, ETH Zürich,

664 Switzerland; Neil McRoberts, University of California - Davis, USA; Andrew Nelson, University of

665 Twente, the Netherlands; Sarah Pethybridge, Cornell University, USA; Vittorio Rossi, Università

666 Cattolica del Sacro Cuore, Italy; Pepijn Schreinemachers, World Vegetable Center, Thailand; Laetitia

- 667 Willocquet, INRAE, France.
- 668 Secretariat:

669 Laetitia Willocquet, INRAE, France; Federica Bove, Università Cattolica del Sacro Cuore, Italy; Sonam

670 Sah, GBPUAT, India; Serge Savary, INRAE, France, GBPUAT, India, Visiting Scholar, University of

- 671 California Davis, USA; Manjari Singh, GBPUAT, India.
- 672

673 Wheat: Western Europe: Lead: Laetitia Willocquet, INRAE, France; Experts: Annika Djurle, Swedish

- 674 University of Agricultural Sciences, Sweden; Vittorio Rossi, Università Cattolica del Sacro Cuore, Italy;
- Kiangming Xu, NIAB EMR, United Kingdom. North America: Lead: Paul Esker, Penn State University,

USA; Experts: Peter Ojiambo, North Carolina State University, USA; Pierce Paul, Ohio State University,

- 677 USA. South America: Lead: Emerson Del Ponte, Universidade Federal de Viçosa, Brazil; Experts: Paulo
- 678 Kuhnem, Biotrigo Genética, Brazil; Marcelo Carmona, Universidad de Buenos Aires, Argentina;
- 679 Francisco Sautua, Universidad de Buenos Aires, Argentina. South Asia: Expert: Serge Savary, INRAE,
- 680 France, GBPUAT, India, University of California Davis, USA, Visiting Scholar; Experts: J Kumar,
- 681 GBPUAT, Graphic Era University, India; Manjari Singh, GBPUAT, India; Sonam Sah, GBPUAT, India.
- East Asia: Lead: Xianming Chen, USDA, Washington State University, USA; Experts: Xianchun Xia,
- 683 Chinese Academy of Agricultural Sciences, China; Zhensheng Kang; Northwest A&F University, China.
- 684 Rice: Southeast Asia: Lead: Serge Savary, INRAE, France, GBPUAT, India, University of California -
- Davis, USA, Visiting Scholar; Experts: Irda Safni, Universitas Sumatera Utara, Indonesia; Nancy P.
- 686 Castilla, International Rice Research Institute, Philippines; Nga Thi Thu Nguyen, Can Tho University,
- 687 Vietnam. South Asia: Lead: Serge Savary, INRAE, France, GBPUAT, India, University of California -
- 688 Davis, USA, Visiting Scholar; Experts: J Kumar, GBPUAT, Graphic Era University, India; Manjari Singh,
- 689 GBPUAT, India; Sonam Sah, GBPUAT, India. East Asia: Lead: Zhanhong Ma, China Agricultural

- 690 University, China; Experts: Serge Savary, INRAE, France, GBPUAT, India, University of California 691 Davis, USA, Visiting Scholar; Boming Wu; China Agricultural University, China.
- 692 Maize: North America: Lead: Paul Esker, Penn State University, USA; Experts: Peter Ojiambo, North
- 693 Carolina State University, USA; Pierce Paul, Ohio State University, USA. Sub-Saharan Africa: Lead:
- Lava Kumar, International Institute of Tropical Agriculture (IITA), Nigeria; Experts: Ranajit
- 695 Bandyopadhyay, IITA, Nigeria; Alejandro Ortega-Beltran, IITA, Nigeria; Abebe Menkir, IITA, Nigeria.
- 696 Potato: East Asia: Lead: Xiangming Xu, NIAB EMR, United Kingdom; Expert: Xiaoping Hu, Northwest
- 697 A&F University, China. South America: Lead: Karen A. Garrett, University of Florida, USA; Experts:
- 698 Jorge Andrade-Piedra, International Potato Center (CIP), Peru; Jan Kreuze, CIP, Peru; Ivette Acuña,
- 699 Instituto de Investigaciones Agropecuarias, Chile. Europe: Lead: Peter Kromann; Wageningen
- 700 University & Research, The Netherlands; Experts: Triona Davey, SASA, United Kingdom; Hans
- 701 Hausladen, TUM School of Life Sciences, Germany.
- 702 Cassava: Lead: James (Peter) Legg, IITA, Tanzania; Experts: Lava (P) Kumar, IITA, Nigeria; Komi
- 703 (Mokpokpo) Fiaboe, IITA, Cameroon.
- 704 Banana & plantains: Lead: Leena Tripathi, IITA, Kenya; Experts: Altus Viljoen, Stellenbosch University,
- South Africa; Lava Kumar, IITA, Nigeria; George Mahuku, IITA, Tanzania; Jerome Kubiriba, National
 Agricultural Research Organization (NARO), Uganda.
- 707 Grapevine: Lead: Vittorio Rossi, Università Cattolica del Sacro Cuore, Italy; Experts: Josep Armengol,
- 708 Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Spain; Agnès Calonnec,
- 709 INRAE, France; Cristina Marzachì, CNR Istituto per la protezione Sostenibile delle Piante, Italy.
- Fruits & nuts: Lead: Clive (Howard) Bock, USDA-ARS, USA; Experts: Megan (Melissa) Dewdney, Citrus
 Research and Education Center, University of Florida, USA; Kerik (Denton) Cox, Cornell AgriTech, USA.
- Coffee: Lead: Jacques Avelino, CIRAD, France; Expert: Serge Savary, INRAE, France, GBPUAT, India,
 University of California Davis, USA, Visiting Scholar.
- 714 Citrus: Lead: Sara García-Figuera, University of California Davis, USA; Experts: Helvecio Della
- 715 Coletta-Filho, Centro de Citricultura, Instituto Agronômico, Brazil; Antonio Vicent, Instituto
- 716 Valenciano de Investigaciones Agrarias, Spain; André Drenth, The University of Queensland,
- 717 Australia; Paul Hendrik Fourie, Citrus Research International, University of Stellenbosch, South Africa;
- 718 Zhou Changyong, Southwest University, China.
- 719 Peri-urban horticulture and household gardens: Sub-Saharan Africa: Lead: Wubetu Bihon Legesse,
- 720 World Vegetable Center, Ethiopia; Experts: Pepijn Schreinemachers, World Vegetable Center,
- 721 Thailand; Lawrence Kenyon, World Vegetable Center, Taiwan; Ramasamy Srinivasan, World
- 722 Vegetable Center, Taiwan. South Asia: Lead: Ramasamy Srinivasan, World Vegetable Center, Taiwan;
- 723 Experts: Pepijn Schreinemachers, World Vegetable Center, Thailand; Lawrence Kenyon, World
- 724 Vegetable Center, Taiwan; Wubetu Bihon Legesse, World Vegetable Center, Ethiopia. Southeast Asia:
- 725 Lead: Lawrence Kenyon, World Vegetable Center, Taiwan; Experts: Pepijn Schreinemachers, World
- 726 Vegetable Center, Thailand; Ramasamy Srinivasan, World Vegetable Center, Taiwan; Wubetu Bihon
- 727 Legesse, World Vegetable Center, Ethiopia.

Urban trees: Lead: Pascal Frey; INRAE, France, Expert: Alberto Santini; National Research Council of
 Italy, Italy; Maxime Guérin, Plante & Cité, France; Jean Pinon, INRAE, France.

- 730 Oaks: Europe: Lead: Marie-Laure Desprez-Loustau, INRAE, France; Experts: Sandra Denman, Forest
- 731 Research, United Kingdom; Alexis Ducousso, INRAE, France. North America: Expert: Susan J. Frankel,
- U.S. Forest Service, Pacific Southwest Research Station, Albany, CA, USA; Experts: Jennifer Juzwik,
- 733 U.S. Forest Service, Northern Research Station, St. Paul, MN, USA; David M. Rizzo, University of
- 734 California Davis, USA.
- 735 Softwood trees: Lead: Alex John Woods, BC Ministry of Forests, Canada; Experts: Isabel (Alvarez)
- 736 Munck, USDA Forest Service, USA; Anna Leon, Weyerhaeuser Company, USA; Tod Ramsfield, Natural
- 737 Resources Canada, Canada.
- 738 Eucalypts: Lead: Angus J. Carnegie, Forest Science, Department of Primary Industries, Australia;
- 739 Experts: Emer O'Gara, Parks and Wildlife Service, Department of Biodiversity, Western Australia;
- Robert O. Makinson, Australian Network for Plant Conservation, Australia; Giles E. St. J. Hardy,
- 741 Murdoch University, Australia.
- 742 Amazon: Lead: Tania Brenes-Arguedas, University of California Davis, USA; Experts: A. Elizabeth
- Arnold, University of Arizona, USA; Phyllis D. Coley, University of Utah, USA; Erin R. Spear,
- 744 Smithsonian Tropical Research Institute, USA; Paul-Camilo Zalamea, University of South Florida, USA.
- 745 International Experts: Marc-Henri Lebrun, INRAE, France; Alexey Mikaberidze, University of Reading,
- 746 United Kingdom; Jonathan Yuen, Swedish University of Agricultural Sciences, Sweden.
- 747

748 Acknowledgments:

- We are grateful to the Executive Committee of the International Society for Plant Pathology for itscontinuous support to this project.
- 751 This research was partly funded by: Australian Network for Plant Conservation, Australia; BC Ministry
- of Forests, Canada; Biotrigo Genética, Brazil; Can Tho University, Vietnam; Centro de Citricultura,
- 753 Instituto Agronômico, Brazil; China Agricultural University, China; Chinese Academy of Agricultural
- 754 Sciences, China; CIP, Peru; CIRAD, France; Citrus Research International, South Africa; Citrus Research
- 755 International, South Africa; Cornell AgriTech, USA; ETH Zürich, Switzerland; Forest Research, United
- 756 Kingdom; Forest Science, Department of Primary Industries, Australia; GBPUAT, India; Graphic Era
- 757 University, India; Daniel Hüberli; Government of West Australia, Australia; IITA, Cameroon; IITA,
- 758 Kenya; IITA, Nigeria; IITA, Tanzania; INRAE, France (through the Plant Health Department, the
- Adaptation of Agriculture and Forest to Climate Change Metaprogram; the Sustainable Management
- of Plant Health Metaprogram); Instituto Agroforestal Mediterráneo, Spain; Instituto de
- 761 Investigaciones Agropecuarias, Chile; Instituto Valenciano de Investigaciones Agrarias, Spain;
- 762 International Institute of Tropical Agriculture (IITA), Nigeria; International Potato Center (CIP), Peru;
- 763 International Rice Research Institute, Philippines; Istituto per la protezione Sostenibile delle Piante,
- 764 Italy; Murdoch University, Australia; National Agricultural Research Organization (NARO), Uganda;
- 765 National Research Council of Italy, Italy; NIAB EMR, United Kingdom; North Carolina State University,
- 766 USA; Northern Forestry Centre, Canada; Northwest A&F University, China; Ohio State University,

- 767 USA; Parks and Wildlife Service, Department of Biodiversity, Western Australia; Penn State
- 768 University, USA; Plante & Cité, France; SASA, United Kingdom; Smithsonian Tropical Research
- 769 Institute, USA; Southwest University, China; Stellenbosch University, South Africa; Swedish University
- of Agricultural Sciences, Sweden; The University of Queensland, Australia; TUM School of Life
- 771 Sciences, Germany; U.S. Forest Service, USA; Universidad de Buenos Aires, Argentina; Universidad de
- 772 Buenos Aires, Argentina; Universidade Federal de Viçosa, Brazil; Università Cattolica del Sacro Cuore,
- 773 Italy; Universitat Politècnica de València, Spain; University of Arizona, USA; University of California -
- Davis, USA; University of Florida, USA; University of Twente, the Netherlands; University of Utah,
- USA; Universitas Sumatera Utara, Indonesia; University of Reading, United Kingdom; USDA Forest
- 776 Service, USA; USDA-ARS, USA; Wageningen University & Research, The Netherlands; Washington
- 777 State University, USA; Weyerhaeuser Company, USA; World Vegetable Center, Ethiopia; World
- 778 Vegetable Center, Taiwan; World Vegetable Center, Thailand.
- The GPHA workshop held in Toulouse was sponsored by the OECD Co-operative Research
- 780 Programme: Sustainable Agricultural and Food Systems (PI: Serge Savary; Co-PIs: Paul Esker and
- 781 Laetitia Willocquet). We thank Ms. Janet Schofield at the OECD-CRP Office in Paris.
- 782 We thank the Toulouse School of Economics-Research led by Dr. Arnaud Reynaud, and in particular
- 783 Ms. Aline Couratier (TSE-R) and Ms. Stéphanie Risser (TSE) at Toulouse. We wish also to thank Ms.
- 784 Sophie Collet (INRAE IGEPP) at Rennes, France.

Sidebar 1

Sidebar 2

Figure 1. Distribution of [Plant System x Ecoregion] systems considered in the Global Plant Health Assessment, megacities, biodiversity hotspots, sources and sinks of food, and water resource

A: Approximate locations of the [Plant System x Ecoregion] systems considered in the Global Plant Health Assessment.

B: Megacities (https://en.wikipedia.org/wiki/Megacity): only megacities with more than 10 million inhabitants are shown. Biodiversity hotspots are approximately redrawn from Wilson (1992).

C: Some major global food (cereal) sources and food sinks.

D: Water discharge based on climate change and population. Approximately redrawn from Vörösmarty et al. (2000).

Figure 2. Proportions of [Ecoregion × Plant System] cases with respect to plant health assessment and consequences of plant health on ecosystem services (provisioning, regulating, and cultural)

Number (total 33) of [Ecoregion × Plant System] vary according to the attribute (plant health, provisioning services, regulating services cultural services) considered. Entries indicate the number of [Ecoregion × Plant System] considered.

Fig. 3. Distribution of key challenges associated with plant health as reported in the Global Plant Health Assessment

A. Pathogen invasions. Large scale polyetic disease expansions (i.e., pandemics, Heesterbeek and Zadoks, 1987) are reported in several forest systems (oak and softwood forests in North America; eucalypt forests in Australia), with potentially severe consequences on biodiversity. Perennial plant systems (urban trees, citrus plantations in the New World and Europe) are also concerned. Serious large-scale epidemics are reported in food crops of sub-Saharan Africa (banana and plantains, maize, and cassava). Field crops in Western Europe and South Asia (wheat, potato) have witnessed recurrent invasions of pathogens strengthened by strong pathogen evolution, exemplified especially by potato late blight. The expansion of false smut of rice across East, South, and South East Asia appears to have been associated with that of hybrid rice cultivation. In the recent decades, a coupled regional climate - disease system has established yearly in South-East Asia (where vectors multiply and acquire viruses) and East Asia (to which viruliferous vectors are transported as the summer monsoon progresses northwards; see details in text and Supplementary File C).

B. Climate change. The increased frequency of extended droughts and excessive rains is reported in the Global Plant Health Assessment, especially in the softwood and oak forests of North America, where it is associated with increased insect and pathogen injuries. Climate change influence on plant health is reported in numerous field crops in a range of ecoregions, including maize in North America, potato in South America, Maize in sub-Saharan Africa, wheat and potato in Western Europe, and rice and wheat in South Asia. These effects are often superimposed with pathogen spatial expansion (Fig. 3A). Vegetable production in peri-urban systems of sub-Saharan Africa and South Asia are also concerned, as a result of increased pathogen vector activity.

C. Inspiration of nature in human-made and -managed plant systems. Perennial, complex, and multiple species plant systems generate food, income, and material goods in several ecoregions of the Global South. In many cases, these systems demonstrate resilience to disturbances, including plant diseases. Such systems include the agroforestry-coffee systems of Central America, or banana and plantains in sub-Saharan Africa. Cultivated inter-specific diversity prevails in many annual field crop systems of sub-Saharan Africa. Diseased plane trees are replaced by non-susceptible trees along the Canal du Midi, France, to generate botanical

diversity and reduce epidemic spread. Biological control and Integrated Pest Management have made headways in Europe's grapevines. New environment-friendly technologies are also being developed for the peri-urban vegetable production systems of sub-Saharan Africa, South, and South-East Asia.

D. Pesticide usage. An array of issues concerns the use of pesticides. Pesticide usage may be: (1) insufficient and/or inadequate (e.g., coffee, Central America); (2) the sole alternative to disease control, leading to over-reliance (e.g., potato, Western Europe), (3) inadequate for lack of chemical innovation in new compounds (e.g., grapevine, Western Europe), (4) challenged by pathogen adaptation (e.g., wheat, Western Europe), (5) excessive, leading to multiple environmental problems (e.g., rice, wheat, and potato in East Asia; potato in Western Europe; citrus in South America; and vegetable production in sub-Saharan Africa, South Asia, and South-east Asia), (6) associated with the use of banned pesticides, or pesticides that are dangerous to human health (vegetables, sub-Saharan Africa).
Plant Systems and their meaning (society, cultural)		Importance of ecosystem services	Known challenges of plant systems, including plant diseases	Ecoregions selected
silver coin, 4th ce East.	Wheat Line drawing: Demeter, goddess of harvest and agriculture, on a ntury BC, Middle-	Wheat is the most widely cultivated world food crop. WE, NAm, SAm, the plains of EA, and the Indo-Gangetic plains of SA are major world granaries, the first three as trade sources the last two, providing food to regional population hubs, each exceeding 1.3 billion humans.	Wheat yields have reached a plateau in most of the world's granaries. Many plant diseases affect wheat. Several invasions and pandemics occurred in the past 30 years. Some diseases are enhanced by climate change and may contribute to creating yield ceilings.	WE, NAm, SAm, EA, SA
	Rice Line drawing: Ifugao Sculpture, Philippines. The Louvre.	Rice is the icon of world's food crops. All of it is intended for human food, not for animal feed, biofuel, or industrial purpose. Most of the world's rice is produced and consumed in Asia, home to four billion humans and of 26 of the world's 42 megacities.	Rice yields have reached ceilings in several of the key Asian 'rice bowls' despite shortened crop rotations and strongly increased chemical inputs. Major rice diseases remain challenging and new ones are emerging.	SEA, EA, SA
he invented. Class. AD).	Maize Line drawing: Maya maize god. He also is the patron of scribal arts, which sic Period (200-900	Almost all maize plant parts can be used for food, animal feed, or industrial raw materials. Maize is at the center of strong value chains in NAm, mainly for purposes other than food. Maize is a major food crop in SSA.	Maize production systems in NAm and SSA are extremely different, with purposes in different technological and value-chain contexts. Many diseases, especially in SSA where several pandemics have occurred and disease emergences are threatening.	NAm, SSA
	Potato Line drawing: Axomamma, goddess of potato. Inca mythology.	Potato, domesticated in SAm, is the fourth most important world food crop by weight with half the world's production in China. Long value chains producing food to starch for various industries.	Production is threatened by climate change and diseases. Potato late blight remains a challenging problem globally with massive fungicide costs in the Global North.	SAm, EA, WE
	Cassava Line drawing: Head from Ife (Nigeria): 14th-15th century AD, bronze.	Manihot esculenta, a 16 th century introduction of slave traders from the Amazon to Africa, is critical to food security in SSA.	Cassava has a chronically poor productivity everywhere in SSA. Plant diseases are known as major bottleneck to productivity. Several pandemics have occurred in the past 30 years.	SSA
Kingdom, Democ Congo.	Banana and plantains Line drawing: Kifwebe mask; wood. Luba ratic Republic of	Banana and plantain (<i>Musa</i> spp.) are grown all over SSA for household consumption and local markets; only a small part of the banana production is internationally traded.	Banana and plantain productivity desperately low in SSA. Major diseases are chronic yield-reducers, and new, grave, diseases have developed recently.	SSA
ca. 53 BC. Vulci, I	Grapevine Line drawing: Dionysos in a ship, sailing among dolphins. Attic kylix, taly.	Grapevine is at the heart of Western culture. Spain, France and Italy are the world main grape-growing countries. Nearly 90% of the world's organic grape area is located in Europe today.	Pesticide use in grapevine remains excessively high. Fewer effective chemicals are made available. Complex (especially wood) diseases are becoming harder to manage.	WE
Newton's apple the College, Cambridge	Perennial fruits Line drawing: Reputed descendant of ree at Trinity ge.	Fruit trees are important for human nutrition and generate important value chains. A wide range of species of fruit trees is grown worldwide. Apple (<i>Malus</i> <i>domestica</i>) and pecan (<i>Carya illinoinensis</i>) are keystone species in NAm.	Shifts in crop management and climate change alter growing patterns. Chronic foliage and fruit diseases remain challenges.	NAm
	Coffee Line drawing: Sidamo coffee (<u>Coffea arabica</u>).	Arabica coffee (<i>Coffea arabica</i>) is one of the most traded agricultural products in the world. Coffee cultivation is especially	The coffee-shade tree system, the largest agroforestry system of CA, is threatened by new practices, new plant material (<i>C. robusta</i>). The coffee rust	CA

Coffee originates from Ethiopia and the southern tip of Arabia.		important in CAM, economically and environmentally.	crisis caused loss of income of many farm and field workers, aggravating poverty and food insecurity, and prompting migrations.	
José Moro de Vas Brazil.	Citrus Line drawing: O Meu Pé de Laranja Lima (My sweet Orange Tree), by concelos in 1968,	Citrus fruits have high nutritional value. Most are consumed fresh, but citrus generates strong value chains. Main citrus- growing areas include EA, SA, MED, NAm, SAm, SSA, and AUS.	Very large, well organized and industrialized production systems have shown their frailty in the New World. Successive pandemics have caused havoc in citrus plantations in NAm and SAm. Invasive diseases are threatening other production areas.	EA, SAm, NAm, MED, AUS, SSA
gardens Line drawing: Anr goddess of food a	Peri-Urban Horticulture and Household na Purna. Hindu and nourishment.	Peri-urban horticultural systems are worldwide suppliers of perishable fruits and vegetables to urban centers. Household- (home-, kitchen-, backyard-) gardens are essential to family food and nutrition security and are foci of biological diversity and knowledge conservation.	Peri-urban agriculture has met the challenges of meeting the needs of accelerated urbanization but faces sustainability challenges (soils, water, nutrients). Pesticide usage is a persistent issue. These systems face numerous grave pathogens, many soilborne.	SSA, SA, SEA
Army Plaza, New	Urban trees Line drawing: The Pulitzer Fountain, a fountain at Manhattan's Grand York, USA.	Urban vegetation is a collective good of great ecological, sociological, psychological, spiritual, political, and ethical value. Plane tree (<i>Platanus</i> sp.), a keystone species of European urban forests, can live up to 2000 years.	Urban trees are of extreme symbolic and environmental value. Numerous abiotic and biotic stresses occur in urban environments. Tree diseases can cause heavy losses in urban trees, such as the Dutch Elm Disease (<i>Ophiostoma</i> <i>novo-ulmi</i>) in Europe.	WE
	Oak forests Line drawing: The Big Oak. Painting by Gustave Courbet (1843).	Oaks (<i>Quercus</i> spp.) are key components of deciduous forests of WE and NAm with major cultural, socio-economic, and environmental value. Oak was designated by the Congress of the USA as national tree in 2004.	Climate change and invasions are constant threats for oaks and the oak- based forests, especially in NAm. The causation of tree decline is still challenging. Effects of interactions between abiotic and biotic factors remain uncertain.	WE, NAM
totem pole in Ket	Softwood forests Line drawing: <u>Pinus</u> <u>contorta</u> needles and cones and chikan, Alaska.	The managed softwood forests of NAm ensure important cultural and provisioning roles. Key species include the Loblolly pine, Douglas-fir, Lodgepole pine, Eastern white pine, and the Red and White spruces	Large effects of climate change on the sustainability of softwood forest. Some species threatened of extinction by diseases. Complex biotic-abiotic interactions.	NAm
300-50 BCE. American fr Kapoks. All have p value.	Amazon Forest Line drawing: World Tree, Izapa stela 5. Olmec art, rican ceibas are romagers and Asian profound spiritual	The Amazon, the largest tropical rainforest in the world, supports an extraordinary biodiversity, and ensures key climate regulation globally (water, carbon). We focus on two commodities: <i>Hevea</i> <i>brasiliensis</i> and <i>Theobroma cacao</i> , which grow in the wild.	The Amazon is threatened by human activities in the short term. No known disease challenges identified in plants growing in the wild.	SAm
ceremonial eleme aborigines. Aborio	Eucalypt forests Line drawing: Eucalypts are important ents for Australian ginal bark painting.	Eucalypts (genera <i>Eucalyptus, Corymbia,</i> <i>Angophora</i>), remnants of Gondwana's biodiversity, have Australia as center of diversity. Their forests generate key provisioning and regulating service while having immense cultural significance.	Climate change, and its effect on complex abiotic-biotic stresses, is a concern. Pathogen invasions are a constant threat to a unique biodiversity hotspot.	AUS

Abbreviations: WE: Western Europe; Nam: North America; Sam: South America; East Asia: EA; South Asia: SA; SEA: South-East Asia; sub-Saharan Africa: SSA; Central America: CA; Mediterranean: MED; Australasia: AUS. Line-drawings prepared from public domain sources (Wikipedia) and reprinted with permission from the GPHA, 2022.

Plant System	World Eco-	Overall state of	Level of confidence in	Main ecosystem services			Level of confidence in
	region	plant	assessment:	Provi-	Regu-	Culture	assessment:
What	W/ootorp	nealth	Plant health	sioning	lating		Services
Vileal	Europe	G	very confident	G			
	North America	G	very confident	F			reasonably confident
	South America	>	very confident	G			reasonably confident
	East Asia	F	reasonably confident	G			reasonably confident
	South Asia	F	reasonably confident	F			reasonably confident
Rice	South-East Asia	G	reasonably confident				reasonably confident
	East Asia	G	reasonably confident	G			reasonably confident
	South Asia	F	reasonably confident	G			reasonably confident
Maize	North America		reasonably confident	E			reasonably confident
	Sub- Saharan Africa	Р	reasonably confident	P			reasonably confident
Potato	South America		reasonably confident	F	P		reasonably confident
	East Asia	Р	reasonably confident	F			reasonably confident
	West Europe	G	very confident	P			very confident
Cassava	Sub- Saharan Africa	P	reasonably confident	P	F		reasonably confident
Banana and Plantains	Sub- Saharan Africa	P	very confident	F	F		reasonably to very confident
Grapevine	Western Europe	G	reasonably confident	E	E	E	reasonably confident
Perennial fruits	North America	_ 6	reasonably confident	_ 6		G	reasonably confiden
Coffee	Central America	P	very confident	F	G		very confident

Citrus	Global		reasonably confident	\mathbf{X}			reasonably confident
	East Asia		reasonably confident			6 4	reasonably confident
O meu pe de laranja eima	South America	F	reasonably confident			<mark>→</mark> P	reasonably confident
	North America	F	reasonably confident	F		P	reasonably confident
	Mediterran ean	G	reasonably confident	G		G	reasonably confident
	Australasia	G	reasonably confident	G			reasonably confident
	Sub- Saharan Africa	G	reasonably confident	_ E			reasonably confident
Peri-Urban Horticulture and Household Gardens	Sub- Saharan Africa	F	reasonably confident		P		reasonably confident
	South Asia	F	reasonably confident	∕ _G	F	G	uncertain to reasonably confident
	South-East Asia	G	reasonably confident		F		uncertain to reasonably confident
Urban Trees	Europe	P	reasonably confident		Р	P	reasonably confident
Oak forests	West Europe	F	reasonably confident		E	E	reasonably confident
	North America	F	reasonably confident	E	E	E	reasonably confident
Softwood Forests	North America	F	reasonably confident	G			reasonably confident
Amazon Forest	South America	G	reasonably confident	G	G		uncertain to reasonably confident
Eucalypts	Australasia		reasonably confident	G	G	G	reasonably confident

Caption of Table 2

Overall state of plant health: color of boxes (green, yellow, orange) and letters (G, F, P, E) refer to three levels of plant health over the past 30 years: "good", "fair", "poor", or "excellent". Directions of arrows indicate trends over the past 10 years (down: decline, level: stable, up: improving).

The same scales are used for ecosystems services (see text for explanation): provisioning, regulating, culture.

Levels of confidence are as indicated by Experts in their reports.

Icons for plant systems are explained in Table 1. Line-drawings prepared from public domain sources (Wikipedia) and reprinted with permission from the GPHA, 2022.

A global assessment of the state of plant health

Supplementary file A

reprinted with permission from the GPHA, 2022b

Standardized procedure to develop the reports: approach and methods, and report template

Approach and methods of the Global Plant Health Assessment

Aim of the Global Plant Health Assessment

The GPHA aims to provide a first ever overall assessment of plant health in both natural and humanmade ecosystems of the world. Plant health is assessed through the functions that plants ensure in ecosystems: ecosystem services (MEA 2005). The GPHA assesses plant health on the basis of published, science- and fact-based, expert evaluations. While the GPHA considers plant health from the angle of infectious diseases, it also addresses plant health as a whole. Its goal is to generate an overview of the current status and trends in plant health, and their outcomes on ecosystem services: provisioning (food, fiber, and material), regulating (climate, water, and soils), and cultural (re-creation, spiritual, and beauty). Policies must be grounded on scientific evidence: with the GPHA, we aim to produce material that will help developing policies to ensure sustainability of plant health globally and locally. The GPHA addresses some of the main broad types of the World's plant-systems. Each system in each ecoregion has been addressed by a small team composed of a Lead Expert with a group of 2-3 Experts. The initiative involved over 80 scientists across the world.

Overall principles and organization of the Assessment

Some key features of the GPHA are:

- Any terrestrial ecosystem in the world may be considered. These are referred to as Plant Systems, which can be human-made (e.g., agriculture) or not (e.g., ecosystems where human perturbations are limited).
- Among the human-made ecosystems, we considered (1) agrosystems, (2) peri-urban horticulture (3) household (kitchen) gardens, and (4) urban vegetation. The Assessment also considers a range of forest systems around the world.
- In this assessment, plant health is seen through the lens of infectious plant diseases. Because plant health is not restricted to infectious diseases, attention was also paid when relevant to factors which may influence the course of the healthy life of plants, whether biological (e.g., insects), physical (e.g., droughts, fires, and floods), or chemical (e.g., pesticides, and ozone). Abiotic diseases thus were not addressed *per se*; but biotic and abiotic factors were considered as factors of infectious diseases and their consequences. The GPHA therefore concentrated on viruses, bacteria, phytoplasma, fungi, oomycetes, nematodes, as well as on organisms (e.g., parasitic plants) behaving (e.g., dispersal, survival, specialization, adaptation) as plant pathogens. Pathogen vectors were also considered.
- The GPHA is entirely based on volunteered time from experts in plant pathology and associated fields.
- GPHA participants contribute in three different ways: to the overall coordination of the GPHA, as Lead Experts of a given team, or as Experts involved in one of the GPHA teams.
- The GPHA is coordinated by a team of Scientists with different expertise: Geography, Climatology, Sociology, Environmental Sciences, Economy, Systems Sciences, and, in Plant Pathology: Forest Pathology, Field crop pathology, Integrated Pest Management, Molecular Plant-Pathogen

Interactions, Epidemiology, and Crop Loss Analysis. Members of the coordination group come from different parts of the world.

- The project is templated on the MEA (2005): A series of ecoregions of the world are selected; in each of these, key Plant Systems are identified.
- For each [Plant System × Ecoregion] combination, teams were established, with a Lead Expert mobilizing a few (2 or 3) Experts.
- Each team produces a report on the state of plant health in its chosen [Plant System x Ecoregion]. These reports are standardized in format and size (Supplementary file A) with a specified set of questions. Standardization of reports is a critical way to: (1) minimize the volunteered time inputs of Lead Experts and Experts; (2) produce homogeneous reports in their formats and sizes, which (3) enables comparisons: for similar plant systems across ecoregions, and across plant systems within ecoregions.
- Each report is grounded on scientific, published, and citable evidence.
- Critically, the assessment considers plant health as a whole, and not specific plant diseases. Neither does a given report cover the entire set of plants or vegetation in a given plant system: keystone plant species are identified by each team, as indicated below and in Supplementary file C.

The assessment thus does not attempt to address all plant species of the biosphere. It considers a set keystone plant species (Bond 1994) distributed over ecoregions, the status of keystone being assigned to plants that play a critical role in natural (including managed) ecosystems or in human-made argrosystems. As a result, each report focuses on the overall state of health of a given (set of) keystone plant species in a chosen plant system.

Recognizing that plant health is an abstraction which cannot be quantitatively measured, GPHA reports (1) are designed to produce qualitative assessments based on verifiable, published data, and (2) focus on the consequences of plant health on ecosystem services (provisioning, regulating, and cultural), because these can be quantified or qualified. GPHA [Plant System × Ecoregion] reports were developed (Figure 1), on: (1) cereal systems; (2) roots and tubers, banana and plantain systems; (3) fruit trees and grapes; (4) peri-urban horticultural systems and household gardens; (5) urban vegetation; and (6) forest systems.

Steps of the Global Plant Health Assessment

The GPHA included three sets of steps, which are summarized below.

Steps to select [Ecoregion × Plant System] components

Communications and an e-conference were organized to enable the following steps: (1) a preliminary list of [Ecoregion × Plant System] combinations; (2) the selection of key ecoregions (Bailey 1996) in the world, based on their ecological relevance and diversity, and their role toward human population and societies; (3) the choice of plant systems on the basis of their importance (economic, social, cultural, and ecological) to human societies; (4) the selection of critically important [Ecoregion × Plant System] combinations from the ecological, biodiversity, and agricultural (global food security) standpoints; and (5) within each prioritized [Plant System × Ecoregion] combination, the identification of a keystone (set of) plant(s) on which plant health is to be assessed.

Assessment procedure by each team on their target [Ecoregion x Plant System]

The procedure is based on each team assembling information according to eight sections arranged in successive boxes (Supplementary file A): Box 1 - General information ([Ecoregion × Plant System] chosen; names, affiliations and email addresses of Lead Expert and Experts); Box 2 - Background information (description of the [Ecoregion × Plant System] considered); Box 3 - Choice and justification of the keystone plant(s) in the chosen [Ecoregion x Plant System]; Box 4 - Question 1: "*How do you describe the state of plant health in the past 30 years for the considered plant(s)?*"; Box 5 - Question 2: "*How has plant health evolved for the considered plant(s) over the recent 10 years?*"; Box 6 - Question 3: "*What has been the level of ecosystem services generated by the considered system (as affected by plant disease) in the past 30 years?*"; Box 7 - Question 4 "*How has the effect of plant health on the generation of the considered Ecosystem Services evolved over the recent 10 years?*"; and Box 8 - Complementary information, including the level of confidence in the assessment produced.

Boxes 4 to 7 (i.e., Questions 1 to 4) constitute the core of the expert information sought. In order to achieve standardization across reports, answers to these questions were scaled. Questions pertaining to system states (Questions 1 and 3) are to be answered on a five-point scale: "Excellent", "Good", "Fair", "Poor", Bad". These classes correspond to a series of colors from dark green to red (Supplementary file A). Questions pertaining to trends in states (Questions 2 and 4) are to be answered on a three-point scale: "declining", "improving", or "stable". These classes correspond to arrows pointing, down, up, or level. Questions 3 and 4 may address each of the different types of ecosystem services, provisioning, regulating, or cultural. Any report may provide a set of four combinations of two responses: plant health (state and trend), provisioning (state and trend), regulating (state and trend), and cultural (state and trend). Each of these pairs is represented by a colored box (state) with an arrow (trend) as shown in Supplementary file A.

Internal peer-review and revisions of reports

As in the Millennium Ecosystem Assessment (MEA, 2005), the information gathered had to be verified internally. Each member of the Coordination Group acted as an Editor for a given report, and had the report reviewed by one other Reviewer. Lead Experts revised their reports based on the comments of the Reviewer and Editor.

References

Bailey R (1996) Ecosystem Geography. New York: Springer

- Bond WJ (1994) Keystone Species. In: Schulze ED, Mooney HA (eds) Biodiversity and Ecosystem
 Function. Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine, vol
 99. Springer, Berlin, Heidelberg. <u>https://doi.org/10.1007/978-3-642-58001-7_11</u>
- MEA (2005) Millennium Ecosystem Assessment. *Ecosystems and Human Well-being: Synthesis*. Washington, DC, USA: Island Press

Report template of the Global Plant Health Assessment

The following document is derived from the description of a report template which was sent to Lead Scientists in order to guide them to develop the reports.

About this report - General instructions

This template is intended to all Lead Scientists of the Global Plant Health Assessment. We provide this template to save your time, to guide your work as Lead Scientists, so that you only need to follow the suggestions we make. This template is also meant to ensure uniformity across reports. Lastly, we want to make sure that each report addresses four specific questions. All reports will be reviewed and discussed among the participants of the Global Plant Health Assessment, and a synthesis of reports will be made.

<u>Your report is not meant to be comprehensive</u>. It is not a review. Instead, this report should be seen as the <u>view</u> of a Lead Scientist, along with a few Experts, on the state of plant health in a given Plant System, in a chosen Ecoregion of the world. The guidelines in each of the following sections (in grey) should help you in preparing this report.

This view from a team of scientists (Lead Scientist + Experts) must be supported by references. A minimum of three references* per report is required; a maximum of 15 references is possible.

All participants to the Global Plant Health Assessment will be associated with any reporting or publication of this work. This is why we ask your <u>complete affiliation details</u> along with your <u>name and</u> <u>email</u>.

We estimate that the preparation of the report should not involve more than three working days (accumulated time) for each Lead Scientist. This includes the time that each Lead Scientist would take to share information and drafts of the report with Experts of her/his choice.

We shall be glad to help and answer queries. Please finalise and send your report **before July 31, 2020**. When completed, please sent the report to Serge Savary with copy to Paul Esker.

* Suggested reference format:

Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325-329

1. General information

[Ecoregion x PlantSystem]: example: South Asia x Peri-Urban Horticultural Systems and Household Gardens

Lead Scientist: please provide: (1) First name (middle name) Last name; (2) email; (3) Complete affiliation

Expert 1: please provide: (1) First name (middle name) Last name; (2) email; (3) Complete affiliation

Expert 2: please provide: (1) First name (middle name) Last name; (2) email; (3) Complete affiliation

Expert n: please provide: (1) First name (middle name) Last name; (2) email; (3) Complete affiliation

To Lead Scientists: Please involve a limited number of Experts. Three Experts is usually enough. In some cases, more Experts may be needed - but keep this number small. Note: each expert MUST have contributed to the report.

2. Background information: Please describe the [Ecoregion x PlantSystem] considered in the present report

suggested length: 10-15 lines

Each report deals with one [Ecoregion x PlantSystem]. Please describe in a few sentences the [Ecoregion x PlantSystem] which is considered in the present report. What are its main characteristics? What are its main features? What makes this [Ecoregion x PlantSystem], considered in the present report, **special**? *Examples*: there will be reports on *grapevine in Europe (grapevine and wine making are a major economic activity, with very important cultural roots and meaning),* on *wheat and maize in North America (cereal production in North America is a major economic activity, on forests in the Amazonas (the Amazon plays an essential role in climate regulation, is a vital repository of biological diversity).*

Please explain why this [Ecoregion x PlantSystem] is important. What is its role in terms of Provisioning (food, fibre, materials), in terms of Regulation (climate, soils, water), or in terms of Culture (beauty, spiritual value, cultural value)? A brief description of these will explain which **Ecosystem Service** is considered in the report.

Please provide a few references.

Please specify which of the following groups of Ecosystem Services you have decided to report on in this Report (see the Table annexed at the end of this document):

1. Provisioning Services: food, fibre, materials

- 2. Regulating Services: climate, soils, water
- 3. Cultural Services: culture, spiritual, beauty

3. Please specify the PlantSystem considered in the report

suggested length: 10-15 lines

This section **explains which plant or plants are considered in the report**. These plant or plants may be cultivated or not, they may be annual plants or perennial plants. The choice of plants should, essentially, be based on their **contribution to** the **ecosystem services** that they provide (Provisioning, Regulating, Culture) - that is to say the "importance" the chosen plants have towards these services.

Choice of plants in some **agricultural systems** is relatively easy: wheat for [Europe x Cereals], potato for [South America x Roots and Tubers], for example.

The choice is more difficult in **complex cultivated systems**: [Peri-Urban Horticulture and Household Gardens x Southeast Asia], for example. In this case, selecting some of the most frequent components of such systems is suggested, for example: leafy vegetables, solanaceae, crucifers. This kind of choice will allow comparison with other analogous PlantSystems in different Ecoregions, for example: [Peri-Urban Horticulture and Household Gardens x South Asia], or [... x sub-Saharan Africa].

The choice is perhaps even harder for **non-cultivated complex systems**: [Forest x Amazon], for example, where biological diversity is a key feature - which we want to address if possible. Considering **keystone species** is then advised. For this report on plant health assessment, two standpoints exist in the choice of keystone species. One is the frequency/importance of a given species in the PlantSystem considered; another is the existence of major disease problems. Although the prevalence of disease may be a reason to select a plant species as keystone, it perhaps is more advisable to prioritise the first criterion (frequency/importance of a given species).

The choice of plants considered is entirely that of the Lead Scientist and Experts. It may be that several species, or a group of species, are considered.

Please provide reference(s) to support these choices.

4. Question 1: How do you describe the state of plant health in the past 30 years for the considered plant(s)? suggested length: 10-20 lines

This section needs to provide information on the **overall state of health** of the considered Plant System, within a given Ecoregion. The state of health must refer to the keystone species (one or several), which have been specified in the previous section.

Broadly - the question is: Are there major diseases on this (these) keystone species? Please provide some background on why these diseases are important, in terms of their spread in plant populations, or in terms of their effects on plant populations.

Please provide reference(s).

Ecosystem Services is addressed in Questions 3 and 4.

5. Question 2: How has plant health evolved for the considered plant(s) over the recent 10 years?

suggested length: 10-20 lines

This section complements the answer to question 1, with a **trend in plant health** over a shorter timeframe. We suggest 10 years as a reference period, but the time horizon may be expanded if relevant -as long as the past 10 years are included.

Broadly - the question is: Has there been an increase in frequency of the major diseases indicated in answering Question 1? Have they been decreasing? Please provide some background on these changes over time.

Please provide reference(s).

Please summarise your answer to this question on a 3-point scale (Improving / Stable / Declining) using one of the arrows below.

Declining

Improving

Stable

Note: the notions of effects on Ecosystem Services are addressed in Questions 3 and 4.

6. Question 3: What has been the level of ecosystem services generated by the considered system (as affected by plant disease) in the past 30 years?

suggested length: 10-20 lines

This question shifts to the notion of **performance of plant systems under disease**. Performance is **scaled on the three types of Ecosystem Services**.

To address this question, each Lead Scientist needs to consider the Ecosystem Services which are generated by the considered system. Please see the table at the end of this template. For some PlantSystems, only one Service needs to be considered; for others, two services need to be considered (and two responses are requested for this question).

For each Ecosystem Service considered, the question asked amounts to the following: "How has this Ecosystem Service, as affected by plant health, been performing in the past 30 years?"

This question concerns the levels: (1) of **Provisioning Services**, (2) of **Regulating Services**, and (3) of **Cultural Services**, as affected by plant health

Please provide reference(s).

Please summarise your answers to this question (**one per each ecosystem service considered**) on a 5-point scale (Excellent / Good / Fair / Poor / Bad) using the coloured squares below.

Notes: the notions of trend over time for each Service are addressed in Question 4.

7. Question 4: How has the effect of plant health on the generation of the considered Ecosystem Services evolved over the recent 10 years?

suggested length: 10-15 lines

This last question complements the previous one in providing **trend(s)** over a ten year period.

For each of the Services reported in the previous Question 3, a trend is requested: has the generation of the considered service, as affected by plant health, been "Improving" / "Stable" / "Declining"?

Please provide references.

Please summarise your answers to this question (**one answer per each ecosystem service considered**) on a 3-point scale (Improving / Stable / Declining) using one of the arrows below.

8. Complementary information

suggested length: 10-15 lines

This is an open section, where each team (Lead Scientist and Experts) wants to complement information given in the report. This information pertains to critical aspects that are overlooked in answering in a simplistic way the questions of the report. These aspects may pertain, for example, to:

- the physical environment: climate change may be associated with (1) changes in the frequency / intensity of disease. The physical environment includes droughts, fires, and any element of the physical environment considered appropriate by the team.

- the biological environment: plant diseases may be related to the biological environment in many ways. In forest systems or urban systems, pathogens and insects may for instance be associated with tree decline; or, micro-organisms that are antagonists to pathogens may also be affected by a given dynamics/process. Please note that vectors of pathogens (arthropods, nematodes) are integral part of "disease" as addressed in Question 1.

- the social or economic environment: major shifts in systems are the results of social or economic changes. This may change (1) the disease status, (2) the level-importance of Ecosystem Services. This can be included, as appropriate.

Lastly, and importantly, please provide **your own assessment of the findings of the present report** -- how confident are you in your findings in this report. This can be scaled as follow:

1. very confident: many studies, publications, support your views. There are only few gaps in the literature.

2. reasonably confident: a number of studies, publications, support your views. There are gaps in the literature.

3. uncertain: there are very few studies, publications, to support your views. There are major gaps in the literature.

This section may prove to be extremely valuable for the Global Plant Health Assessment, in developing its conclusions. Any insight is useful.

Please provide references.

Annex: Suggested Ecosystem Services to consider by [Ecoregion x PlantSystem]

These are **only suggestions** towards Lead Scientists, who ultimately have to decide. It is very important to consider more than one group of Ecosystems Services whenever this makes sense, *irrespective* of the literature.

The diversity of Ecosystem Services is a main feature of the Assessment.

PlantSystem	World Eco-	Main	Ecosy	stem	Key Plant(s)/Crop
	region	Service			
		P provisioning	R regulating	C culture	
Cereal systems	NW Europe	Р			Wheat
	N. America	Ρ			Wheat and Maize
	S. America	Р			Wheat
	South Asia	Р			Rice and Wheat
	East Asia	Р			Wheat
	East Asia	Ρ			Rice
	SE Asia	Р			Rice
	SS Africa	Р			Maize
	Australasia	Р			Wheat
Roots & Tubers	South Asia	Р			Potato
	East Asia	Р			Potato
	SS Africa	Р			Cassava
	NW Europe	Р			Potato
	S. America	Р			Potato
Banana & Plantains	SS Africa	Р			Banana and Plantains
Fruit trees & Grape	NW Europe	Р		С	Grapevine
	SE Asia	Р			Mango
	N. America 1	Р			Fruits and nuts
	N. America 2	Р			Grapevine and almond
Horticultural Systems	South Asia	Р		С	Multiple
	SE Asia	Р		С	Multiple
	SS Africa	Р		С	Multiple
Urban Vegetation	NW Europe		R	С	Plane tree
Forests	Amazon		R	С	Multiple
	Australasia		R	С	Eucalypts
	Europe	Р	R	С	Oaks
	North Europe	Р	R		Multiple
	N. America 1	Р	R		Multiple
	N. America 2	Ρ	R		Oaks

Global Plant Health Assessment

Supplementary file B - List of pathogens and diseases by keystone plant

Keystone plant	Disease (pest) common name(s)	Acronym	Scientific name of pathogen (pest)	Remarks and references
Wheat (Tritic	cum aestivum)			
	Stripe (vellow) rust		Puccinia striiformis	
	Stem (black) rust		Puccinia araminis f. sp. tritici	
	Leaf (brown) rust		Puccinia triticina	
	Septoria tritici blotch		Zymosentoria tritici	
	Stagnospora tritici blotch		Phaeosphaeria podorum (previously	
			Stagonospora nodorum)	
	Fusarium head blight (scab)	FHB	Several <i>Eusgrium</i> species (anamorph and	
			teleomorph forms)	
	Tan spot		Pyrenophora tritici-repentis	
	powdery mildew	PM	Blumeria araminis	
	Leaf blight (complex)		Bipolaris sorokiniana. Pyrenophora tritici-	Duveiller et al., 1997: Sharma et
			repentis, and Alternaria triticina	al., 2007
	Spot blotch		Bipolaris sorokiniana (teleomorph = Cochliobolus sativus)	
	Root and foot rot		Bipolaris sorokiniana (teleomorph = Cochliobolus sativus)	
	Take-all		Gaeumannomyces tritici (previously G. graminis var. tritici)	
	Common hunt		Tilletia caries	
	Flag smut			
	Sharp-eve spot		Rhizoctonia cerealis	
	Wheat blast		Pyricularia araminis-tritici	Ceresini et al 2018
	Wheat bacterial leaf streak	WBIS	Xanthomonas translucens py undulosa	
	Wheat streak mosaic	WSM	Wheat streak mosaic virus	Vector: wheat curl mite Aceria tosichella
	Barley yellow dwarf	BYD	Several species of Barley Yellow Dwarf Viruses	Vectors: several Aphid species
	Wheat spindle streak mosaic	WSSM	Wheat spindle streak mosaic virus	Vector: Polymyxa graminis
Rice (Oryza	ativa)	1	· · ·	
	Bakanae	ВК	Gibberella fujikuroi	
	Rice blast	BL	Pyricularia oryzae	
	Brown spot	BS	Bipolaris oryzae	
	False smut	FSM	Ustilaginoidea virens	
	Narrow brown spot	NBS	Cercospora oryzae	
	Sheath blight	SHB	Rhizoctonia solani	
	Bacterial blight	BLB	Xanthomonas oryzae pathovar oryzae	
	Bacterial leaf streak	BLS	Xanthomonas orvzae pv. orvzicola	
	Rice black streaked dwarf disease	RBSD	Rice Black Streaked Dwarf Virus	Fang et al., 2001
	Rice grassy stunt disease	RGSD	Rice Grassy Stunt Virus	
	Rice ragged stunt disease	RRSD	Rice Ragged Stunt Virus	
	Rice stripe disease	RSD	Rice Stripe Virus	
	Rice tungro disease	RTD	Rice Tungro Bacilliform Virus; Rice Tungro	Infection by both virus required
	Rice Orange Leaf Disease		spherical VII us	
	Brown planthopper		Nilananyata lugong	Vector for PSD and PCSD
	Brown planthopper	врн	Initiaparvata lugens	Vector for KSD and KGSD
	Green leatnopper	GLH		phytoplasma (Li et al., 2015)
	Small brown planthopper	SBPH	Laodelphax striatellus	Wang et al., 2008; Cho et al., 2015
	White-back plant hopper	WBPH	Sogatella furcifera	Vector of RBSDV; Zhou et al., 2013

Maize			<i>"</i>	
	Grey leatspot	GLS	Cercospora zeae-maydis	Mueller et al. 2016; White DG,
	Northern corn leaf blight	NCBL	Setosphaeria turcica (Exserohilum turcicum)	1999; Aboukhaddour et al.,
	Southern corn leaf blight		Bipolaris maydis	2020; Bandyopadhyay, 2019a
	Common rust		Puccinia sorghi	
	Southern rust		Puccinia polysora	
	Ear rots and stalk rots		Fusarium subglutinans (F. moniliforme); F.	
			graminearum; Fusarium spp.	
	Tropical stalk and ear rots		Fusarium verticillioides; Diplodia macrospora	1
	Kernel and ear rots		Eusarium spp.: Asperaillus flavus: Asperaillus	
			spp.	
	Tar spot		Phyllachora maydis	-
	Corn bacterial leaf streak		Yanthomonas vasicola pu vasculorum	-
	Duthium root rot		Duthium con : D. arrhonomanos: D. araminicala	-
			Pythium spp.; P. armenomanes; P. grammicola	-
	Downy mildew		Peronoscierospora sorgni	
	Stewart's wilt		Pantoea stewartii	
	Gross's wilt		Clavibacter michiganensis	
	Eyespot		Aureobasidium zeae (Kabatiella zeae)	
	Maize streak virus disease	MSV	Maize Streak Virus	Martin and Shepherd 2009
	Maize lethal necrosis	MLN	co-infection of Maize chlorotic mottle virus,	Mahuku et al., 2015
			MCMV, with sugarcane mosaic virus (SCMV) or	· ·
			other potyviruses	
	Striga		Strigg hermonthica: S. asiatica	Runo and Keria, 2018
	Fall armyworm	EV/V/	Spodontera fruginerda	Goergen et al. 2016
Dotato (Sal	anum tuborosum)		Spouopteru Jrugiperuu	doergen et al., 2010
POIato (301				1
	Potato late blight	PLB	Phytophthora infestans	
	Black scurf	PBS	Rhizoctonia solani	
	Powdery scab	PPS	Spongospora subterranea	
	Early blight	PEB	Alternaria solani	
	Verticillium wilt	PVW	Verticillium dahliae	
	Fusarium wilt		Fusarium solani	
	Fusarium wilt		Fusarium oxysporum	
	Bacterial wilt, brown rot	PBW	Ralstonia solanacearum	
	Blackleg Black shank and	PBI	Pectohacterium carotovorum subsp	P atrosenticum: formerly
	hacterial soft rot		Carotovorum Pectobacterium atrosenticum	Frwinia carotovora subsp
				atroseptica
	Stolbur phytoplasma	PSP	Candidatus Phytoplasma solani	vector: leafhoppers
	Purple top		Potato purple-top wilt phytoplasma:	Caicedo et al 2015; Vectors:
			Candidatus Phytoplasma aurantifolia	Macrosteles and Hyalesthes
				spp.
	Zebra chip		Candidatus Liberibacter solanacearum	Castillo Carrillo et al., 2019; Vector: Psyllids
	Wart		Synchytrium endobioticum	
	cyst nematode	PCN	Globodera rostochiensis	
	cvst nematode	PCN	Globodera pallida	
	Boot knot nematode		Meloidoavne spp	
	Potato Virus V	D\/V	genus Potwirus Potato virus V	transmission: grafting aphide
			gonus Potowirus, Pototo virus V	machanical transmission
	Pototo virus C		genus Polezvirus, Polalo VIIUS X	
		PV5	genus cariavirus, Potato Virus S	
	Potato virus A	PVA	genus Potyvirus, Potato virus A	transmission: aphids
	Dotato loaf roll	IPLRV	genus Polerovirus, Potato leafroll virus	vector: Myzus persicae
-				
Cassava (M	anihot esculenta)			1
Cassava <i>(M</i>	Cassava anthracnose disease	CAD	Colletotrichum gloeosporioides f. sp. manihotis	
Cassava (M	Cassava anthracnose disease Cassava brown leaf spot	CAD CBLS	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii	
Cassava (M	Cassava anthracnose disease Cassava brown leaf spot Cassava bacterial blight	CAD CBLS CBB	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii Xanthomonas axonopodis pv. manihotis	
Cassava (M	Cassava anthracnose disease Cassava brown leaf spot Cassava bacterial blight Cassava mosaic disease	CAD CBLS CBB CMD	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii Xanthomonas axonopodis pv. manihotis Cassava mosaic begomoviruses	
Cassava (M	Potato lear foil Panihot esculenta) Cassava anthracnose disease Cassava brown leaf spot Cassava bacterial blight Cassava mosaic disease Cassava brown streak disease	CAD CBLS CBB CMD CBSD	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii Xanthomonas axonopodis pv. manihotis Cassava mosaic begomoviruses Cassava brown streak inomoviruses	
Cassava (M	Potato lear foil Panihot esculenta) Cassava anthracnose disease Cassava brown leaf spot Cassava bacterial blight Cassava mosaic disease Cassava brown streak disease Cassava mealwhug	CAD CBLS CBB CMD CBSD	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii Xanthomonas axonopodis pv. manihotis Cassava mosaic begomoviruses Cassava brown streak ipomoviruses Phenococcus manihoti	
Cassava (M	Potato lear foll Panihot esculenta) Cassava anthracnose disease Cassava brown leaf spot Cassava bacterial blight Cassava mosaic disease Cassava brown streak disease Cassava mealybug African root and tuber scale	CAD CBLS CBB CMD CBSD CM CM	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii Xanthomonas axonopodis pv. manihotis Cassava mosaic begomoviruses Cassava brown streak ipomoviruses Phenacoccus manihoti Stictococcus vavesiarai	
Cassava (M	Portato real foil Panihot esculenta) Cassava anthracnose disease Cassava brown leaf spot Cassava bacterial blight Cassava mosaic disease Cassava brown streak disease Cassava mealybug African root and tuber scale	CAD CBLS CBB CMD CBSD CM ARTS	Colletotrichum gloeosporioides f. sp. manihotis Cercosporidium henningsii Xanthomonas axonopodis pv. manihotis Cassava mosaic begomoviruses Cassava brown streak ipomoviruses Phenacoccus manihoti Stictococcus vayssierei Manapurakallus tanajog	

	Banana fusarium wilt	BFW	Fusarium oxysporum f.sp. cubense	Hauser et al., 2019
	Banana yellow sigatoka	BYS	Mycosphaerella musicola	
	Banana black sigatoka	BBS	Mycosphaerella fijiensis	
	Banana Pseudomonas wilt	BPW	Ralstonia solanacearum (Pseudomonas	Safni et al., 2014
			solanacearum) (race 1)	
	Banana Xanthomonas wilt	BXW	Xanthomonas vasicola pv. musacearum	
	Banana bunchy top virus disease	BBTD	Banana bunchy top virus	transmission: <i>Pentalonia</i> nigronervosa (banana aphid)
	Banana nematodes		Radopholus similis; Meloidogyne spp.;	-
			Pratylenchus spp.; Helicotylenchus multicinctus	_
	Banana weevil		Cosmopolites sordidus	
Grapevine (Vitis vinifera)	1	1	1
	Downy mildew	GDM	Plasmopara viticola	
	Powdery mildew	GPM	Erysiphe necator	
	Botrytis bunch rot	GBBR	Botrytis cinerea	
	Black-rot	GBR	Guignardia bidwelii	
	Phomopsis cane and leaf spot	GPC	Diaporthe ampelina,	syn. Phomopsis viticola
	Grapevine trunk diseases	GTDs	several ascomycetes and basidiomycetes	Includes Petri, Black foot, Eutypa, Botryosphaeria diebacks, and Esca
	Grapevine yellows	GYs		Phloem-limited bacteria: Bois noir; Flavescence dorée
	Leaf roll	GLR		Closteroviridae
	Corky rugose wood-like syndrome	GCR		Betaflexiviridae
Apple (Malu	ıs domestica)			
	Fire blight	AFB	Erwinia amylovora	
	Apple scab	ASC	Venturia inaequalis	
Pecan (Cary	a illinoinensis)			
	Pecan scab	PSC	Venturia effusa	
	Pecan bacterial leaf scorch	PBLS	Xylella fastidiosa	
Coffee (Coff	ea Arabica)			
	Coffee leaf rust	CLR	Hemileia vastatrix	
	American leaf spot disease	ALSD	Mycena citricolor	
	Coffee leaf scorch	CLS	Xylella fastidiosa	
	Coffee berry borer	CBB	Hypothenemus hampei	
Citrus	1		1	
	Citrus black spot	CBS	Phyllosticta citricarpa	Martínez-Minaya et al., 2015
	Citrus Greening - Huanglongbing	CG-HLB	Candidatus Liberibacter asiaticus (CLas);	Vector: <i>Diaphorina citri</i> Gottwald, 2010.
	African Greening	CG-AG	Candidatus Liberibacter africanus (CLaf)	Vector: <i>Tryoza erytreae</i> Gottwald, 2010.
	Citrus canker	CCk	X. axonopodis (syns. X. campestris, X. citri): X. axonopodis pv. citri; X. axonopodis pv. Aurantifolii)	Asiatic citrus canker (Canker A): <i>X. axonopodis</i> pv. <i>citri</i> Cancrosis B: <i>X. axonopodis</i> pv. <i>aurantifolii</i>
	Citrus variegated chlorosis	CVC	Xylella fastidiosa subsp. pauca	Vectors: sharpshooter leafhoppers and spittlebugs Coletta-Filho et al., 2020; Roy et al 2015; Liu, 2020.
	Citrus tristeza	CTV	CTV virus	Vector: several Aphid species;
		disease		Lee 2015.
	Citrus leprosis	CLep	CiLV-N; CiLV-C; CiLV-C2	Vector: mites (Brevipalpus spp.)
	Citrus yellow vein clearing disease	CYVC	CYVC virus	Vector: whiteflies (<i>Dialeurodes citri</i>); Liu et al 2020
	Mediterranean fruit fly		Ceratitis capitata	Urbaneja et al., 2020
	Oriental fruit fly		Bactrocera dorsalis]
	Citrus leafminer		Phyllocnistis citrella	1
	California red scale		Aonidiella aurantii	1
	citrus mealybug		Planococcus citri]
	citrus red mite		Panonychus citri	1
	·	-		*

	Asian citrus psyllid		Diaphorina citri	
	African citrus psyllid		Tryoza erytreae	
	Citrus fruit borer		Gymnandrosoma aurantianum	
Tomato (Sold	num lycopersicum)			
	Damping off		Pythium spp.; Rhizoctonia spp.	
	Early blight - Alternaria leaf blights	PEB	Alternaria alternata; A. solani	
	Late blight	PLB	Phytophthora infestans	
	Gray mold	TGM	Botrytis cinerea	
	Southern blight		Sclerotium rolfsii	
	Tomato yellow leaf curl	TYLC	one or a mixture from many different strains	transmission: whitefly, Bemisia
			and species of Begomovirus (Geminiviridae)	tabaci
	Fusarium wilt		Fusarium oxysporum f. sp. lycopersici	
	Verticillium wilt			
	Bacterial wilt, brown rot	RSSC	Ralstonia solanacearum species complex	
	Bacterial spot		Xanthomonas vesicatoria spp.	
	Root-knot nematodes	RKN	Meloidogyne spp.	
	Potato Virus Y	PVY	genus Potyvirus, Potato virus Y	transmission: grafting, aphids
	Tomato chlorosis virus disease	TCV	Tomato chlorosis virus Crinivirus	
	Peanut bud necrosis virus disease	PBNV	Peanut bud necrosis virus	transmission: thrips
	Tomato spotted wilt virus disease	TSWV	Tomato spotted wilt virus	transmission: thrips
African eggp	ant (Solanum macrocarpon)			
	Bacterial wilt, brown rot	RSSC	Ralstonia solanacearum species complex	
	Tomato yellow leaf curl	TYLC	one or a mixture from many different strains	transmission: whitefly, Bemisia
			and species of Begomovirus (Geminiviridae)	tabaci
	Root-knot nematodes	RKN	Meloidogyne spp.	
African night	shades (Solanum spp.)			
	Fusarium wilt		Fusarium oxysporum f.sp. lycopersici	
	Verticillium wilt		Verticillium albo-atrum; V. dahliae	
	Bacterial wilt, brown rot	RSSC	Ralstonia solanacearum species complex	
	Yellow leaf curl	Begomo	one or a mixture from many different strains	transmission: whitefly, Bemisia
			and species of Begomovirus (Geminiviridae))	tabaci
	Root-knot nematodes	RKN	Meloidogyne spp.	
Okra (Abelm	oschus esculentus)	1	1	
	Choaneophora leaf and fruit rot	CLFR	Choanephora cucurbitarum	
	Vascular wilt		Fusarium oxysporum	Ariyo and Olasatan 2009
	Bacterial wilt	PBW	Ralstonia solanacearum	
	Okra leaf curl disease	OLC	one or a mixture from many different strains	
			and species of Begomovirus (Geminiviridae)	
	Root-knot nematodes	RKN	Meloidogyne spp.	
Amaranth (A	maranthus tricolor)			
	Damping off		Pythium aphanidermatum	
	Leaf (web) blight		Rhizoctonia solani	Uppala et al., 2010
	Stem decay		Fusarium sp.	
	leaf and stem rot	CLFR	Choanephora cucurbitarum	Teri and Mlasani, 1994; Mnzava et al. 1999, Blodgett et al. 1998
	Capsicum chlorosis virus		CaCV	transmission: thrips
L	Root-knot nematode	KKN	Meloidogyne spp.	Coyne et al 2018
French bean	(Phaseolus vulgaris)			
	Anthracnose	FBA	Colletotrichum lindemuthianum	Chowdappa, 2013; CABI, 2019a;
	Gray mold	TGM	Botrytis cinerea	Mishra et al., 2019
	Lear spot		Cercospora canescens	
	Powdery mildew		Erysiphe polygoni	
	Lear rust		Uromyces spp.	
L	Fusarium wilt	L	Fusarium solani	
Yard-long be	an (<i>Vigna unguiculata</i> ssp. <i>sesquipe</i>	edalis)		
	Anthrachose		Colletotrichum Indemuthianum	
	Rust		Uromyces vignae	
	Cercospora leat spot		Pseudocercospora cruenta	
	renow mosaic diseases		one or a mixture from several different strains	
			and species of Begomovirus (Geminiviriaae)	

Cauliflower (Brassica oleracea)			
	Damping off		Pythium spp.; Rhizoctonia spp.	
	Alternaria leaf blights		Alternaria brassicae; A. brassicicola	
	Downy mildew		Peronospora parasitica	
	powdery mildew		Erysiphe cruciferarum	
	Club root		Plasmodiophora brassicae	Bhattacharya et al., 2014
	Black rot	XBR	Xanthomonas campestris pv. campestris	Chowdappa, 2013; CABI, 2019b
Bitter gourd	(Momordica charantia)			
	Powdery mildew		Podosphaera xanthii	Ali et al., 2010; Raj et al., 2010
	Downy mildew		Pseudoperonospora cubensis	
	Bitter gourd mosaic		Cucumber Mosaic Virus; Papaya Ringspot	
			Virus; Bitter gourd Distortion Mosaic Virus	
	Bitter gourd leaf curl		one or a mixture from many different strains	
			and species of Begomovirus (Geminiviridae)	
			and satellite DNAs	
Leafy brassic	as (pak choy; Brassica rapa subsp.	chinensis)		1
	Black rot	XBR	Xanthomonas campestris	
	Damping-off		Pythium spp.	
Kang kong (<i>I</i>	pomea aquatica)	1	1	1
	White rust - White blister		Albugo ipomoeae-panduratae	
	Leaf spot		Cercospora ipomoeae	
Chilli pepper	s (Capsicum spp.)	1	1	1
	Anthracnose		Colletotrichum spp.	
	Phytophthora blight		Phytophthora infestans	
	Bacterial spot		Xanthomonas sp.	
	Pepper yellow leaf curl	PYLC	one or a mixture from many different strains	Kenyon et al., 2014
			and species of Begomovirus (Geminiviridae)	
Multiple Cuc	urbitaceous species	1	1	1
	Fusarium wilt		Fusarium solani	
	Squash leaf curl	Begomo	one or a mixture from many different strains	transmission: whitefly, Bemisia
			and species of Begomovirus (Geminiviridae)	tabaci
	Aphid-borne yellows	Polero	one or a mixture from several different strains	transmission: aphids
			and species of Polerovirus (Geminiviridae)	
	Cucurbit yellows	Crini	cucurbit yellows criniviruses	transmission: whitefly, Bemisia
				tabaci
	Gummy stem blight	GSB (alla)	Diaymelia spp.	
Plane tree (P	Gankan stain diagona (Diano wilt)		Country pustic platerai	Observatures 2016: Formani 8
	Canker stain disease (Plane Wilt)	PCSD	Ceratocystis platani	Dishanat 1074: Teanolas at al
	powdery mildew			
			Apioghomonia veneta	
	Massaria disease		Spianchhonema piatani	-
	trunk canker		[Fomitiporialsp.	
Uaks - Europ	e: Pedunculate oak (Quercus robur); Sessile o	ak (Q. petraea); Downy oak (Q. pubescens); Turi	(ey oak (Q. cerris); Holm oak (Q.
Tanoak (Not	holithocarnus densiflorus)	e van (QUE	icus albuj, Northern red Oak (Q. rubruj; COast IN	ve vak (Q. ugrijuliu); allu
	Sudden oak death	SOD	Phytophthora ramorum	Cobh et al 2020
		300	Bretziella fagacearum (Ceratocustis	
			fagacearum)	
	Root nathogens		Armillaria spp. and Gymnonus (Collubia) fusings	
	Powdery mildew		Envsinhe alphitoides	
	Emerging hacterial nathogens		Brenneria goodwinii Lonsdalea guercina and	
	(Furope)		Gibbsiella auercinecans	
I oblolly nine	(Southern nine: Pinus taeda)			
	Heterobasidion root disease		Heterobasidion irregulare	
			Armillaria spp.	
			Phytonthora cinnamomi	
			Lentographium spp	
	Brown spot needle blight		Lecanosticta acicola	
Douglas-fir (Pseudotsuga menziesii)	1		1
2008/03-111 (I	Laminated root rot		Phellinus sulphurascens	Hansen and Gobeen 2000
	Armillaria root disease		Armillaria ostovae	
L		1		

	Swiss needle cast		Nothophaeocryptopus gaeumannii	
Lodgepole p	ine (Pinus contorta var. latifolia)			
	Dothistroma needle blight		Dothistroma septosporum	Woods et al 2005; Woods et al
	Hard pine rusts		Cronartium harknessii; C. comandrae; C.	2017
			coleosporoides	
Eastern whi	te pine (<i>Pinus strobus</i>)			
	Brown spot needle disease		Lecanosticta acicola	
	Dothistroma needle blight		Dothistroma septosporum	
	Caliciopsis canker		Caliciopsi pinea	
	Armillaria root disease		Armillaria spp.	
	White pine blister rust	WPBR	Cronartium ribicola	WPBR was introduced to the New World by 1900
Red spruce a	and white spruce (<i>Picea</i> spp.)		•	· ·
	Armillaria root rot		Armillaria spp.	Price et al. 2013
	Tomentosus root disease		Onnia tomentosa	
Cocoa (Theo	broma cacao)			
	Moniliophthora pod rot; frosty		Moniliophthora roreri	Ploetz, 2016
	pod			
	Witch's broom		Moniliophthora perniciosa	
	Black pod disease; Phytophthora		Phytophthora megakarya; Phytophthora spp.	
	pod rot			
	Vascular streak dieback		Ceratobasidium theobromae	
Rubber tree	(Hevea brasiliensis)			
	South American leaf blight	SALB	Microcyclus ulei	Lieberei, 2007; Ploetz, 2016
Australasian	Forests (Eucalypts): three main gei	nera: <i>Eucal</i>	yptus, Corymbia, Angophora.	
	Phytophthora dieback	PDB	Phytophthora cinnamomi	Paap et al. 2017; Keane et al.
	Root and butt rot		Armillaria luteobubalina	2000; Cahill et al. 2008;
	Myrtle rust		Austropuccinia psidii	Carnegie & Pegg, 2018
	Marri canker		Quambalaria coyrecup	
	Leaf and shoot blight		Quambalaria pitereka	
	Leaf diseases		Teratosphaeria spp., Aulographina eucalypti	

Aboukhaddour R, Fetch T, McCallum BD, et al (2020) Wheat diseases on the prairies: A Canadian story. Plant Pathol 69:418–432

- Ali I, Malik AH, Malik AH, Mansoor S (2010) First report of Tomato leaf curl Palampur virus on bitter gourd in Pakistan. Plant Dis 94:276
- Ariyo OJ, Olasantan FO (2009) Good agriculture practices for Okra in Sub-Saharan Africa. In: Nono-Womdim R, et al (eds) Good Agricultural Practices for African indigenous vegetables. Proceedings of a technical Consultation Workshop held in Arusha, Tanzania, 7 9 Dec 2009. Pp 159 180. ISBN 978 90 6605 694 7, *Scripta Horticulturae* Number 15
- Bandyopadhyay R, Cardwell KF, Ortega-Beltran A, et al (2019a) Identifying and managing plant health risks for key African crops: maize. In: Neuenschwander, Tamò (eds) Critical Issues in Plant Health: 50 years of Research in African Agriculture. Burleigh Dodds Science Publishing Limited, Cambridge, UK, pp 173-212
- Bhattacharya I, Dutta S, Mondal S et al (2014) Clubroot disease on Brassica crops in India. Can J Plant Pathol 36:154– 160
- Blodgett JT, Swart WJ, Louw S (1998) First Report of *Fusarium sambucinum, F. oxysporum, and F. subglutinans* associated with Stem Decay of *Amaranthus Hybridus* in South Africa. Plant Dis 82:1062-1062
- CABI (2019a). *Colletotrichum lindemuthianum* (anthracnose of bean). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/14918
- CABI (2019b). Xanthomonas campestris pv. campestris (black rot). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/56919
- Cahill DM, Rookes JE, Wilson BA, et al (2008) *Phytophthora cinnamomi* and Australia's biodiversity: impacts, predictions and progress towards control. Aust J Bot 56:279
- Caicedo J, Crizón M, Pozo A, et al (2015) First report of '*Candidatus* Phytoplasma aurantifolia' (16SrII) associated with potato purple top in San Gabriel-Carchi, Ecuador. New Dis Rep 32:20–20
- Carnegie AJ, Pegg GS (2018) Lessons from the incursion of myrtle rust in Australia. Annu Rev Phytopathol 56:457–478.

- Castillo Carrillo C, Fu Z, Burckhardt D (2019) First record of the tomato potato psyllid *Bactericera cockerelli* from South America. Bull Insectol 72:85–91
- Ceresini PC, Castroagudín VL, Rodrigues FÁ, et al (2018) Wheat blast: past, present, and future. Annu Rev Phytopathol 56:427–456
- Cho S-Y, Jeong R-D, Yoon Y-N, et al (2015) A nationwide survey and genetic analysis of rice stripe virus in South Korea during 2012–2013. J Gen Plant Pathol 81:390–398
- Chowdappa P (2013) Disease management in urban and peri-urban horticulture. In: Sumangala HP, Malhotra SK, Chowdappa P (eds) Urban and Peri-urban Horticulture-A perspective. Confederation of Horticulture Associations of India, New Delhi, pp 35–42
- Cobb RC, Haas SE, Kruskamp N, Whalen WD, Swiecki TJ, Rizzo DM, Frankel SJ, Meentemeyer RK (2020) The magnitude of regional-scale tree mortality caused by the invasive pathogen *Phytophthora ramorum*. Earth's Future e2020EF001500
- Coletta-Filho HD, Castillo AI, Laranjeira FF, et al (2020) Citrus variegated chlorosis: an overview of 30 years of research and disease management. Trop Plant Pathol 45:175–191
- Coyne DL, Cortada L, Dalzell JJ et al (2018) Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. Annu Rev Phytopathol 56:381–403
- Duveiller E, Dubin E, Reeves H, McNab A (1997) Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. Proceedings of an International Workshop; El Batan, Texcoco (Mexico); 9-14 Feb 1997. CIMMYT, Mexico
- Fang S, Yu J, Feng J, et al (2001) Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch Virol 146:167–170
- Ferrari JP, Pichenot M (1974) *Ceratocystis fimbriata* Ellis et Halsted f. *platani* (Walter), responsable d'une grave maladie du platane en France : « la tache chancreuse ». C R Acad Sci Paris D 278:2787-2789
- Gottwald TR (2010) Current epidemiological understanding of citrus huanglongbing. Annu Rev Phytopathol 48:119– 139
- Goergen G, Kumar PL, Sankung SB, et al (2016) First report of outbreaks of the fall armyworm *Spodoptera frugiperda* (J. E. Smith) (Lepidoptera: Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10), e0165632
- Hansen EM, Goheen EM (2000) *Phellinus weirii* and other native root pathogens as determinants of forest structure and process in western North America. Annu Rev Phytopathol 38:515-39
- Hauser S, Gold C, Pasberg-Gauhl C et al (2019) Identifying and managing plant health risks for key African crops:
 banana and plantain. In: Neuenschwander, Tamò (eds) Critical Issues in Plant Health: 50 years of Research in
 African Agriculture. Burleigh Dodds Science Publishing Limited, Cambridge, UK, pp 229–258
- Keane P, Gile G, Podger F, Brown B (2000) Diseases and Pathogens of Eucalypts. CSIRO Publishing, Melbourne
- Kenyon L, Tsai W-S, Shih S-L, Lee L-M (2014) Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res 186:104-113
- Lieberei R (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann Bot 100:1125–1142. <u>https://doi.org/10.1093/aob/mcm133</u>
- Liu C, Liu H, Hurst J, Timko MP, Zhou C (2020) Recent advances on citrus yellow vein clearing virus in citrus. Hortic Plant J 6:216–222
- Mahuku G, Lockhart BEL, Wanjala B, et al (2015) Maize lethal necrosis, an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105:956-965
- Martin DP, Shepherd DM (2009) The epidemiology, economic impact and control of maize streak disease. Food Secur 1:305–315
- Martínez-Blay V, Pérez-Rodríguez J, Tena A, Soto A (2018) Density and phenology of the invasive mealybug *Delottococcus aberiae* on citrus: implications for integrated pest management. J Pest Sci 91:625–637
- Mishra RK, Parihar AK, Basvaraj T et al (2019) Identification of new sources of resistance in Rajmash (*Phaseolus vulgaris* L.) against powdery mildew (*Erysiphe polygoni*) and stem rot (*Sclerotinia sclerotiorum*) diseases. Legume Res 42:430–433
- Mnzava, NM, Dearing JA, Guarino L, Chweya JA, (compilers), de Koeijer H (ed) (1999) Bibliography of the genetic resources of traditional African vegetables. Neglected leafy green vegetable crops in Africa Vol. 2. International Plant Genetic Resources Institute, Rome, Italy

Mueller DS, Wise KA, Sisson AJ, et al (2016) Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Prog 17:211–222. <u>https://doi.org/10.1094/PHP-RS-16-0030</u>

Observatree (2016) Field Identification Guide - Plane wilt. Online resource retrieved from <u>www.observatree.org.uk</u> Ou, SH (1987) Rice Diseases. Second Edition. Farnham Royal: CAB International

- Paap T, Burgess TI, Calver M, et al (2017) A thirteen-year study on the impact of a severe canker disease of *Corymbia* calophylla, a keystone tree in Mediterranean-type forests. For Pathol 47: e12292
- Ploetz RC (2016) The Impact of Diseases on Cacao Production: A Global Overview. In: Bailey BA, Meinhardt LW (eds) Cacao Diseases: A History of Old Enemies and New Encounters. Springer International Publishing, Cham, pp 33– 59
- Price DT, Alfaro RI, Brown KJ et al (2013) Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environ Rev 21:322-365
- Raj SK, Snehi SK, Khan MS et al (2010) First report of *Pepper leaf curl Bangladesh virus* strain associated with bitter gourd (*Momordica charantia* L.) yellow mosaic disease in India. Australas Plant Dis Notes 5:14–16
- Roy A, Hartung JS, Schneider WL, et al (2015) Role bending: complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology 105:1013–1025
- Runo S, Kuria EK (2018) Habits of a highly successful cereal killer, Striga. PLoS Pathogens 14:e1006731
- Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L. and Kappler, U., 2014. Polyphasic taxonomic revision of the *Ralstonia solanacearum* species complex: proposal to emend the descriptions of *Ralstonia solanacearum* and *Ralstonia syzygii* and reclassify current *R. syzygii* strains as *Ralstonia syzygii* subsp. nov., *R. solanacearum phylotype* IV strains as *Ralstonia syzygii* subsp. nov., banana blood disease bacterium strains as *Ralstonia syzygii* subsp. *celebesensis* subsp. nov. and *R. solanacearum* phylotype I and III strains as *Ralstonia pseudosolanacearum* sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_9) :3087-3103.
- Sharma RC, Duveiller E, Ortiz-Ferrara G (2007) Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change already taking its toll? Field Crop Res 103:109–118
- Teri JM, Mlasani DK (1994) Choanephora blight and alternaria leaf spot of Amaranth in Tanzania. Plant Pathol 43:228-229
- Tsopelas P, Santini A, Wingfield MJ, de Beer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101:645-658
- Uppala S, Beena S, Chapala M et al (2010) Bioefficacy of endophytes in the management of leaf blight disease of amaranth. In: Reddy MS, Desai S, Sayyed RZ et al (eds) Plant Growth Promotion by Rhizobacteria for Sustainable Agriculture. Scientific Publishers, India, pp 524-530
- Urbaneja A, Grout T, Gravena S, et al (2020) Citrus pests in a global world. In: Talon M, Caruso M, Gmitter F (eds) The Genus Citrus. Woodhead Publishing, Duxford, UK, pp 333–348
- Wang H-D, Chen J-P, Zhang H-M, et al (2008) Recent rice stripe virus epidemics in Zhejiang Province, China, and experiments on sowing date, disease–yield loss relationships, and seedling susceptibility. Plant Dis 92:1190–1196

White DG (ed) (1999) Compendium of Corn Diseases, 3rd ed. The American Phytopathological Society, St Paul, MN

- Woods A, Coates KD, Hamann A (2005) Is an unprecedented Dothistroma needle blight epidemic related to climate change? BioScience 55:761-769
- Woods AJ, Coates KD, Watts M et al (2017) Warning signals of adverse Interactions between climate change and native stressors in British Columbia forests. Forests 8:280
- Zhou C (2020) The status of citrus Huanglongbing in China. Trop Plant Pathol 45:279–284

A global assessment of the state of plant health

Supplementary file C - State and evolution of plant health and service by key-stone plant species

Г

Supplementary file C - Table 1. State and evolution of plant health and services - Wheat

Plant he	ealth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Western Europe	Many different diseases, mostly under reasonable control through pesticides, host plant resistance, and cropping practices.	Good	Emergence of new pathogen races (stripe rust); re-invasion risks (stem rust); increasing FHB threat; and persistent difficulties in managing septoria tritici blotch.	Declining	\searrow	very confident	CABI, 2020; Figueroa et al., 2018; Hovmøller et al., 2016; Jørgensen et al., 2014; Kahiluoto et al., 2019; Savary et al., 2017; 2019; Singh et al., 2016; Willocquet et al., 2020
North America	Several main disease problems: FHB, rusts, and foliage necrotrophs. Most diseases under reasonable control.	Good	Emerging challenges include further control of FHB, virus diseases, and emerging pathogen races (stripe rust).	Stable	\rightarrow	very confident	Aboukhaddour et al. 2020; Brar et al. 2019; McMullen et al. 2012
South America	Several important diseases with occasionally very serious epidemics (leaf rust, stripe rust, FHB). Reasonable control achieved through breeding and chemicals.	Good	Persistent and growing issues associated with the maize - no-till production system (viral diseases, FHB). Occasional wheat blast outbreaks in Brazil's Cerrado.	Stable	\rightarrow	very confident	Carmona et al. 1999; 2006; Ceresini et al., 2018; Reis and Carmona, 2013
East Asia (China)	Numerous and very diverse, serious plant pathogens.	Fair	Many different diseases: massive, networked efforts: breeding, monitoring, forecasting systems. Considerable improvement through modern technology. Strong reliance on pesticides.	Improving	/	reasonably confident	Cock et al. 2016; Guo et al., 2019
South Asia (Indo- Gangetic Plains)	Several chronic diseases (leaf blight) over very large acreages; frequent epidemics (rusts).	Fair	Climate change (heat waves) documented to increase disease (leaf blight). Persistent epidemic threats (rusts).	Declining	\searrow	reasonably confident	Duveiller et al., 1997; 2007; Sharma et al., 2007
Impacts	s of plant health on ecc	syste	m services				
Ecoregion	Nature and state of services generated		Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Western Europe	Food production: Major wheat producer and exporter. Yield stagnation related to climate change.	Good	High and stable yield and production, despite wheat health decline.	Stable	\rightarrow	reasonably confident	Brisson et al., 2010; Savary et al., 2019
North America	Food production: Major wheat producer and exporter. Yield variability related to disease and management effort.	Fair	Many challenges to manage diseases because of their diversity, and because the major diseases impact both production quantity and quality.	Declining		reasonably confident	Willyerd et al., 2015
South America	Food production: Important wheat producer and exporter. Yield variability related to climate variability (ENSO) and diseases.	Good	Increasing concerns over plant health: leaf rust, wheat blast. Concerns over sustainability of production and management; and over environmental footprint.	Declining	\searrow	reasonably confident	Cruppe et al., 2020; Germán et al., 2011
East Asia (China)	Food production: Major wheat production center for regional food security. Massive progress over 30 years.	Good	Many different diseases; increasing concerns over quality (FHB). Production is not directly threatened <i>per se</i> , but its environmental cost is a concern.	Stable	\rightarrow	reasonably confident	FAOSTAT, 2020
South Asia (Indo- Gangetic Plains)	Food production: Major wheat production center for regional food security. Steady progress over 30 years.	Fair	Emerging concerns on climate change -driven disease (wheat blight); on the sustainability of the system with a clear role of diseases.	Stable	\rightarrow	reasonably confident	Chauhan et al., 2012

References

- Aboukhaddour R, Fetch T, McCallum BD, et al (2020) Wheat diseases on the prairies: A Canadian story. Plant Pathol 69:418–432
- Brar GS, Fetch T, McCallum BD, et al (2019) Virulence dynamics and breeding for resistance to stripe, stem, and leaf rust in Canada since 2000. Plant Dis 103:2981–2995

Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119:201–212

CABI (2020) Crop Protection Compendium, https://www.cabi.org/cpc

Carmona M, Ferrazini M, Barreto D (2006) Tan spot of wheat caused by *Drechslera tritici-repentis* : Detection, transmission, and control in wheat seed. Cereal Res Commun 34:1043–1049

- Carmona M, Reis E, Cortese P (1999) Mancha Amarilla y Septoriosis de la Hoja. Diagnóstico, Epidemiología y Nuevos Criterios para el Manejo. ISBN987-43-1253-X
- Ceresini PC, Castroagudín VL, Rodrigues FÁ, et al (2018) Wheat blast: past, present, and future. Annu Rev Phytopathol 56:427–456
- Chauhan BS, Mahajan G, Sardana V, et al (2012) Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent. Adv Agron 117:315–369
- Cock MJW, Tang, R, Liu Z, Wang H (2016) The main agricultural insect and disease pests of China and implications for the use of remote sensing for their management. CAB Rev 11:No. 014
- Cruppe G, Cruz CD, Peterson G, et al (2020) Novel sources of wheat head blast resistance in modern breeding lines and wheat wild relatives. Plant Dis 104:35–43
- Duveiller E, Dubin E, Reeves H, McNab A (1997) Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. Proceedings of an International Workshop; El Batan, Texcoco (Mexico); 9-14 Feb 1997. CIMMYT, Mexico
- Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417–430

FAOSTAT (2020) http://www.fao.org/faostat

- Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases—a field perspective. Molec Plant Pathol 19:1523-1536
- Germán S, Chaves M, Campos P, et al (2011) Challenges in controlling leaf rust in the Southern Cone region of South America. 2011 BGRI Technical Workshop.

https://www.globalrust.org/sites/default/files/posters/german_2011.pdf

- Guo L-M, HE J, Li J, Chen J-P, Zhang H-M (2019) Chinese wheat mosaic virus: A long-term threat to wheat in China. J Integr Agri 18:821-829
- Hovmøller MS, Walter S, Bayles RA et al (2016) Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol 65:402-11
- Jørgensen LN, Hovmøller MS, Hansen JG et al (2014) IPM Strategies and their dilemmas including an introduction to www.eurowheat.org. J Integr Agric 13:265-281
- Kahiluoto H, Kaseva J, Balek J et al (2019) Decline in climate resilience of European wheat. Proc Nat Acad Sci 116:123-8
- McMullen M, Bergstrom G, De Wolf E, et al (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728
- Reis E, Carmona MA (2013) Integrated disease management of fusarium head blight. In: Aconada T, Chulze S (eds) Fusarium Head Bligh in Latin America. Springer, Dordrecht, pp 159–173
- Sharma RC, Duveiller E, Ortiz-Ferrara G (2007) Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change already taking its toll? Field Crop Res 103:109–118
- Savary S, Djurle A, Yuen J et al (2017) A white paper on global wheat health based on scenario development and analysis. Phytopathology 107:1109-1122
- Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nature Ecol Evol 3:430-439
- Singh RP, Singh PK, Rutkoski J et al (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303-322
- Willocquet L, Meza WR, Dumont B et al (2021). An outlook on wheat health in Europe based on a network of field experiments. Crop Prot 139: 105335.
- Willyerd KT, Bradley CA, Chapara V, et al (2015) Revisiting fungicide-based management guidelines for leaf blotch diseases in soft red winter wheat. Plant Dis 99:1434–1444

Supplementary file C - Table 2. State and evolution of plant health and services - Rice

Plant he	ealth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
South-East Asia	Many diseases - viral, bacterial and fungal. These have been brought under acceptable control mainly through host plant resistance.	Good	A strong dynamics between production contexts and disease patterns has taken place. Overall, rice health has been sustained.	Stable	\rightarrow	reasonably confident	Cabauatan et al., 2009; Cuong et al., 1997; Savary et al., 2000; 2022; Willocquet et al., 2000
East Asia	Two dominant diseases, blast and bacterial blight have long dominated rice health, and been controlled through host plant resistance. Rice sheath blight has become more serious.	Good	Major new issues have emerged. A monsoon-driven regional epidemic system has established enabling long-distance spread of grave virus diseases	Declining		reasonably confident	Cho et al., 2015; Fang et al., 2001; Huang et al., 2011; Li et al., 2015; Matsumura and Sanada-Morimura, 2010; Otuka, 2013; Savary and Mew, 1996; Wang et al., 2008;; Zhou et al., 2013
South Asia (Indo- Gangetic Plains)	As in East Asia, two dominant diseases, blast and bacterial blight have been controlled through host plant resistance. Brown spot remains a major unresolved challenge.	Fair	False smut has become a serious concern, both in terms of yield quantity and quality (mycotoxins). Climate change enhances brown spot epidemics.	Declining		reasonably confident	Barnwal et al., 2013; Fan et al., 2016; Gnanamanickam et al., 1999; Han et al., 2020; Nagarajan, 1989; 1994; Reddy et al., 2011
Impact	s of plant health on eco	svsten	n services				
	Nature and state of services generated		Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
South-East Asia	Food production: Excellent progress of rice production across the region despite disease losses.	Excellent	Stabilization of food production at the cost of a drop in total factor productivity, and serious environmental costs.	Stable	\rightarrow	reasonably confident	Savary et al., 2014
East Asia	Food production: Major productivity achievements have been performed through science. This has ensured the nutrition of one of the most populated ecoregion of the world.	Good	Crop performances are maintained and food production, as a service, remains stable. Major challenges will have to be addressed in the future, which will involve plant diseases.	Stable	\rightarrow	reasonably confident	Hu et al., 2016; Peng et al., 2009; 2010
South Asia (Indo- Gangetic Plains)	Food production: Rice production has progressively increased, averting a major food crisis. Rice diseases are a clear reducer of systems performances, but not a cause for system disruption.	Good	Climate change, insufficient use of IPM, challenges in training and education, bring about an actual impact of plant diseases. Sustaining the performances of the Rice Wheat system will become even more challenging.	Declining	\searrow	reasonably confident	Barnwal et al., 2013; Chauhan et al., 2012; Erenstein and Thorpe, 2011; Sharma et al., 2007; Timsina and Connor, 2001

References

Barnwal MK, Kotasthane A, Magculia N, et al (2013) A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur J Plant Pathol 136:443–457

- Cabauatan P, Cabunagan R, Choi I (2009) Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål. In: Heong K, Hardy B (eds) Planthoppers: New threats to the sustainability of intensive rice production systems in Asia. IRRI, Los Baños, pp 357–368
- Chauhan BS, Mahajan G, Sardana V, et al (2012) Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent. Adv Agron 117:315–369

Cho S-Y, Jeong R-D, Yoon Y-N, et al (2015) A nationwide survey and genetic analysis of rice stripe virus in South Korea during 2012–2013. J Gen Plant Pathol 81:390–398

Cuong NL, Ben PT, Phuong LT, et al (1997) Effect of host plant resistance and insecticide on brown planthopper Nilaparvata lugens (Stål) and predator population development in the Mekong Delta, Vietnam. Crop Prot 16:707– 715

- Erenstein O, Thorpe W (2011) Livelihoods and agro-ecological gradients: A meso-level analysis in the Indo-Gangetic Plains, India. Agric Syst 104:42–53
- Fan J, Yang J, Wang Y-Q, et al (2016) Current understanding on *Villosiclava virens*, a unique flower-infecting fungus causing rice false smut disease: A profile on the rice false smut pathogen. Mol Plant Pathol 17:1321–1330
- Fang S, Yu J, Feng J, et al (2001) Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch Virol 146:167–170
- Gnanamanickam S, Priyadarisini V, Narayanan N, et al (1999) An overview of bacterial blight disease of rice and strategies for its management. Curr Sci 77:1435–1444
- Han Y, Li D, Yang J, et al (2020) Mapping quantitative trait loci for disease resistance to false smut of rice. Phytopathol Res 2:20
- Hu X-F, Cheng C, Luo F, et al (2016) Effects of different fertilization practices on the incidence of rice pests and diseases: A three-year case study in Shanghai, in subtropical southeastern China. Field Crop Res 196:33–50
- Huang S-W, Wang L, Liu L-M, et al (2011) Rice spikelet rot disease in China 1. Characterization of fungi associated with the disease. Crop Prot 30:1–9
- Li S, Hao W, Lu G, et al (2015) Occurrence and identification of a new vector of Rice Orange Leaf Phytoplasma in South China. Plant Dis 99:1483–1487
- Matsumura M, Sanada-Morimura S (2010) Recent status of insecticide resistance in Asian rice planthoppers. JARQ 44:225–230
- Nagarajan S (1989) Plant protection problems in rice-wheat rotation system-a perspective. Oryza 26:329-333
- Nagarajan S (1994) Rice pest management in India. In: Teng P, Heong K, Moody K (eds) Rice Pest Science and Management: Selected Papers from the International Rice Research Conference. IRRI, Los Baños, pp 43-52
- Otuka A (2013) Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front Microbiol 4:309
- Peng S, Buresh RJ, Huang J, et al (2010) Improving nitrogen fertilization in rice by sitespecific N management. A review. Agron Sustain Dev 30:649–656
- Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12:3-8
- Reddy CS, Laha GS, Prasad MS, et al (2011) Characterizing multiple linkages between individual diseases, crop health syndromes, germplasm deployment, and rice production situations in India. Field Crop Res 120:241–253
- Savary S, Mew T (1996) Analyzing crop losses due to *Rhizoctonia solani*: rice sheath blight, a case study. In: Baruch S, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Springer, Dordrecht, pp 237–245
- Savary S, Willocquet L, Castilla N, et al (2022) Whither rice health in the lowlands of Asia: Shifts in production situations, injury profiles, and yields. Plant Pathol 71:55–85
- Savary S, Willocquet L, Elazegui FA, et al (2000) Rice pest constraints in tropical Asia: characterization of injury profiles in relation to production situations. Plant Dis 84:341–356
- Sharma RC, Duveiller E, Ortiz-Ferrara G (2007) Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change already taking its toll? Field Crop Res 103:109–118
- Timsina J, Connor DJ (2001) Productivity and management of rice–wheat cropping systems: issues and challenges. Field Crop Res 69:93–132
- Wang H-D, Chen J-P, Zhang H-M, et al (2008) Recent rice stripe virus epidemics in Zhejiang Province, China, and experiments on sowing date, disease–yield loss relationships, and seedling susceptibility. Plant Dis 92:1190–1196
- Willocquet L, Fernandez L, Savary S (2000) Effect of various crop establishment methods practised by Asian farmers on epidemics of rice sheath blight caused by *Rhizoctonia solani*. Plant Pathol 49:346-354
- Zhou G, Xu D, Xu D, Zhang M (2013) Southern rice black-streaked dwarf virus: a white-backed planthoppertransmitted fijivirus threatening rice production in Asia. Front Microbiol 4: 10.3389/fmicb.2013.00270

Supplementary file C - Table 3. State and evolution of plant health and services - Maize

Plant he	ealth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
North America	Many diseases may affect maize; the most important ones are under satisfactory control, especially through host plant resistance.	Good	There has been little change of disease patterns. Some diseases, once a concerned, have been brought under control. New diseases are developing and expanding, especially as a consequence of climate change.	Stable	\rightarrow	Reasonably confident	Garrett et al. 2021; Mallowa et al., 2015; Ortiz-Castro et al., 2020
Sub- Saharan Africa	Many diseases, affecting crop stands and harvests, and causing quantitative and qualitative losses. Mycotoxin contaminations are recurrent, very serious, and dangerous. Very heavy losses.	Poor	The challenges to maize health in SSA are massive. SSA has been victim of two major invasions: a virus involved in causing maize lethal necrosis (MLN) and the invasion by the fall armyworm (FAW)	Declining		Reasonably confident	Bandyopadhyay et al., 2019; Boddupalli et al., 2020; Goergen et al., 2016; Mahuku et al., 2015; Martin and Shepherd 2009; Runo and Kuria, 2018
Impact	s of plant health on ecos	ystem	services				
Ecoregion	Nature and state of services generated		Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
North America	Food, feed, and biomass production: North America, a major world granary, produces 50 to 60 million tons of maize yearly. The many diseases are under control through host plant resistance and integrated disease management.	Excellent	The general disease profile has not dramatically changed; management options do exist, especially through host plant resistance.	Stable	\rightarrow	Reasonably confident	Esker et al., 2018
Sub- Saharan Africa	Food production : overall, yields are low, in the range of 1-2 ton.ha-1. The low average maize yields of SSA owe much to plant health problems.	Poor	Tremendous challenges are to be faced, with new pathogen and pest invasions vs poor infrastructure and resources, in a context of rapid population increase and climate change. Yet yield losses do not appear to have increased.	Stable	\rightarrow	Reasonably confident	FAOSTAT, 2022; Kumar et al., 2019

References

- Bandyopadhyay R, Cardwell KF, Ortega-Beltran A, et al (2019a) Identifying and managing plant health risks for key African crops: maize. In: Neuenschwander, Tamò (eds) Critical Issues in Plant Health: 50 years of Research in African Agriculture. Burleigh Dodds Science Publishing Limited, Cambridge, UK, pp 173-212
- Boddupalli P, Suresh, LM, Mwatuni F, et al (2020) Maize lethal necrosis (MLN): efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Res 282:197943
- Esker PD, Shah DA, Bradley CA, et al (2018) Perceptions of Midwestern crop advisors and growers on foliar fungicide adoption and use in maize. Phytopathology 108:1078–1088

FAOSTAT (2022) http://www.fao.org/faostat

- Garrett KA, Nita M, De Wolf ED, et al (2021) Plant pathogens as indicators of climate change, third Edition. In: Letcher TM (ed) Climate Change. Elsevier, Switzerland, pp 499–513
- Goergen G, Kumar PL, Sankung SB, et al (2016) First report of outbreaks of the fall armyworm *Spodoptera frugiperda* (J. E. Smith) (Lepidoptera: Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10), e0165632
- Kumar PL, Legg JP, Ayodele M, Mahuku G, Ortega-Beltran A, Bandyopadhyay R (2019) Disease surveillance, diagnostics and germplasm health in crop protection. In: Watson D (ed) Achieving Sustainable Cultivation of Maize. Volume 2: Cultivation Techniques, Pest and Disease Control. Burleigh Dodds Science Publishing Limited, Cambridge, UK, pp 41-73

- Mahuku G, Lockhart BEL, Wanjala B, et al (2015) Maize lethal necrosis, an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105:956-965
- Mallowa SO, Esker PD, Paul PA, et al (2015) Effect of maize hybrid and foliar fungicides on yield under low foliar disease severity conditions. Phytopathology 105:1080–1089
- Martin DP, Shepherd DM (2009) The epidemiology, economic impact and control of maize streak disease. Food Secur 1:305–315
- Ortiz-Castro M, Hartman T, Coutinho T, et al (2020) Current understanding of the history, global spread, ecology, evolution, and management of the corn bacterial leaf streak pathogen, *Xanthomonas vasicola* pv. *vasculorum*. Phytopathology 110):1124-1131

Runo S, Kuria EK (2018) Habits of a highly successful cereal killer, Striga. PLoS Pathogens 14:e1006731

Supplementary file C - Table 4. State and evolution of plant health and services - Potato

Plant health									
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References		
South America	A diverse spectrum of many plant diseases, many of which hard to manage. Dominating problems with PLB, cyst nematodes, and several viruses.	Good	New threats caused by bacteria (Candidatus <i>Phytoplasma</i> <i>aurantifolia</i> and Candidatus <i>Liberibacter solanacearum</i>), fungi, and viruses	Stable	\rightarrow	reasonably confident	Caicedo et al., 2015; Castillo Carillo et al., 2019; Kreuze et al., 2020; Lindqvist- Kreuze et al., 2020; Thomas-Sharma et al., 2016;		
East Asia	Main yield reducers are PEB, PLB, PBSh and bacterial and fungal wilts. Control is difficult under shortage of healthy seed, fragmented and poor farms, absence of rotations.	Poor	Demand drives susceptible varieties. Access to resource (seed) and knowledge to manage disease is difficult. Pesticides are a main recourse. Plans to strengthen R&D are underway.	Declining		reasonably confident	Huang and Liu, 2016a; 2016b; Jing et al., 2018		
Europe	PLB is the main disease, along with viruses (PLRV, PVY, and PSP), bacterial rot (PBL) and nematodes (<i>Globodera</i> spp., <i>Meloidogyne</i> spp. Good seed and decision support systems enable good control.	Good	Emergence of new <i>Phytopthora</i> lineages through sexual recombination, overcoming host resistances and chemicals. Increased ELB with climate change's warmer and drier summers.	Declining		very confident	Andersson et al., 1998; Andrivon et al., 2006; Drenth et al., 1995; Odilbekov et al., 2019; Thevenoux et al., 2020		
Impacts	of plant health on ed	cosyste	m services						
	Nature and state of services generated		Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References		
South America	Food production: major food source with heterogeneous productivity. The traditional Andean systems make use of little/no pesticides for low yields.	Fair	Potato remains a main staple in South America despite the plant health challenges, and remains a major source of livelihoods for many small farmers.	Declining		reasonably confident	Devaux et al., 2020; Lindqvist-Kreuze et al., 2020		
South America	Regulating: Safeguarding natural ecosystems. Potato seed production at higher elevations is compromised; cultivation in the highlands threatens mountain wildlands.	Poor	In the Andes: encroachment of montane ecosystems to escape disease and increasing (climate change) temperature. Increasing insecticide use and residues.	Declining		reasonably confident	Navarrete et al., 2017; Thomas- Sharma et al., 2016		
East Asia	Food production: China is the first potato producer in the world despite insufficient R&D investment in potato health for poor, fragmented, farming systems.	Fair	Steps are being taken to improve plant health: improved seed health, healthy seed multiplication, consideration of soil-borne pathogens and rotations.	Stable	<mark>→</mark>	reasonably confident	FAOSTAT, 2022		
Europe	Food production: Potato production has declining by 30% in the past 30 years as a result of shifting diets and the phasing out of potato as feed. The crop is increasingly specialized and costly, especially because of PLB.	Poor	Production is harder and riskier with phased-out chemicals, climate change and extremes. <i>P.</i> <i>infestans</i> evolves at an alarming rate. 25 treatments per season are frequent.	Declining		very confident	FAOSTAT, 2022; Haverkort et al., 2008		

References

- Andersson B, Sandström M, Strömberg A (1998) Indications of soil borne inoculum of *Phytophthora infestans*. Potato Res 41:305-310
- Andrivon D, Pellé R, Ellissèche D (2006) Assessing resistance types and levels to epidemic diseases from the analysis of disease progress curves: Principles and application to potato late blight. Am J Pot Res 83:455–461
- Caicedo J, Crizón M, Pozo A, et al (2015) First report of '*Candidatus* Phytoplasma aurantifolia' (16SrII) associated with potato purple top in San Gabriel-Carchi, Ecuador. New Dis Rep 32:20–20
- Castillo Carrillo C, Fu Z, Burckhardt D (2019) First record of the tomato potato psyllid *Bactericera cockerelli* from South America. Bull Insectol 72:85–91
- Devaux A, Goffart J, Petsakos A, et al (2020) Global food security, contributions from sustainable potato agri-food systems. In: Campos H, Ortiz O (eds) The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. Springer International Publishing, Cham, pp 3–36
- Drenth A, Janssen EM, Govers F (1995) Formation and survival of oospores of *Phytophthora infestans* under natural conditions. Plant Pathol 44:86-94
- FAO (2022) http://www.fao.org/faostat
- Haverkort AJ, Boonekamp PM, Hutten R. et al (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57
- Huang C, Liu W (2016a) Occurrence characteristics and monitoring advice of potato late blight in China in recent years. Plant Prot 42:142-147 (In Chinese)
- Huang C, Liu W (2016b) Occurrence characteristics and monitoring strategies of potato diseases and pests. China Plant Prot 36:48-52 (In Chinese)
- Jing R, Li H, Hu X, Shang W, Shen R, Guo C, Guo Q, Subbarao KV (2018) Verticillium wilt caused by *Verticillium dahliae* and *V. nonalfalfae* in potato in Northern China. Plant Dis 102:1958-1964
- Kreuze J, Souza-Dias J, Jeevalatha A, et al (2020) Viral diseases in potato. In: Campos H, Ortiz O (eds) The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. Springer International Publishing, Cham, pp 389–430
- Lindqvist-Kreuze H, Gamboa S, Izarra M, et al (2020) Population structure and host range of the potato late blight pathogen *Phytophthora infestans* in Peru spanning two decades. Plant Pathol 69:334–346
- Navarrete I, Panchi N, Andrade-Piedra J (2017) Potato crop health quality and yield losses in Ecuador. Rev Latinoamericana Papa 21:69–88
- Odilbekov F, Edin E, Mostafanezhad H. et al. (2019) Within-season changes in *Alternaria solani* populations in potato in response to fungicide application strategies. Eur J Plant Pathol 155:953–965
- Thevenoux R, Folcher L, Esquibet M, et al (2020) The hidden diversity of the potato cyst nematode *Globodera pallida* in the south of Peru. Evol Appl 13:727–737
- Thomas-Sharma S, Abdurahman A, Ali S, et al (2016) Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathol 65:3–16

Supplementary file C - Table 5. State and evolution of plant health and services - Cassava

Plant health									
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References		
Sub- Saharan Africa	Although past threats (cassava mealybug and green mite) have been brought under (biological) control, major virus epidemics (cassava mosaic and brown streak) cause massive losses against a backdrop of diverse chronic diseases.	Poor	The ecology of the African root and tuber scale, a major pest, is largely unknown. Epidemics of cassava brown streak continue unabated as resistance levels available for breeding are insufficient.	Declining		reasonably confident	Alicai et al., 2007; Dixon et al 2003; Legg et al., 2006; 2011		
Impacts of plant health on ecosystem services									
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References		
Sub- Saharan Africa	Food production: cassava production has kept pace with population growth despite 30- 40% losses and stagnating yields.	Poor	Losses to some diseases have declined (CMD) while others have increased (CBSD)	Stable	\rightarrow	reasonably confident	Legg et al., 2006		
Sub- Saharan Africa	Regulating: cassava production is traditionally part of agrosystems in balance with natural ecosystems providing key resources (water, carbon storage, materials, food, spiritual)	Fair	Production increase has been at the expense of increasing encroachment on natural ecosystems.	Declining		reasonably confident	Aregbesola et al., 2020		

References

- Alicai T, Omongo CA, Maruthi MN et al (2007) Re-emergence of cassava brown streak disease in Uganda. Plant Dis 91:24–29
- Aregbesola OZ, Legg JP, Lund OS et al (2020) Life history and temperature-dependence of cassava-

colonising populations of *Bemisia tabaci*. J Pest Sci. 93:1225-1241

- Dixon AGO, Bandyopadhyay R, Coyne D et al (2003) Cassava: from a poor farmer's crop to a pacesetter of African rural development. Chron Hortic 43:8–14
- Legg JP, Jeremiah SC, Obiero H et al (2011) Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Res 159:161–170
- Legg JP, Owor B, Sseruwagi P et al (2006) Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv Virus Res 67:355–418

Supplementary file C Table 6. State and evolution of plant health and services -Banana and plantain in sub-Saharan Africa

Plant health									
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References		
Sub- Saharan Africa	Bananas in SSA are exposed to a range of major, severe diseases affecting the vascular system, fruit production, or systemic. These diseases, fungal, viral, or bacterial, are extremely hard to control.	Poor	Disease emergences and expansions are underway: BXW in East Africa, BBTV in Southern and Western Africa, and BFW- TR4 in Mozambique. The severity of established diseases (black sigatoka) is increasing.	Declining		very confident	Abele and Pillay, 2007; Hauser et al., 2019; Kimunye et al., 2020; Tripathi et al., 2009; Zadoks and Schein, 1979		
Impacts of plant health on ecosystem services									
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References		
Sub- Saharan Africa	Food production: Major staple and source of income (local trade and exports)	Fair	Maintained approximately at a par with population growth.	Stable	\rightarrow	very confident			
Sub- Saharan Africa	Regulating: biodiversity, carbon storage, water, soil, and climate.	Fair	Strong reduction of regulating services as a result of plantation abandonment and encroachment of agriculture in natural systems.	Declining		reasonably confident			

References

- Abele S, Pillay M (2007) Bacterial wilt and drought stresses in banana production and their impact on economic welfare in Uganda: Implications for banana research in East African highlands. J Crop Improve 19:173–191
- Drenth A, and Kema G (2021) The vulnerability of bananas to globally emerging disease threats. Phytopathology 111:2146-2161
- Hauser S, Gold C, Pasberg-Gauhl C et al (2019) Identifying and managing plant health risks for key African crops: banana and plantain. In: Neuenschwander, Tamò (eds) Critical Issues in Plant Health: 50 years of Research in African Agriculture. Burleigh Dodds Science Publishing Limited, Cambridge, UK, pp 229–258
- Kimunye JN, Were E, Mussa F et al (2020) Distribution of *Pseudocercospora* species causing Sigatoka leaf diseases of banana in Uganda and Tanzania. Plant Pathol 69:50-59
- Tripathi L, Mwangi M, Abele S et al (2009) Xanthomonas wilt: a threat to banana production in east and central Africa. Plant Dis 93:440–451
- Zadoks JC and Schein RD (1979) Epidemiology and Plant Disease Management. New York: Oxford University Press
Supplementary file C - Table 7. State and evolution of plant health and services - Grapevine in Western Europe

Plant he	alth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Western Europe	Many fungal, oomycete, virus, phytoplasma and bacterial diseases occur in Europe. However management has been effective through decision support systems and crop management.	Good	Grapevine trunk diseases with complex ætiologies have become pressing issues. Viral diseases have expanded or been introduced. The use and efficiency of chemical pesticides have declined.	Declining		reasonably confident	Bois et al., 2017; Gambino et al., 2014; Gramaje et al., 2018; Maliogka et al., 2015; Mondello et al., 2018
Impacts	s of plant health on eco	osyster	m services				
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Western Europe	Provisioning : high (collective, individual) revenues generated by trade and export.	Excelle nt	Constant technological progress leading to regular quality improvement. Digital technology and IPM are offsetting the pesticide- and disease-related challenges.	Stable	\rightarrow	reasonably confident	Eurostat, 2018
Western Europe	Regulating: grapevine contributes to climate regulation (CO2 storage), water regulation, erosion control, and biodiversity.	Excelle nt	These services have been negatively affected by the decline in plant health.	Declining	\searrow	reasonably confident	
Western Europe	Cultural : Grapevine has a major contribution to recreation, heritage, aesthetic experience and landscape beauty.	Excelle nt	These services have been negatively affected by the decline in plant health, in particular with the dying grapevine plants. This impact is hard to assess.	Declining	\searrow	reasonably confident	

References

Bois B, Zito S, Calonnec A (2017) Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO One 51:133

Eurostat (2018) <u>https://ec.europa.eu/eurostat/statistics-explained/index.php/Vineyards_in_the_EU_-_statistics</u> <u>#General_overview</u>

Gambino G, Navarro B, Torchetti EM, et al (2014) Survey on viroids infecting grapevine in Italy: identification and characterization of Australian grapevine viroid and Grapevine yellow speckle viroid 2. Eur J Plant Pathol 140:199–205

Gramaje D, Úrbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis 102:12–39

Maliogka VI, Martelli GP, Fuchs M, Katis NI (2015) Control of viruses infecting grapevine. In: Advances in Virus Research. Academic Press, San Diego, CA, pp 175–227

Mondello V, Larignon P, Armengol J, et al (2018) Management of grapevine trunk diseases: knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathol Medit 57:369-383

Supplementary file C - Table 8. State and evolution of plant health and services -Fruits and nuts in North America

Plant he	alth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
North America	Apple scab and fire blight are very serious issues in apples, but are satisfactorily managed through crop management and chemicals. Pecan scab follows a similar pattern.	Good	Climate change combined with pathogen introductions may bring about new concerns. Perennial fruits are notoriously difficult to breed for disease resistances.	Stable	\rightarrow	reasonably confident	Bock et al., 2017; 2018; Cox, 2015; Dewdney et al., 2003; 2007
Impacts	s of plant health on e	cosyst	em services				
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
North America	Provisioning: the available management instruments, especially chemicals, are providing adequate control to prevent disruption of supply.	Good	Climate change brought about fire blight and apple scab epidemics, along with emerging diseases. While the present is stable, the future is uncertain.	Stable	\rightarrow	reasonably confident	USDA, 2020
North America	Cultural : Diseases have had limited impact on the cultural celebration of apple and pecan.	Good	No threat is envisioned on the cultural values of these trees.	Stable	\rightarrow	reasonably confident	Wells, 2017

References

- Bock CH, Brenneman TB, Wood BW et al (2017) Challenges of managing disease in tall orchard trees pecan scab, a case study. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 12, 008: 1-18
- Bock CH, Oliver JE, Che, C, et al (2018) Pecan bacterial leaf scorch, caused by *Xylella fastidiosa*, is endemic in Georgia pecan orchards. Plant Health Prog 19: 284-287
- Cox KD (2015) Fungicide resistance in *Venturia inaequalis*, the causal agent of apple scab in the United States. In: Ishii
 H, Hollomon D (eds) Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management.
 Springer Japan, pp 433-447
- Dewdney MM, Bigg, AR, Turechek WW (2007) A statistical comparison of the blossom blight forecasts of MARYBLYT and Cougarblight with receiver operating characteristic curve analysis. Phytopathology 97:1164-1176
- Dewdney MM, Charest J, Paulitz TC et al (2003) Multivariate analysis of apple cultivar susceptibility to *Venturia inaequalis* under greenhouse conditions. Can J Plant Pathol 25:387-400
- USDA-NASS (2020) United States Department of Agriculture, National Agricultural Statistics Service.

https://www.nass.usda.gov/. Accessed 27 May 2020

Wells L (2017) Pecan: America's Native Nut Tree. The University of Alabama Press, Tuscaloosa, AL

Supplementary file C - Table 9. State and evolution of plant health and services - Coffee in Central America

Plant he	alth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Central America	Very strong epidemics of plant diseases at the national and regional scales.	Poor	Amplification of epidemics with interacting changing climate, shifts in economical logics, and changes in changes in crop management and purposes.	Declining		Very confident	Avelino and Anzueto 2020; Avelino et al. 2015; Harvey et al. 2021; McCook and Vandermeer 2015; Rodriguez et al. 2001; Staver et al. 2001
Impacts	s of plant health on eco	system	n services		•		
Central America	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Central America	Provisioning: Very large contribution to small-holder livelihoods via a range of products (coffee, wood, tourism).	Fair	Large impacts of plant diseases on livelihoods.	Declining	>	Very confident	Avelino et al., 2015; DeClerck et al. 2010; Harvey et al. 2021; Jha et al. 2014
Central America	Regulating: Very large contribution of agroforestry systems to multiple regulating services (carbon sequestration, soil conservation, water regulation, biodiversity conservation)	Good	Threats are developing against agroforestry systems with renewed intensification and short-term logics.	Declining	\searrow	Very confident	DeClerck et al. 2010; Harvey et al., 2021; Jha et al. 2014

References

Avelino J, Cristancho M, Georgiou S, et al (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–321

- Avelino J, Anzueto F (2020) Coffee rust epidemics in Central America: chronicle of a resistance breakdown following the great epidemics of 2012 and 2013. In: Ristaino J, Records A (eds) Emerging Plant Diseases and Global Food Security. APS Press, St Paul, MN, pp 185–198
- DeClerck FAJ, Chazdon R, Holl KD, et al (2010) Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biol Conserv 143:2301–2313
- Harvey CA, Pritts AA, Zwetsloot MJ, et al (2021) Transformation of coffee-growing landscapes across Latin America. A review. Agron Sustain Dev 41:62
- Jha S, Bacon CM, Philpott SM, et al (2014) Shade coffee: update on a disappearing refuge for biodiversity. BioScience 64:416–428
- McCook S, Vandermeer J (2015) The big rust and the red queen: Long-term perspectives on coffee rust research. Phytopathology 105:1164–1173
- Rodríguez CM, Obando JJ, Villalobos W, Moreira, L, Rivera C (2001) First report of *Xylella fastidiosa* infecting coffee in Costa Rica. Plant Dis 85:1027–1027
- Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agrofor Syst 53:151–170

Supplementary file C - Table 10. State and evolution of plant health and services - Citrus (Global)

Plant hea	lth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Global	Tristeza (CTV) has long dominated the concerns over citrus health. Most diseases were under acceptable control through (virus) certification and IPM.	Fair	Multiple major epidemics caused by introduced pathogens, many of them vectored, have occurred worldwide. Several are extremely hard to manage.	Declining		Reasonably confident	Bové, 2006; Garcia-Figuera et al., 2021; Gottwald, 2010; Gottwald et al., 2002; Lee, 2015; Liu et al., 2020; Martínez-Blay et al., 2018; Roy et al., 2015; Urbaneja et al., 2020; Zhou, 2020
East Asia (China)	HLB is of major concern but is spread is checked by several nation-wide measures.	Fair	Virus epidemics have occurred, with limited impacts, or have been brought under control.	Stable	\rightarrow	Reasonably confident	Sun et al., 2009
South America (Brazil)	Some regions of Brazil have been spared, but major epidemics (CVC, CCk, CBS, Clep, and HLB) had grave impacts in the states of São Paulo, Minas Gerais and Paraná.	Fair	CCk and HLB have led to a declined of citrus health in São Paulo State.	Declining		Reasonably confident	Coletta-Filho et al., 2020
North America (USA)	Citrus production in Florida has been severely impacted in by CCk and by HLB, while California was spared.	Fair	In the last 10 years, citrus health in the USA has sharply declined in Florida, declined in some states, while California is threatened.	Declining		Reasonably confident	Gochez et al., 2020; Graham et al., 2020; McRoberts et al., 2019; Sétamou et al., 2020; USDA-NASS, 2020
Mediterrane an	Except for localized epidemics citrus health has been good. Control of Tristeza has overall been effective.	Good	Invasive diseases are threatening Citrus health in Spain and the Mediterranean.	Declining	\searrow	Reasonably confident	Ruíz-Rivero et al., 2021
Australasia (Australia)	Citrus health has been good and stable.	Good	Threats exist, but nation- wide policies and means are established.	Stable	\rightarrow	Reasonably confident	
Sub-Saharan Afric (South Africa)	Citrus health has been good and stable.	Good	Many of major citrus diseases are absent in South Africa. Tristeza is under control. African Greening is localized, with limited impact. CBS hampers access to the EU market. Improvements are based on diagnostic tools and post- entry quarantine.	Improving	/	Reasonably confident	Ajene et al., 2020; Carstens et al., 2012; Cook et al., 2019
Impacts of	of plant health on eco	system	services	1		1	
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Global	 Provisioning: Global citrus production has increased in the past 30 years. 	Good	Marked decline in citrus health has triggered a decline in provisioning services in some regions	Decline	\searrow	Reasonably confident	
	 Cultural: Citrus trees are commonly found in gardens, streets and small orchards worldwide. 	Good	Decline in the generation of cultural services in some regions	Decline	×	Reasonably confident	
East Asia (China)	 Provisioning: China is the world largest producer of citrus. 	Good	The citrus industry has grown even faster in the past decade.	Improving	/	Reasonably confident	

South America (Brazil)	•	Provisioning: level of provisioning services has been good, however at increased (disease-related) costs.	Fair	While the cultivated area has declined (to disease), employment levels have been stable.	Stable	\rightarrow	Reasonably confident	Bassanezi et al 2020
	•	Cultural: these services have declined with the removal of trees.	Poor	These services have not improved.	Stable	\rightarrow	Reasonably confident	
North America (USA)	•	Provisioning: only fair with the succession of epidemics in Florida.	Fair	These services have declined. In Florida: production reduced by 74%, and production costs increased by 283%	Declining		Reasonably confident	Grafton-Cardwell, 2020; Singerman et al 2018
	•	Cultural: over the years, many trees have been removed from private and public spaces.	Poor	The HLB epidemics is causing further decline.	Declining	>	Reasonably confident	
Mediterrane an	•	Provisioning: has been good, despite some yield reductions due to pests and quality (cosmetic) damage on fruits.	Good	level declining due to introductions of invasive pests causing cosmetic damage on fruits.	Declining	\searrow	Reasonably confident	DG AGRI, 2020; 2021.
	•	Cultural: good and stable leve.	Good		Stable	\rightarrow	Reasonably confident	
Australasia (Australia)	•	Provisioning: good despite threats of invasions, e.g., citrus canker and HLB.	Good		Stable	\rightarrow	Reasonably confident	
Sub-Saharan Afric (South Africa)	•	Provisioning: excellent.	Excellent	Sustained growth (66%) and exports (34%).	Improving	1	Reasonably confident	

References

- Ajene IJ, Khamis FM, van Asch B, et al (2020) Distribution of *Candidatus* Liberibacter species in Eastern Africa, and the first report of *Candidatus* Liberibacter asiaticus in Kenya. Sci Rep 10:3919
- Bassanezi RB, Lopes SA, de Miranda MP, Wulff NA, Volpe HXL, Ayres AJ (2020) Overview of citrus huanglongbing spread and management strategies in Brazil. Trop Plant Pathol 45:251–264
- Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88:7–37
- Carstens E, Le Roux HF, Van Rooyen L, et al (2012) Citrus Black Spot does not occur in the Western Cape, Northern Cape and Free State provinces of South Africa. S Afr J Sci 108:56-61
- Coletta-Filho HD, Castillo AI, Laranjeira FF, et al (2020) Citrus variegated chlorosis: an overview of 30 years of research and disease management. Trop Plant Pathol 45:175–191
- Cook G, Kirkman W, Clase R, et al (2019) Orchid fleck virus associated with the first case of citrus leprosis-N in South Africa. Eur J Plant Pathol 155:1373–1379
- DG AGRI (2020) The citrus market in the EU: production, areas and yields. European Commission, Directorate General for Agriculture and Rural Development
- DG AGRI (2021) Monthly imports of oranges to the EU. European Commission, Directorate General for Agriculture and Rural Development
- Garcia-Figuera S, Grafton-Cardwell EE, Babcock BA, et al (2021) Institutional approaches for plant health provision as a collective action problem. Food Secur 13:273–290
- Gochez AM, Behlau F, Singh R, et al (2020) Panorama of citrus canker in the United States. Trop Plant Pathol 45:192– 199
- Gottwald TR (2010) Current epidemiological understanding of citrus huanglongbing. Annu Rev Phytopathol 48:119– 139

- Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker: The pathogen and its impact. Online. Plant Health Progress doi:10.1094/PHP-2002-0812-01-RV
- Grafton-Cardwell E (2020) Management of Asian citrus psyllid in California. In: Qureshi J, Stansly P (eds) Asian Citrus Psyllid: Biology, Ecology and Management of the Huanglongbing Vector. CAB International, Wallingford, UK, pp 250–257
- Graham J, Gottwald T, Setamou M (2020) Status of huanglongbing (HLB) outbreaks in Florida, California and Texas. Trop Plant Pathol 45:265–278
- Lee R (2015) Control of virus diseases of citrus. In: Loebenstein G, Katis N (eds) Advances in Virus Research. Academic Press, San Diego, CA, pp 143–173
- Liu C, Liu H, Hurst J, Timko MP, Zhou C (2020) Recent advances on citrus yellow vein clearing virus in citrus. Hortic Plant J 6:216–222
- Martínez-Blay V, Pérez-Rodríguez J, Tena A, Soto A (2018) Density and phenology of the invasive mealybug *Delottococcus aberiae* on citrus: implications for integrated pest management. J Pest Sci 91:625–637
- McRoberts N, Figuera SG, Olkowski S, et al (2019) Using models to provide rapid programme support for California's efforts to suppress Huanglongbing disease of citrus. Phil Trans R Soc B 374:20180281
- Roy A, Hartung JS, Schneider WL, et al (2015) Role bending: complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology 105:1013–1025
- Ruíz-Rivero O, Garcia-Lor A, Rojas-Panadero B, et al (2021) Insights into the origin of the invasive populations of *Trioza erytreae* in Europe using microsatellite markers and mtDNA barcoding approaches. Sci Rep 11:18651
- Sétamou M, Alabi OJ, Kunta M, et al (2020) Distribution of *Candidatus* Liberibacter asiaticus in citrus and the asian citrus psyllid in Texas over a decade. Plant Dis 104:1118–1126
- Singerman A, Burani-Arouca M, Futch SH (2018) The profitability of new citrus plantings in Florida in the era of huanglongbing. Hortsci 53:1655–1663
- Sun X, Zhou C, Qing L, Yang S (2009) Advances in research on citrus tatter leaf virus. J Fruit Sci 26:213-216
- Urbaneja A, Grout T, Gravena S, et al (2020) Citrus pests in a global world. In: Talon M, Caruso M, Gmitter F (eds) The Genus Citrus. Woodhead Publishing, Duxford, UK, pp 333–348
- USDA-NASS (2020) Citrus Fruits 2020 Summary. United States Department of Agriculture, National Agricultural Statistics Service. <u>https://www.nass.usda.gov/Publications/Todays_Reports/reports/cfrt0820.pdf</u>
- Zhou C (2020) The status of citrus Huanglongbing in China. Trop Plant Pathol 45:279–284

Supplementary file C - Table 11. State and evolution of plant health and services -Peri-urban horticultural systems and household gardens

Plant he	alth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Sub- Saharan Africa	Many diseases in diverse systems. Introduced plants (tomato) severely diseased. Very high losses.	Fair	Some diseases have decreased in importance, but many have increased. Climate change- induced temperatures enhancing virus transmissions.	Declining		Reasonably confident	Blodgett et al., 1998; CABI, 2019a; 2019b; Coyne et al., 2018; FAOSTAT, 2018; Jones, 2009; Mnzava et al., 1999; Teri and Mlasani, 1994
South Asia	Many diseases in very diverse systems. Introduced plants (tomato) severely diseased. Large differences in vulnerability among crops.	Fair	Climate change-induced temperatures enhancing virus transmissions. Effective breeding programs (host plant resistance), microbial biological control, grafting, and chemical pesticides.	Improving	<u>_</u>	Reasonably confident	Ali et al., 2010; Bhattacharya et al. 2014; Chowdappa, 2013; Gautam et al., 2013;Nagendran et al., 2019; Raj et al., 2010
South- East Asia	Many diseases in extremely diverse systems. Many different production systems involving a range of technologies. Large differences in vulnerability among crops.	Good	Major (soil borne) diseases still prevail. New races existing pathogens, better adapted, more aggressive, or with expanding ranges. Inoculum build-up (soil), and poor seed health.	Declining		Reasonably confident	Jansen et al., 1995; Kenyon et al., 2014; Mishra et al., 2019; Schreinemachers et al., 2012
Impacts	of plant health on eco	system	services				
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Sub-Sahara Africa	 Provisioning: very high losses deplete provision flows. The very low consumption of vegetables in SSA is attributable at least in part to such losses. 	Poor	Limited progress achieved.	Stable	\rightarrow	Reasonably confident	FAOSTAT, 2018; Levasseur et al. 2007; Schreinemachers et al., 2018
Sub-Sahara Africa	 Regulating: excessive pesticide use, with health risks and destruction of natural (microbiological) enemies of pathogens and pests. 	Poor	Major health direct risks from the over-use of banned pesticides. Expanding agricultural area.	Declining		Reasonably confident	Levasseur et al. 2007
South Asia	Provisioning: despite the exploding urban population, sustained food provisioning. This is attributable at least in part to dynamic plant breeding progress against diseases.	Good	Innovative breeding (bio) biotechnology leading to disease resistant plant material; bio-pesticides deployment.	Improving	/	Reasonably confident	Chowdappa, 2013; Mishra et al., 2019; Uppala et al., 2010 ; Schreinemachers et al., 2018
South Asia	Regulating : water and land challenges in a dynamic context. Pesticide use and over-use frequent.	Fair	Pesticide use and resource depletion in part compensated by better and more efficient technology.	Improving	<u>_</u>	Reasonably confident	
South Asia	Cultural (pertains to household gardens): food provisioning and the associated cultural and social roles maintained.	Good	No indication of decline.	Stable	\rightarrow	Little or indirect evidence	
South-East Asia	Provisioning : despite pressure, food provisioning has grown apace with that of South-East Asia's cities.	Good	As for South Asia: innovative breeding (bio) biotechnology leading to disease resistant plant material; bio-pesticides deployment.	Stable	\rightarrow	Reasonably confident	Schreinemachers et al., 2012; Schreinemachers et al., 2018

South-East Asia	Regulating : pesticide use is a concern and so is the (over-)use of resources: land, water, and energy (synthetic fertilizers).	Fair	As elsewhere, but to a higher extent, systems under pressures. Very high pesticide use and not decelerating. Biological and chemical degradation of soils. Growing pressure on water and energy.	Declining		Reasonably confident	
South-East Asia	Cultural (pertains to household gardens): food provisioning and the associated very high cultural and social roles maintained.	Excellent	No indication of decline.	Stable	\rightarrow	Little or indirect evidence	

References

- Ali I, Malik AH, Malik AH, Mansoor S (2010) First report of Tomato leaf curl Palampur virus on bitter gourd in Pakistan. Plant Dis 94:276
- Bhattacharya I, Dutta S, Mondal S et al (2014) Clubroot disease on Brassica crops in India. Can J Plant Pathol 36:154– 160
- Blodgett JT, Swart WJ, Louw S (1998) First Report of *Fusarium sambucinum, F. oxysporum, and F. subglutinans* associated with Stem Decay of *Amaranthus Hybridus* in South Africa. Plant Dis 82:1062-1062
- CABI (2019a). *Colletotrichum lindemuthianum* (anthracnose of bean). Invasive Species Compendium. <u>https://www.cabi.org/isc/datasheet/14918</u>
- CABI (2019b). Xanthomonas campestris pv. campestris (black rot). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/56919
- Chowdappa P (2013) Disease management in urban and peri-urban horticulture. In: Sumangala HP, Malhotra SK, Chowdappa P (eds) Urban and Peri-urban Horticulture-A perspective. Confederation of Horticulture Associations of India, New Delhi, pp 35–42
- Coyne DL, Cortada L, Dalzell JJ et al (2018) Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. Annu Rev Phytopathol 56:381–403

FAOSTAT (2018) http://www.fao.org/faostat/en/#data/QC

- Gautam HR, Bhardwaj ML, Kumar R (2013) Climate change and its impact on plant diseases. Curr Sci 105:1685–1691
- Jansen HGP, Midmore DJ, Binh PT, Valasayya S, Tru LC (1995) Peri-urban vegetable production in Ho Chi Minh city, Vietnam (AVRDC, Shanhua, Tainan). <u>http://worldveg.tind.io/record/23547/files/eb0171.pdf</u>
- Jones RAC (2009) Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130
- Kenyon L, Tsai W-S, Shih S-L, Lee L-M (2014) Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res 186:104-113
- Levasseur V, Pasquini MW, Kouamé C, Temple L (2007) A review of urban and peri-yrban vegetable production in West Africa. Acta Hort. 762. <u>https://doi.org/10.17660/ActaHortic.2007.762.23</u>
- Mishra RK, Parihar AK, Basvaraj T et al (2019) Identification of new sources of resistance in Rajmash (*Phaseolus vulgaris* L.) against powdery mildew (*Erysiphe polygoni*) and stem rot (*Sclerotinia sclerotiorum*) diseases. Legume Res 42:430–433
- Mnzava, NM, Dearing JA, Guarino L, Chweya JA, (compilers), de Koeijer H (ed) (1999) Bibliography of the genetic resources of traditional African vegetables. Neglected leafy green vegetable crops in Africa Vol. 2. International Plant Genetic Resources Institute, Rome, Italy
- Nagendran K, Venkataravanappa V, Chauhan NS et al (2019) Viral diseases: a threat for tomato cultivation in Indo-Gangetic eastern plains of India. J Plant Pathol 101:15–22
- Raj SK, Snehi SK, Khan MS et al (2010) First report of *Pepper leaf curl Bangladesh virus* strain associated with bitter gourd (*Momordica charantia* L.) yellow mosaic disease in India. Australas Plant Dis Notes 5:14–16
- Schreinemachers P, Schad I, Tipraqsa P et al (2012) Can public GAP standards reduce agricultural pesticide use? The case of fruit and vegetable farming in northern Thailand. Agric Human Values 29:519-529. https://doi.org/10.1007/s10460-012-9378-6
- Schreinemachers P, Simmons EB, Wopereis MCS (2018) Tapping the economic and nutritional power of vegetables. Glob Food Sec 16:36-45

Teri JM, Mlasani DK (1994) Choanephora blight and alternaria leaf spot of Amaranth in Tanzania. Plant Pathol 43:228-229

Uppala S, Beena S, Chapala M et al (2010) Bioefficacy of endophytes in the management of leaf blight disease of amaranth. In: Reddy MS, Desai S, Sayyed RZ et al (eds) Plant Growth Promotion by Rhizobacteria for Sustainable Agriculture. Scientific Publishers, India, pp 524-530

Supplementary file C - Table 12. State and evolution of plant health and services -Urban trees in Western Europe: Plane tree

Plant he	alth										
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References				
Western Europe	Oriental and London plane trees: Health status very heterogeneous, poor in southern Europe, and threatened in other parts of Europe. PCSD (Table 1) of plane trees is a major disease.	Poor	PCSD progresses across Europe. Plane trees of World Heritage Canal du Midi are condemned.	Declining		reasonably confident	Ferrari and Pichenot, 1974; Observatree, 2016; Panconesi, 1999; Tsopelas et al., 2017; VNF, 2019				
Impacts of plant health on ecosystem services											
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References				
Western Europe	Regulating : Many decades are required to restore the regulating services ensure d by diseased urban trees.	Poor	PCSD is threatening these regulating services rapidly.	Declining	>	reasonably confident	Livesley et al., 2016				
Western Europe	Cultural: The Oriental plane was sacred in ancient Egypt, Greece and Persia. Both Oriental and London planes have a strong historical, cultural, and social roles and values.	Poor	PCSD has killed many Oriental planes in Southern Europe. Tens of thousands of London planes are being lost to PCSD in Western Europe.	Declining		reasonably confident	Tsopelas et al., 2017; Turner-Skoff and Cavender, 2019				

References

Ferrari JP, Pichenot M (1974) *Ceratocystis fimbriata* Ellis et Halsted f. *platani* (Walter), responsable d'une grave maladie du platane en France : « la tache chancreuse ». C R Acad Sci Paris D 278:2787-2789

- Livesley SJ, McPherson EG, Calfapietra C (2016) The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J Environ Qual 45:119-124
- Observatree (2016) Field Identification Guide Plane wilt. Online resource retrieved from <u>www.observatree.org.uk</u>
- Panconesi A (1999) Canker stain of plane trees: a serious danger to urban plantings in Europe. J Plant Pathol 81:3-15 Tsopelas P, Santini A, Wingfield MJ, de Beer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101:645-658
- Turner-Skoff JB, Cavender N (2019) The benefits of trees for livable and sustainable communities. Plants People Planet 1:323-335

VNF (2019). Voies Navigables de France. VNF poursuit la lutte contre le chancre coloré du platane. Online report retrieved from <u>http://www.sudouest.vnf.fr/vnf-poursuit-la-lutte-contre-le-chancre-colore-du-a432.html</u>

Supplementary file C - Table 13. State and evolution of plant health and services - Oaks in Western Europe and North America

Plant he	alth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Western Europe	Poor crown condition - tree decline - has increased in evergreen and deciduous temperate oaks. Oak declines involve severe drought stress interacting with biotic agents, including pathogens. <i>Phytophthora</i> spp. have been emphasized in some cases. Acute oak decline (AOD) is associated with bacteria interacting with the bark beetles in the UK.	Fair	A significant tree decline has been reported in evergreen Mediterranean oaks. Newly described, emerging, pathogenic bacteria have been associated with Acute oak Decline and reported in England, Spain and Portugal.	Declining		reasonably confident	Brady et al., 2017; Camilho-Alves et al., 2013; Delatour, 1983; Desprez-Loustau et al., 2006; Jung et al., 2018; Manion and Lachance 1992; Marçais and Desprez-Loustau 2014; Michel et al., 2018
North America	North American oaks have become less abundant, particularly in the eastern USA. Multiple studies indicate that oak sapling mortality and lack of regeneration present a doubtful future for oak forests	Fair	Despite the prevalence of oaks across the northern U.S., multiple studies indicate that oak sapling mortality and lack of regeneration present a doubtful future for oak forests.	Declining		reasonably confident	Cobb et al., 2020; Conrad et al., 2020; Grünwald et al., 2019; Jensen-Tracy 2009; Juzwik et al., 2011; Navarro et al., 2020; Oak et al., 1996
Impacts of	plant health on ecosystem service	s					
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Western Europe	Provisioning : Oaks produce high quality timber. France alone produces over 12 million m ³ of timber annually. Southern Europe cork oak forests account for 90% of the world's cork oak production.	Excellent	Provisioning services are affected by oak decline and diseases.	Stable	\rightarrow	reasonably confident	Bugalho et al., 2018
Western Europe	Regulating : Oak forests ensure long-term carbon storage (400 Mt C in France alone); host a large biodiversity.	Excellent	Regulating services are affected by oak decline and diseases.	Declining	\searrow	reasonably confident	McGrath et al., 2015; Mitchell et al., 2019
Western Europe	Cultural : The oak tree is a symbol of longevity, stability, strength (Leroy et al., 2020). Oak forests offer recreational and tourism services.	Excellent	Cultural services are threatened by oak decline and diseases.	Stable	\rightarrow	reasonably confident	Boyd et al., 2013
North America	Provisioning : Oaks large quantities of hardwood lumber. Acorns are an important food source for indigenous peoples. Oak forests support hunted or collected food.	Excellent	Provisioning services are affected by oak decline and diseases.	Declining	\searrow	reasonably confident	McShea and Healy 2002
North America	Regulating : Oaks forests host a large biodiversity; regulate biomass, carbon sequestration, soil formation, nutrient fluxes, energy flows; purify water and regulate water dynamics.	Excellent	Regulating services are affected by oak decline and diseases.	Declining	\searrow	reasonably confident	Cavender-Bares 2019
North America	Cultural : Majestic oaks have enormous importance to human culture and meaning.	Excellent	Cultural services are affected by oak decline and diseases.	Declining	\searrow	reasonably confident	Boyd et al., 2013

References

- Brady C, Arnold D, McDonald J, Denman S (2017) Taxonomy and identification of bacteria associated with acute oak decline. World J Microbiol Biotechnol 33: 143
- Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree pests and diseases for ecosystem services. Science 342(6160):1235773
- Bugalho MN, Pinto-Correia T, Pulldo F (2018) Human use of natural capital generates cultural and other ecosystem services in montado and dehesa oak woodlands. In: Paracchini ML, Zingari PC, Blasi C (eds) Reconnecting Natural and Cultural Capital. Publication Office of the European Union, Luxembourg, pp 115-123
- Camilho-Alves da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with *Phytophthora cinnamomi*: a review. Eur J For Res 132: 411-432
- Cavender-Bares J (2019) Diversification, adaptation, and community assembly of the American oaks (*Quercus*), a model clade for integrating ecology and evolution. New Phytol 221:669–692
- Cobb RC, Haas SE, Kruskamp N, Whalen WD, Swiecki TJ, Rizzo DM, Frankel SJ, Meentemeyer RK (2020) The magnitude of regional-scale tree mortality caused by the invasive pathogen *Phytophthora ramorum*. Earth's Future e2020EF001500
- Conrad AO, Crocker EV, Li X, Thomas WR, Ochuodho TO, Holmes TP, Nelson CD (2020) Threats to oaks in the eastern United States: perceptions and expectations of experts. J For 118:14-27
- Delatour C (1983) Les dépérissements de chênes en Europe. Rev For Fran 5:265-282
- Desprez-Loustau ML, Marçais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63: 597-612
- Grünwald NJ, LeBoldus JM, Hamelin RC (2019) Ecology and evolution of the sudden oak death pathogen *Phytophthora ramorum*. Annu Rev Phytopathol 57:301-321
- Jensen-Tracy S, Kenaley S, Hudler G, Harrington T, Logue C (2009) First report of the oak wilt fungus, *Ceratocystis fagacearum*, in New York State. Plant Dis 93:428
- Jung T, Pérez-Sierra A, Durán A et al (2018) Canker and decline diseases caused by soil- and airborne *Phytophthora* species in forests and woodlands. Persoonia 40:182–220
- Juzwik J, Appel DN, MacDonald WL, Burks S (2011) Challenges and successes in managing oak wilt in the United States. Plant Dis 95:888-900
- Manion PD, Lachance D (1992) Forest Decline Concepts. APS Press, St Paul, MN, USA
- Marçais B, Desprez-Loustau ML (2014) European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Ann For Sci 71:633-642
- McGrath MJ, Luyssaert S, Meyfroidt P et al (2015) Reconstructing European forest management from 1600 to 2010. Biogeosciences 12:4291-4316
- McShea WJ, Healy WM (2002) Oak Forest Ecosystems Ecology and Management for Wildlife. Johns Hopkins University Press, Baltimore, MD
- Michel A, Seidling W, Prescher AK (2018). Forest Condition in Europe: 2018 Technical Report of ICP Forests, Austrian Research Centre for Forests, Vienna
- Mitchell RJ, Bellamy PE, Ellis CJ et al (2019). Collapsing foundations: The ecology of the British oak, implications of its decline and mitigation options. Biol Conserv 233:316-327
- Navarro S, Wiese R, Nichols C et al E (2020) Slowing the Spread of Sudden Oak Death in Oregon Forests, 2001-2018. In: Frankel SJ, Alexander JM (eds) Proceedings of the seventh sudden oak death science and management symposium: healthy plants in a world with *Phytophthora*. PSW-GTR-268. Department of Agriculture, Forest Service, Pacific Southwest Research Station Albany, CA, USA, pp 2-3
- Oak S, Tainter F, Williams J, Starkey D (1996) Oak decline risk rating for the southeastern United States. Ann For Sci 53:721-730

Supplementary file C - Table 14. State and evolution of plant health and services - Managed softwood forests of North America

Plant he	alth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
North America	Overall, and despite some serious diseases, the state of health of actively managed softwood forests (AMSFs) may be considered fair. The concerns associated with the white pine blister rust, <i>Cronartium ribicola</i> is very serious	fair	Health of the five managed forest types considered has much declined. Pathogen impacts have increased in response to increased precipitation variations (excess and shortage), leading to stress-initiated declines and associated diseases.	declining		reasonably confident	Agne et al., 2018; Costanza et al., 2018; Coyle et al., 2015; 2019; Geils et al., 2010; Kliejunas et al., 2009; Hansen and Goheen, 2000; Kurz et al., 2008; Mildrexler et al., 2019; Woods et al., 2005; 2017
Impacts	of plant health on ecosy	stem se	rvices				
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
North America	Provisioning: AMSFs across North America have produced a wide range of products over the last 30 years. Timber losses to plant disease have been relatively small. But those related to atmospheric and water regulation, have not been quantified: this is a global information gap.	good	Provisioning of services have declined. Timber volume and value have diminished; fewer healthy trees contribute to the carbon and water cycles. The recent decline of tree health might have far-reaching consequences, which cannot be quantified here.	declining		reasonably confident	Aitken et al., 2008; Allen et al., 2010; Flewelling and Monserud, 2002; McDowell et al., 2015; Metsaranta et al., 2011; Millar and Stephenson, 2015; Price et al., 2013; Spittlehouse and Stewart, 2003; Russell et al., 2015; Woods and Watts. 2019

References

- Agne MC, Beedlow PA, Shaw DC, et al (2018) Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A. For Ecol Manage 409:317-332
- Aitken SN, Yeaman S, Holliday JA, et al (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Applic 1:95–111
- Allen CD, Macalady AK, Chenchouni H, et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660-684
- Constanza KL, Whitney TD, McIntire CD et al (2018) A synthesis of emerging health issues of eastern white pine (*Pinus strobus*) in eastern North America. For Ecol Manage 423: 3-17.
- Coyle DR, Barnes BF, Klepzig KD, et al (2019) Abiotic and biotic factors affecting loblolly pine health in the Southeastern United States. For Sci 66:145–156
- Coyle DR, Klepzig KD, Koch FH et al (2015) A review of southern pine decline in North America. For Ecol Manage 349:134-148
- Flewelling JW, Monserud RA (2002) Comparing methods for modelling tree mortality. In: Crookston NL, Havis RN (eds) Second Forest Vegetation Simulator Conference. USDA, Forest Service, Rocky Mountain Research Station, Proc. RMRS-P-25., Ogden, UT, pp 168-177
- Geils BW, Hummer KE, Hunt RS (2010) White pines, *Ribes*, and blister rust : A review and synthesis. For Pathol 40:147-185
- Hansen EM, Goheen EM (2000) *Phellinus weirii* and other native root pathogens as determinants of forest structure and process in western North America. Annu Rev Phytopathol 38:515-39
- Kliejunas JT, Geils BW, Glaeser JM et al (2009) General Technical Report PSW-GTR-225. Pacific Southwest Research Station, USDA Forest Service; Albany, California: 2009. Review of literature on climate change and forest diseases of western North America.

- Kurz W, Dymond C, Stinson G et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990
- McDowell NG, Coops NC, Beck PS et al (2015) Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci 20:114–123
- Metsaranta JM, Dymond CD, Kurz WA, Spittlehouse DL (2011) Uncertainty of 21st century growing stocks and GHG balance of forest in British Columbia, Canada resulting from potential climate change impacts on ecosystem processes. For Ecol Manage 262:827-837
- Mildrexler DJ, Shaw DC, Cohen WB (2019) Short-term climate trends and the Swiss needle cast epidemic in Oregon's public and private coastal forestlands. For Ecol Manage 432:501-513
- Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349:823-826 Price DT, Alfaro RI, Brown KJ et al (2013) Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environ Rev 21:322-365
- Russell MB, D'Amato AW, Albers MA et al (2015) Performance of the Forest Vegetation Simulator in managed white spruce plantations influenced by eastern spruce budworm in northern Minnesota For Sci 61:723-730

Spittlehouse DL, Stewart RB (2003) Adaptation to climate change in forest management. J Ecosyst Manage 4:1-11

- Woods A, Coates KD, Hamann A (2005) Is an unprecedented Dothistroma needle blight epidemic related to climate change? BioScience 55:761-769
- Woods AJ, Coates KD, Watts M et al (2017) Warning signals of adverse Interactions between climate change and native stressors in British Columbia forests. Forests 8:280
- Woods AJ, Watts M (2019) The extent to which an unforeseen biotic disturbance agent can challenge timber objectives. For Ecol Manage 453

Supplementary file C - Table 15. State and evolution of plant health and services - Rubber tree and Cacao in the Amazon Forest

Plant hea	lth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Amazon (Cocoa and Rubber Tree)	Many pathogens of Cocoa and Rubber tree are present. Yet plant diseases are not reported to cause epidemics.	Good	The health status of populations in the wild has likely not changed over the past 10 years.	Stable	\rightarrow	reasonably confident	Gazis and Chaverri, 2015; Gilbert and Hubbell, 1996; Ploetz, 2016; ter Steege et al., 2013
Impacts of	of plant health on ecosy	stem se	rvices				
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Amazon (Cocoa and Rubber Tree)	Provisioning: Unaffected by diseases	Good	No reports of decline.	Stable	\rightarrow	uncertain	Gazis and Chaverri, 2015
Amazon (Cocoa and Rubber Tree)	Regulating: Carbon storage, climate regulation, biodiversity conservation, cannot possibly be affected by the health status of just two species.	Good	No disease-related decline in regulating services.	Stable	\rightarrow	reasonably confident	Gomes et al., 2019; Lovejoy and Nobre, 2019

References

Gazis R, Chaverri P (2015) Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecol 17:18–29

Gilbert GS, Hubbell SP (1996) Plant diseases and the conservation of tropical forests. BioScience 46:98–106 Gomes VHF, Vieira ICG, Salomão RP, ter Steege H (2019) Amazonian tree species threatened by deforestation and

climate change. Nat Clim Chang 9:547–553

Lovejoy TE, Nobre C (2019) Amazon tipping point: Last chance for action. Sci Adv 5:eaba2949

Ploetz RC (2016) The Impact of Diseases on Cacao Production: A Global Overview. In: Bailey BA, Meinhardt LW (eds) Cacao Diseases: A History of Old Enemies and New Encounters. Springer International Publishing, Cham, pp 33–

59

ter Steege H, Pitman NCA, Sabatier D, et al (2013) Hyperdominance in the Amazonian Tree Flora. Science 342:1243092

Supplementary file C - Table 16. State and evolution of plant health and services - Australian Forests (Eucalypts)

Plant hea	llth						
Ecoregion	State of plant health	State assess- ment	Evolution of plant health	Evolution assess- ment	Summary	Level of assessment confidence	References
Australian Forests (Eucalypts)	Many pathogens affect Eucalypts, especially <i>Phytophthora cinnamomi.</i> Despite this and numerous other causes for poor health, the state of eucalypt health is rated as good	good	Tree declines involving pathogens and multiple other causes (drought, fire, insects) are on the rise. Pathogen invasions have occurred.	declining	<u>, </u>	reasonably confident	ABARES, 2018; Cahill et al., 2008; Carnegie and Pegg, 2018; Keane et al., 2000; Paap et al., 2008; 2017;
Impacts	of plant health on eco	osysten	n services				
	Nature and state of services generated	State assess- ment	Evolution of services generated	Evolution assess- ment	Summary	Level of assessment confidence	References
Australian Forests (Eucalypts)	Provisioning: Several eucalypt species account for most of the timber harvesting in Australia representing over AU\$ 8.5 billion of its GDP.	good	The economic benefits for the timber industry has been stable despite the true impact of diseases being unknown.	stable	G	reasonably confident	ABARES, 2018; McLeod, 2005
Australian Forests (Eucalypts)	Regulating: regulation of water supply; soil formation and conservation; carbon storage and sequestration.	good	Pathogens - <i>Phytophthora</i> <i>cinnamomi</i> - is a major threat to biodiversity.	declining	G	reasonably confident	Cahill et al., 2008; Garkaklis et al., 2004
Australian Forests (Eucalypts)	Cultural: recreation, and Indigenous and non- Indigenous cultural values.	good	Increase of eucalypt declines bring about a decline in cultural services.	declining	G	reasonably confident	ABARES, 2018;

References

ABARES (2018) Montreal Process Implementation Group for Australia and National Forest Inventory Steering Committee, 2018, Australia's State of the Forests Report 2018. ABABES, Canberra. https://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018

Cahill DM, Rookes JE, Wilson BA, et al (2008) *Phytophthora cinnamomi* and Australia's biodiversity: impacts, predictions and progress towards control. Aust J Bot 56:279

Carnegie AJ, Pegg GS (2018) Lessons from the incursion of myrtle rust in Australia. Annu Rev Phytopathol 56:457–478 Garkaklis M, Calver M, Wilson B, Hardy Ges (2004) Habitat alteration caused by an introduced plant disease,

Phytophthora cinnamomi: a potential threat to the conservation of Australian forest fauna. In: Lunney D (ed) Conservation of Australia's Forest Fauna, Second Edition. Royal Zoological Society of New South Wales, Mosman, NSW, Australia, pp 899–913

Keane P, Gile G, Podger F, Brown B (2000) Diseases and Pathogens of Eucalypts. CSIRO Publishing, Melbourne

- McLeod P (2005) Business Case for Phytophthora Research Funding. Commissioned by the Murdoch University Centre for Phytophthora Science and Management
- Paap T, Burgess TI, Calver M, et al (2017) A thirteen-year study on the impact of a severe canker disease of *Corymbia* calophylla, a keystone tree in Mediterranean-type forests. For Pathol 47: e12292
- Paap T, Burgess TI, McComb JA, Shearer BL, Hardy GESJ (2008) *Quambalaria* species, including *Q. coyrecup* sp. nov., implicated in canker and shoot blight diseases causing decline of Corymbia species in the southwest of Western Australia. Mycol Res 112:57–69