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Abstract

Fluted pumpkin (Telfairia occidentalis Hook F.) is an underutilized indigenous leafy vegetable
with enormous prospects for food security in sub-Saharan Africa. However, relatively little is
known about genetic relationships and population structure in the species. In this study, 32
landraces of fluted pumpkin collected across three southern geographical regions in Nigeria
were assessed for genetic diversity and population structure using 8 start codon-targeted
(SCoT) makers. The polymorphic information content of the SCoT markers ranged from
0.48 in SCoT36 to 0.94 in SCoT28, with an average of 0.77. Hierarchical cluster dendrogram
based on Ward’s method and principal component analysis grouped the landraces into four
clusters without affiliation to provenance. Overall, the mean values of the population genetic
diversity parameters – Nei’s gene diversity (H ) and Shannon’s information index (I ) showed
values of 0.28 ± 0.01 and 0.43 ± 0.02, respectively, implying a narrow genetic base for the land-
races. The result was further corroborated by a very close Nei’s genetic distance and identity
among populations of the landraces. Furthermore, the south-west population exhibited the
higher genetic diversity (H = 0.31 ± 0.02 and I = 0.45 ± 0.03). Population structure analysis
inferred three subpopulations for the accessions with varying degrees of allelic admixture.
An analysis of molecular variance revealed that almost all the genetic variation occurred
within (99%) than between (1%) populations. The findings shed light on the
genetic diversity of southern Nigerian fluted pumpkin and have significant implications for
the characterisation, conservation, exploitation and improvement of the species.

Introduction

Fluted pumpkin (Telfairia occidentalis Hook F.) is listed as one of the underutilized and
neglected indigenous crops with significant potential to contribute to food security in
sub-Saharan Africa (Jamnadass et al., 2020; Metry et al., 2023). It is a nutritionally and medi-
cinally valuable cucurbitaceous leafy vegetable commonly cultivated in the tropical wet coastal
regions of West Africa (Fayeun et al., 2018). While T. occidentalis of West Africa and Telfairia
pedata of East Africa are the two well-known species in the Telfairia genus, a third species,
Telfairia batesii previously found in the wild in Equatorial Guinea and Cameroon is now
almost extinct (Ajayi et al., 2004). Fluted pumpkin is predominantly grown in Nigeria,
Ghana, Benin, Cameroon and Sierra Leone. However, it is thought to be native to Nigeria,
where it is extensively cultivated across the southern region of the country (Ajayi et al.,
2004; Uguru and Onovo, 2011; Airaodion et al., 2019). Fluted pumpkin is a dioecious species
(2n = 2x = 22); although sporadic monoecious forms have been reported (Akoroda, 1990). It
exhibits a creeping habit and bears three to five lobed leaves with twisted tendrils that extend
over the soil (Horsefall and Spiff, 2005). The plant grows rapidly, trailing the trunk of trees up
to a height of over 30 m, producing profusely branched vines that bear large droopy fruits
enclosing many seeds (Ajayi et al., 2004; Nwangburuka et al., 2014). In several areas of south-
ern Nigeria, it is commonly cultivated adjacent to walls, fences, trees or underneath trellised
platforms which allow the vine to creep undisturbed (Okoli and Mgbeogu, 1983). Fluted
pumpkin is mainly grown for its seeds, succulent shoots and leaves (Odiaka et al., 2008).
The pleasant, tasty leaves and tender shoots are picked continuously, chopped and added to
soups solely or combined with other leafy vegetables (Okoli and Mgbeogu, 1983). Mature
vines of fluted pumpkin constitute an essential source of fibre in animal fodder (Chukwudi
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and Agbo, 2016). A concoction prepared from the fresh leaves is
administered to remedy acute anaemia and impotence in men
(Ajayi et al., 2004; Anchal et al., 2014; Famuwagun et al., 2017;
Ogwu et al., 2017). The leaves are rich in essential amino acids,
minerals, vitamins and proteins (Cyril-Olutayo et al., 2019).
Oils derived from the seeds have been documented as potential
feedstock for the manufacture of vegetable oils, margarine,
soaps, candles and lubricants (Agatemor, 2006; Odiaka et al.,
2008). The cultivation of fluted pumpkin constitutes a significant
commercial activity that generates a high monthly revenue of
NGN145,309.1 (approximately USD 350) for many small-holder
farmers in southern Nigeria (Ajayi et al., 2004; Odiaka et al.,
2008; Chukwudi and Agbo, 2016; Aisida et al., 2021; Osuji
et al., 2022).

Genetic diversity offers plant species the capability to tolerate
changing environmental conditions (Pandey et al., 2019).
Therefore, a more in-depth understanding of the extent of intra-
specific genetic relationships and population structure of a species
aid in determining its status and vulnerabilities, and could there-
fore give baseline information for fashioning suitable manage-
ment and conservation approaches (Jena and Chand, 2021).
Additionally, having a good knowledge of the genetic relationship
in germplasm collections is essential for selection and develop-
ment of new varieties in crop improvement programmes (Jena
and Chand, 2021). The advent of DNA or molecular markers
has dramatically enhanced the efficiency of selecting accessions
in conventional crop breeding. Molecular markers have been
extensively exploited in assessing genetic diversity, identifying
quantitative trait loci for genetic mapping and marker-assisted
breeding (Shayanowako et al., 2018; Ghimire et al., 2019;
Salgotra and Stewart, 2020). Unlike morphological markers,
DNA markers are not prone to interactions with the environment
(Jena and Chand, 2021). Advancements in plant genomics have
propelled the development of a broad spectrum of molecular
marker technologies (Etminan et al., 2018). These marker techni-
ques differ according to characteristics such as the degree of poly-
morphism detected, genomic distribution, locus specificity,
reproducibility, cost and technical demand (Jena and Chand,
2021). Molecular markers may be categorized as hybridization-
dependent, polymerase chain reaction (PCR)-assisted and
sequence-based (Jena and Chand, 2021). Hybridization-dependent
molecular marker systems which make use of the hybridization of
a labelled probe of known sequence to enzyme-digested DNA, fol-
lowed by visualization of the DNA segments include restriction
fragment length polymorphisms (Dhutmal et al., 2018; Nadeem
et al., 2018). The PCR-enabled markers, namely inter-simple
sequence repeats, start codon-targeted (SCoT) polymorphism, amp-
lified fragment length polymorphism (AFLP), random-amplified
polymorphic DNA (RAPD) and simple-sequence repeats (SSRs),
are designed to select and rapidly amplify specific target sequences
of genomic DNA in an exponential chain reaction to produce
amplicons of the targeted DNA (Green and Sambrook, 2019).
Sequence-based markers rely on DNA sequencing technologies to
detect variations in the genome and include expressed sequence
tags, single-nucleotide polymorphism (SNP) and sequence-related
amplified polymorphism (Dhutmal et al., 2018).

More recently, there has been a shift from using arbitrary
PCR-based markers like RAPD that targets random regions of
the genome to SCoT markers that target coding regions (Rajesh
et al., 2015; Srivastava et al., 2020). The SCoT markers do not
require prior genomic information on the species to be analysed,
and are low cost, simple and highly reproducible (Collard and

Mackill, 2009). The markers are designed to anneal single primers
to the short-conserved stretch of nucleotides flanking the start
codon, ATG, adjacent to genes in plants (Rajesh et al., 2015;
Jedrzejczyk, 2020; Srivastava et al., 2020; Mostafavi et al., 2021).
Their applicability has been demonstrated in genetic diversity
evaluation, DNA fingerprinting, cultivar recognition, quantitative
traits mapping and marker-assistant selection (Mostafavi
et al., 2021).

Expansion of fluted pumpkin hectarage amidst climate change
remains a challenge due to the unavailability of improved varieties
(Fayeun et al., 2016; Osuji et al., 2022). Considering that the crop
provides nutrition for over 100 million people, coupled with its
industrial and economic potentials, the need to develop improved
cultivars becomes necessary (Fayeun and Odiyi, 2015). In order to
efficiently select and breed for improved or new genotypes, bree-
ders must leverage available genetic diversity in germplasm collec-
tions of fluted pumpkin (Fayeun et al., 2018). The selection of
unique fluted pumpkin variants could guarantee increased pro-
duction, yield and revenue for small-holder farmers (Chukwudi
et al., 2017). Most of the existing literature on diversity in fluted
pumpkin has been directed at estimating phenotypic variability,
with relatively little known about genetic relationship and popula-
tion structure in the species at the molecular level (Fayeun et al.,
2012, 2016, 2018; Odiyi et al., 2014; Chukwudi and Agbo, 2016;
Chukwudi et al., 2017; Ezenwata et al., 2019). Although recent
studies have assessed genetic variation in fluted pumpkin
landraces using RAPD (Adeyemo and Tijani, 2018) and double-
digested restriction site-associated DNA sequencing (Metry et al.,
2023), each marker system targets different genomic regions and
as such, possess different resolving power (Nayak et al., 2005).
Moreover, data generated using a different marker can reveal infor-
mation that are valuable for germplasm management, including the
categorization of accessions using known allelic composition and
identification of duplicate collections (Rao and Hodgkin, 2002).
For these reasons, we present a first attempt at the use of SCoT
markers to assess genetic diversity and population structure in a
fluted pumpkin collection from southern Nigeria.

Materials and methods

Collection and cultivation of accessions

Thirty-two fruit genetic resources of fluted pumpkin were col-
lected from 12 states of southern Nigeria, representing three geo-
graphical regions: south-west, south-south and south-east (online
Supplementary Fig. S1). The collection sites were separated by at
least 5 km according to Wada et al. (2021). Forty landraces were
initially collected for the study; however, 32 landraces were
employed due to the recalcitrant nature (sensitivity to desiccation
and chilling, and propensity of the seeds to germinate within the
pod) of fluted pumpkin and storage of planting materials. The
landraces were assigned unique codes that highlighted the species’
scientific name and collection areas. The landraces included:
ToOg001, ToOg002, ToOg003, ToOg004, ToLg001, ToLg002,
ToOn001, ToOn002, ToOn003, ToOy001, ToDt001, ToDt002,
ToDt003, ToEd001, ToEd002, ToEd003, ToEd004, ToEd005,
ToRv001, ToRv002, ToRv003, ToCr001, ToCr002, ToIm001,
ToIm002, ToIm003, ToEn001, ToEn002, ToEn003, ToAn001,
ToAn002 and ToAb001. Seeds of fluted pumpkin were extracted
from the fruits, and subsequentlywashed and air-dried for 24 h before
planting in plots laid out at the Experimental Farmof theDepartment
of Biological Sciences, College of Science and Technology, Covenant
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University, Ota, Nigeria (6°40′25.272′′N longitude, 3°9′22.80288′′E
latitude and an altitude of 47m above sea level).

DNA extraction, quality check and quantification

Fresh young leaves were harvested from 3-week-old seedlings of
each landrace and preserved in air-tight plastic zip-lock bags
containing silica gel before DNA isolation. The leaf samples were
lyophilized for 14 h prior to DNA extraction. Genomic DNA iso-
lation from the lyophilized leaf samples was performed according
to the previously described cetyltrimethylammonium bromide
protocol (Doyle and Doyle, 1990). The extracted DNA samples
were then stored in tris-ethylenediaminetetraacetic acid buffer
for 4 h before use. The quality of extracted DNA was confirmed
on agarose gel (1.0% w/v) and viewed under ultraviolet light pro-
vided by a gel documentation system (Labnet, New Jersey, USA).
The purity and concentration of the DNA samples were assessed
by computing the absorbance ratio at 260–280 nm using a
Nanodrop™ 2000/2000c spectrophotometer (ThermoFisher
Scientific, Massachusetts, USA). For each sample, working solu-
tions of 100 ng/μl were prepared for use in SCoT-PCR.

Optimization of SCoT markers and PCR

Ten SCoT primers (Inqaba Biotechnical Company [Pty] Ltd.,
Pretoria, South Africa) initially from Ezzat et al. (2019) were
screened for PCR amplification across the 32 fluted pumpkin col-
lection. However, only 8 primers (online Supplementary
Table S1) generated visible, polymorphic bands across the collec-
tion. The PCR was executed in a 25 μl volume comprising 1 μl of
5 pmol of each SCoT primer pair, 2.5 μl of 10× Taq buffer
(BIOLINE, Massachusetts, USA), 1.5 μl of 50 mM of MgCl2,
1 μl of DMSO, 2.0 μl of 2.5 mM of DNTPs, 0.15 μl of 5 unit
Taq DNA polymerase (BIOLINE, Massachusetts, USA), 13.85 μl
of ultra-pure water and 2 μl of 100 ng/μl of template DNA. The
reaction cocktail was loaded into a Veriti 96-well thermal cycler
(Applied Biosystems, USA) programmed to implement an initial
denaturation of 94°C for 5 min, followed by nine cycles of 94°C
for 15 s, annealing at 60°C for 20 s and extension at 72°C for
30 s. Each cycle’s annealing temperature was set to decrease by
1°C, with a final 35 cycles of 94°C for 15 s, 50°C for 20 s, 72°C
for 30 s and a final extension of 72°C for 7 min.

Gel electrophoresis of SCoT-PCR amplification product

An 8 μl aliquot of the SCoT-PCR products were resolved on eth-
idium bromide (0.5mg/ml) pre-stained tris-borate ethylenediami-
netetraacetic acid agarose gel (2% w/v), and electrophoresed for
90min at 100 V. A 5.0 μl of standard size Quick-Load Purple 50
bp DNA Ladder (New England BioLabs Inc., Massachusetts,
USA) was loaded alongside the SCoT-PCR products on the agarose
gel to estimate the size of the amplicons. Following electrophoresis,
the SCoT amplification products were viewed and photographed
(online Supplementary Fig. S2) under ultraviolet light in a gel
documentation system (Labnet, Massachusetts, USA).

Data analysis

SCoT marker diversity

A binary data matrix of the SCoT marker profile across all the
landraces was entered in Excel 2019 (Microsoft Corporation,

Washington, DC, USA) by manually scoring clear and distinct
bands as either absent (0) or present (1). The matrix produced
was used to compute polymorphic information content (PIC),
the number of alleles per locus, major allele frequency (MAF)
and gene diversity of the SCoT markers in PowerMarker (version
3.25) (Liu and Muse, 2005). Microsoft Excel 2019 was used to
evaluate the total band number, polymorphic band number,
monomorphic band number and polymorphic band percentage.

Hierarchical clustering and principal component analysis (PCA)

The SCoT binary matrix was used to generate pairwise
genetic dissimilarities by computing Jaccard’s coefficients with
1000 bootstrap iterations in DARwin software (version 6.0.21)
(Perrier and Jacquemoud-Collet, 2006). Using the Ward’s
method, pairwise Jaccard’s dissimilarity coefficients were
employed to build a dendrogram. The variance-
covariance matrix generated in DARwin software was imported
to the adegenet package of the R program (Agung et al., 2019)
to perform multivariate PCA.

Population genetic diversity and differentiation

Landraces collected from the same geographical zone were
grouped into populations (south-west, south-east and south-
south) and comparatively analysed for genetic diversity indicators
such as observed number of different alleles (Na) (Brown and
Weir, 1983), effective number of alleles (Ne) (Brown and Weir,
1983), Nei’s gene diversity (H ) (Nei, 1972) and Shannon’s infor-
mation index (I ) (Shannon and Weaver, 1949) using GenAlEx
version 6.1 (Peakall and Smouse, 2012). The mean genetic diver-
sity was computed by averaging H across all the populations. Nei’s
genetic distance and identity matrix among pairs of populations
were calculated in GenAlEx. Additionally, a dendrogram was
built based on the unweighted pair group method with arithmetic
mean (UPGMA) using the Nei’s genetic distance of the popula-
tions. Total percentage variability among and within the popula-
tions was determined by implementing an analysis of molecular
variance (AMOVA) and significance determined using 999 ran-
dom repetitions of the data in GenAlEx software. PhiPT value
(analogous to FST fixation index) for genetic differentiation of
the three populations was computed in GenAlEx using 999
permutations.

Population structure

Population structure analysis was performed using cluster analysis
based on the Bayesian model in STRUCTURE software version
2.3.4 (Pritchard et al., 2000). The software is designed to group
landraces into an ideal number of populations (K) using the mul-
tilocus SCoT data by running a Markov chain Monte Carlo
(MCMC) algorithm (Falush et al., 2003), and thereafter identify
the cluster membership of the landraces. The STRUCTURE pro-
gram was executed with an initial burn-in period of 10,000 itera-
tions, followed by 10,000 MCMC iterations. Simulations based on
the admixture model were performed by completing five separate
runs for each K (from 1 to 5). The optimum number of popula-
tions was plotted by computing a ΔK value which relies on a
change in the mean probability function for each K (Evanno
et al., 2005). The optimum value of the K was deduced
from STRUCTURE HARVESTER version 6.0 (Earl and
VonHoldt, 2012).
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Results

SCoT marker diversity

A total of 66 bands were amplified by eight SCoT markers
(Table 1). The number of amplified bands per locus for the
SCoT markers varied from 5.00 (SCoT35) to 23.00 (SCoT28).
The polymorphic bands detected spanned from 5.00 (SCoT35)
to 11.00 (SCoT16), with a mean of eight bands. The PIC values
spanned from 0.48 (SCoT36) to 0.94 (SCoT28) with a mean of
0.77. The MAF varied from 0.09 to 0.69 in SCoT28 and
SCoT36, respectively, with a mean of 0.34 (Table 1). Gene diver-
sity spanned from 0.50 (SCoT36) to 0.95 (SCoT28) with a mean
value of 0.79. SCoT16 exhibited a maximum number of
polymorphic loci (11), whereas SCoT35 had the minimum (5)
among the accessions. Percentage polymorphic loci varied from
86.00% in SCoT1 to 100.00% (SCoT13, SCoT22, SCoT28,
SCoT33, SCoT35 and SCoT36) with an average of 97.25%
(Table 1).

Hierarchical clustering and PCA

At the level of individual landraces, hierarchical cluster analysis
according to Ward’s method using the Jaccard’s dissimilarity
coefficients, divided the 32 landraces into four groups, namely
A, B, C and D (Fig. 1). Cluster A was composed of ToOg002,
ToEn002, ToOn001, ToIm001, ToIm002, ToRv003, ToEd002,
ToOn003, ToEn001, ToOg001, ToLg002, ToEn003, ToEd001,
ToCr001, ToEd004, ToDt002, ToDt001, ToOn002 and ToDt003
landraces. Cluster B was comprised of the landraces ToRv002,
ToRv001, ToOy001 and ToAn001. The landraces ToLg001,
ToEd003, ToAb001, ToAn002, ToOg003, ToCr002 and
ToOg004 were grouped into cluster C. Only two landraces were
assigned to cluster D (ToEd005 and ToIm003). An admixed clus-
ter membership pattern was observed, with no apparent affiliation
to provenance or areas of the collection (Fig. 1). The PCA of 32
landraces revealed that the first two principal components (PCs)
contributed a cumulative percentage variation of 42.65%, with
PC1and PC2 accounting for 25.42 and 17.23%, respectively. In
the PCA, the landraces were grouped into four clusters with no
apparent relationship to their collection areas. Landraces in
groups A, B and C were overlapped for a few individuals
(Fig. 2), while those in group D formed outliers and were the far-
thest on the PCA plot.

Population genetic diversity and differentiation

The number of alleles (Na) spanned from 1.89 ± 0.05 in the
south-south population to 1.621 ± 0.080 in the south-east popula-
tion, with a mean of 1.77 ± 0.04. The number of effective alleles
(Ne) varied from 1.53 ± 0.05 in the south-west population to
1.43 ± 0.04 in the south-east population, with an average of
1.48 ± 0.03 (Table 2). For all the populations, Ne was consistently
less than Na values. Shannon’s information index ranged from
0.45 ± 0.03 in the south-west to 0.39 ± 0.03 in south-east popula-
tion, with a mean of 0.43 ± 0.02. The Nei’s gene diversity varied
from 0.26 ± 0.02 in the south-east to 0.31 ± 0.02 in the south-west,
with a mean of 0.28 ± 0.01. The populations exhibited similarity
in the allelic parameters, Na and Ne (Table 2).

The Nei’s genetic distance varied from 0.06 to 0.04, while the
genetic identity between populations varied from 0.96 to 0.94. A
maximum genetic distance of 0.061 was observed among the
south-south and south-east populations, with the south-south

and south-west populations recording a minimum of 0.040.
Conversely, a minimum genetic identity of 0.94 was observed
between south-south and south-east populations while a max-
imum genetic identity of 0.96 was recorded between south-south
and south-west populations (Table 3). A dendrogram based
on the UPGMA using the Nei’s genetic distance grouped the
three populations into two clusters, one comprising south-west
and south-south, and the other south-east only (online
Supplementary Fig. S3). The AMOVA partitioned 1% variation
among populations, whereas the majority of the variability was
within the populations. A low ϕPT value of 0.014 suggests of a
very weak differentiation between the populations (online
Supplementary Table S2).

Population structure

The ΔK maximum-likelihood value was detected at K = 3 (Fig. 3
(a)), suggesting that the landraces could be clustered into three
subpopulations. Using membership probabilities of ⩾0.50, the
STRUCTURE plot assigned the 32 landraces to three groups
with each landrace displaying varying degrees of allele admixtures
(Fig. 3(b)). In the STRUCTURE output, each column describes a
landrace, and a variegated colour motif depicts genetic admixture
in a particular landrace. A well differentiated population structure
could not be identified, as the landraces were not clearly demar-
cated according to their geographical origin as with the case of the
cluster dendrogram. This demonstrates clearly that most of the
landraces (17) were allocated to subpopulation K1 and consisted
of ToEn001, ToEn002, ToEn003, ToIm001, ToIm002, ToCr001,
ToDt001, ToDt002, ToEd001, ToEd002, ToEd004, ToRv003,
ToLg002, ToOg001, ToOg002, ToOn001 and Toon003 accessions.
Eight landraces namely ToAn001, ToIm003, ToDt003, ToEd005,
ToRv001, ToRv002, ToOn002 and ToOy001 were assigned to
subpopulation K2. The third subpopulation, K3 comprised of
seven landraces that included ToAb001, ToAn002, ToCr002,
ToEd003, ToLg001, ToOg003 and ToOg004 (Fig. 3(b)).

Discussion

Genetic diversity assessment using an appropriate marker system
is crucial to the identification of unique accessions, management,
improvement and utilization of plant germplasms (Igwe et al.,
2017). The total number, range and mean number of detected
alleles per locus in the study differed from those of Etminan
et al. (2018), Igwe et al. (2017) and Samarina et al. (2021). This
discrepancy could be attributed to several factors, including the
heterogeneity of the plant material used, methodology deployed
for polymorphic loci detection and the number of landraces
employed (Adu et al., 2019; An et al., 2019, Merheb et al.,
2020), annealing sites present in the genome, as well as the primer
sequence (Moniruzzaman et al., 2019). The SCoT markers
revealed an average percentage polymorphism of 97.25% and
PIC value of 0.77, which is suggestive of a high discriminability
and informativeness of the marker system (Shekhawat et al.,
2018; Yang et al., 2019). The mean percentage polymorphism
and PIC values obtained were higher than 62.82% and 0.251
detected by SCoT markers among Cucurbita pepo landraces
(Xanthopoulou et al., 2015), 92.20% and 0.45 among
Trichosanthes dioica accessions (Kumar and Agrawal, 2019) and
74.85% and 0.62 among quinoa genotypes (El-Moneim et al.,
2021). High polymorphisms detected by molecular markers
may be linked to the presence of CA, AC, GA and AG repeat
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motifs (Igwe et al., 2017). DNA markers with higher PIC values
possess considerable capabilities for discriminating accessions
(Feng et al., 2016). While a PIC value higher than 0.5 is judged

as very informative, values that range from 0.25 to 0.5 are consid-
ered as moderately informative, with values less than 0.25 are
regarded as slightly informative (Eltaher et al., 2018; Luo et al.,

Table 1. Diversity parameters of the SCoT markers

Marker TNB NMB NPB PPB MAF Number of alleles per locus Gene diversity PIC

SCoT1 7.00 1.00 6.00 86.00 0.28 10.00 0.83 0.81

SCoT13 10.00 0.00 10.00 100.00 0.16 21.00 0.93 0.92

SCoT16 12.00 1.00 11.00 92.00 0.16 22.00 0.94 0.93

SCoT22 8.00 0.00 8.00 100.00 0.38 11.00 0.79 0.77

SCoT28 10.00 0.00 10.00 100.00 0.09 23.00 0.95 0.94

SCoT33 8.00 0.00 8.00 100.00 0.47 13.00 0.75 0.73

SCoT35 5.00 0.00 5.00 100.00 0.53 5.00 0.61 0.55

SCoT36 6.00 0.00 6.00 100.00 0.69 7.00 0.50 0.48

Mean 8.00 97.25 0.34 14.00 0.79 0.77

PIC, polymorphic information content; MAF, major allele frequency; PBP, polymorphic band percentage; PBN, polymorphic band number; MBN, monomorphic band number; TBN, total band
number.

Figure 1. Dendrogram of genetic relationships among the 32 T. occidentalis landraces based on Jaccard’s dissimilarity coefficients using the 8 SCoT markers.
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2019; El-Moneim et al., 2021, Khodaee et al., 2021). Most of the
loci revealed PIC values greater than 0.5. A similar observation
was reported by Jedrzejczyk (2020), thus substantiating the utility
of SCoT markers in the evaluation of genetic diversity
(Moniruzzaman et al., 2019) in underutilized species like fluted
pumpkin. The variation observed in the MAF suggests the influ-
ence of PIC values. This is not surprising as a positive correlation
between the two parameters has been previously reported (An

et al., 2019). The mean gene diversity of the SCoT primers
(0.79) was higher than from a previous study in summer squash
landraces (Xanthopoulou et al., 2015). Strong association has been
reported between gene diversity, PIC and the number of alleles
detected per locus, such that markers with very high PIC values
detected a greater number of alleles and gene diversity
(Al-Tamimi and Al-Janabi, 2019; Gasim et al., 2019; Kumar
and Agrawal, 2019; Moniruzzaman et al., 2019).

The cluster dendrogram assembled the landraces into four
groups without any relationship to geographical collection areas.
Similar observations were reported in a study involving 32 sesame
genotypes from germplasm collections in Venezuela using AFLP
markers (Laurentin and Karlovsky, 2006), 192 accessions of
Ethiopian durum wheat using SNP markers (Alemu et al.,
2020), 139 Coix lacryma-jobi accessions in south-west China
using AFLP (Fu et al., 2019) and 190 Cypriot tomato germplasms
using SSR markers (Athinodorou et al., 2021). The observed clus-
tering pattern could be due to fluted pumpkin breeding system or
the existence of historical and current germplasm exchange
among farming communities in the different regions (Ren et al.,

Figure 2. PCA of the 32 T. occidentalis landraces based on PC1 versus PC2.

Table 2. Population-wise genetic diversity parameters generated from 32 T. occidentalis landraces based on the 8 SCoT primers

Population Number of accessions Na Ne I H

South-east 9 1.62 ± 0.08 1.43 ± 0.04 0.39 ± 0.03 0.26 ± 0.02

South-south 13 1.89 ± 0.05 1.47 ± 0.04 0.44 ± 0.03 0.29 ± 0.02

South-west 10 1.79 ± 0.05 1.53 ± 0.05 0.45 ± 0.03 0.31 ± 0.02

Mean – 1.77 ± 0.04 1.48 ± 0.03 0.43 ± 0.02 0.28 ± 0.01

H, Nei’s gene diversity; I, Shannon’s information index; Ne, number of effective alleles; Na, number of different alleles.

Table 3. Nei’s pairwise genetic distance and identity of the 32 T. occidentalis
landraces based on the 8 SCoT markers

Region South-east South-south South-west

South-east – 0.94 0.95

South-south 0.06 – 0.96

South-west 0.04 0.04 –

Nei’s genetic distance (below diagonal) and genetic identity (above diagonal).
–, no value.
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2015; McBenedict et al., 2016; Alemu et al., 2020). In Africa,
farmer seed exchange is a widespread practice (Fayeun et al.,
2018). Odiaka et al. (2008) alluded to farmers in the middle
belt region of Nigeria obtaining seeds of fluted pumpkin from
the south-eastern part of the country. As stated by McBenedict
et al. (2016), famers in the communal areas of Zimbabwe source
80% of their seeds from neighbouring communities, while an esti-
mated 60% travel long distances to buy or exchange propagules to
maintain crop vigour. The landrace ToOg004, which originated
from Cotonou in Benin Republic, but was collected in Idiroko
in Ogun state, Nigeria clustered with other landraces of
Nigerian origin. Seeds are frequently traded between Nigeria
and Benin, as the two countries share a border and are not too
far apart. Such clustering patterns may therefore reflect historical
trade routes (Ndjiondjop et al., 2017). An ethnobotanical survey
carried out by our research team (data not shown) lends credence
to this observation, as farmers interviewed in the south-west
region of Nigeria remarked that they source their seeds from
Calabar in the south-south region, claiming that the seeds pro-
duced more vigorous vines and broad leaves with high market
value. This germplasm movement between regions is associated
with the ease of propagation and socio-economic value of fluted
pumpkin. Similar to the cluster dendrogram, the PCA grouped
the landraces into four clusters without geographical affiliation.
Landraces in clusters A, B and C of the PCA plot overlapped, sug-
gesting that they share a common ancestry (Elhaik, 2021). The
distribution of group D landraces on the PCA plot indicates
some degree of diversity.

Genetic variation is a significant indicator of population diver-
sity and it primarily discloses the disparity between different loci
(Xu et al., 2020). The observed number of alleles were higher than
the number of effective alleles in all the populations. Similar
observations were documented in species like Zanthoxylum
(Kalpana et al., 2012), apricot (Wang et al., 2014) and mango
(Jena and Chand, 2021). The Nei’s gene diversity is a vital
index that is used to quantify genetic variation in populations
(Zhao et al., 2013). In this study, the overall mean Nei’s gene
diversity or expected heterozygosity (0.28) and Shannon diversity
index value (0.43 ± 0.02) of T. occidentalis from the south-east,
south-south and south-west populations were generally low sug-
gesting that the landraces were of a narrow genetic base. The

Shannon diversity index obtained in this study was less than
1.5. Shannon diversity index typically varies from 1.5 to 3.5
(McBenedict et al., 2016). This result contradicts the fair level
of diversity reported by Adeyemo and Tijani (2018) using
RAPD markers. This discrepancy may be attributed to differences
in the type of marker employed to evaluate genetic diversity.
While RAPD marks random regions of the genome, SCoT mar-
kers target coding regions (Rajesh et al., 2015; Srivastava et al.,
2020). The high level of genetic diversity observed in the south-
west population may be explained by the reasoning that the
south-west is probably the centre of origin of fluted pumpkin
or: (1) fluted pumpkin is a facultative perennial (Okoli and
Mgbeogu, 1983; Akoroda, 1990) and such status confers increased
chances to accumulate certain microstructures or mutations in
diverse populations due to biotic processes. Perennial plants are
known to conserve variants between generations, thereby increas-
ing the genetic diversity in populations (Yang et al., 2019; Li et al.,
2020). (2) In recent times, the fluted pumpkin has attracted
increased attention as an economically and medicinally valuable
vegetable, thus bringing about farmer-to-farmer seed movement
(Fatokun et al., 2018), storage and cultivation of diverse germ-
plasm from outside of the south-west region, thereby leading to
increased diversity. And (3) panmictic crossings resulting from
the cultivation of mixed genotypes in farmer’s fields, as well as
diverse agricultural practices by farmers may have contributed
to the observed diversity (Akoroda, 1990; Alemu et al., 2020).
The populations exhibited low allelic diversity or similarity in
Na and Ne parameters, suggesting strong connectivity among
the populations owing to commonality in a number of alleles at
several loci (Popoola et al., 2017). This observation was further
supported by the estimated genetic distance and identity of the
landraces. The three populations showed a high level of genetic
identity and a low degree of genetic differentiation, even though
the landraces were geographically distinct. This low-genetic dis-
tance among the landraces may suggest that the fluted pumpkin
is a noncentric or oligocentric crop (Uba et al., 2021). Also, the
low-genetic distance observed among the south-south and south-
west populations may have resulted from their geographical prox-
imity, similar climatic conditions and sharing of more similar
alleles, hence the close relationship. The clustering results based
on the Nei’s genetic distance of the three populations revealed

Figure 3. STRUCTURE analysis of the 32 T. occidentalis landraces: (a) estimated membership fraction for K = 3 in the 32 T. occidentalis landraces based on the
8 SCoT markers and (b) membership coefficients of the 32 T. occidentalis landraces determined at K = 3 in STRUCTURE analysis based on the eight SCoT markers.
A vertical bar split into coloured sections is used to depict a landrace. The coloured segments correspond to the estimated membership proportions in the three
subpopulations K1, K2 and K3.
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two clusters: the south-west and south-south populations in one
cluster and the south-east population in the other (online
Supplementary Fig. S3), suggesting that the south-west landraces
were more closely related to the south-south landraces.

A greater portion of the genetic variation in the landraces
occurred within the populations, with a lower percentage between
the populations. This result indicates very weak genetic differen-
tiation between populations. Kimani et al. (2012) obtained a simi-
lar result in five populations of Kenyan Lablab bean accessions
using AFLP. This observation could be attributed to natural adap-
tation (Uba et al., 2021) or extensive seed exchange among farm-
ers across large geographical distances (Kimani et al., 2012;
Minnaar-Ontong et al., 2021) or because of the common genetic
background of the populations, which might have resulted from
the continuous use of the same seeds by fluted pumpkin cultiva-
tors without the introduction of new ones. In Nigeria, sources of
fluted pumpkin come from seeds saved by farmers from previous
planting season, market purchases and seed exchange. There is a
possibility that this could result in a heterogeneous population of
landraces (Uba et al., 2021). PhiPT and FST are equivalent stan-
dardized estimates for deciphering genetic differentiation between
populations. The values for both parameters can range from 0 (no
differentiation) to 1 (no alleles shared) (Mohammed and Hamza,
2018). A low PhiPT value of 0.014 was observed suggesting that
very weak differentiation existed among the population. Fluted
pumpkin exhibits outcrossing. Higher levels of genetic diversity
within populations than among populations have been well docu-
mented in a number out-crossing species (Huang et al., 2019;
Yang et al., 2019; Alemu et al., 2020).

The application of a Bayesian model-based clustering approach
in STRUCTURE software is useful for the detection of population
structure, assignment of accessions to populations and identifica-
tion of admixed accessions (Admas et al., 2021). There is a dearth
of report on population structure in cucurbits using the Bayesian
model (Alhariri et al., 2021; Zhu et al., 2021). The STRUCTURE
analysis grouped the 32 fluted pumpkin landraces into three sub-
populations that exhibited varying levels of allelic admixture.
Abdin et al. (2017) and Agarwal et al. (2019) documented the
admixture of alleles in populations of bottle gourd and rose germ-
plasms analysed using SCoT markers. Similarly, Ramakrishnan
et al. (2016) identified three subpopulations with the allelic
admixture and no pure line among 128 finger millet genotypes
based on SSR markers. Some authors have advanced that admix-
ture, which is indicative of allele sharing may occur from incom-
plete lineage sorting of historically close populations (Huang
et al., 2015; Cheng et al., 2020). Furthermore, admixture may
result from the exchange of plant seeds between regions. It is
noteworthy that fluted pumpkin is an outcrossing species
(Fayeun et al., 2016) and as such, cross-pollination among a
mix of landraces cultivated in farmers’ field could result in admix-
ture of alleles (Annicet et al., 2016; Zheng et al., 2017), thereby
narrowing the genetic base (Nkhata et al., 2020).

Conclusion

This study throws light on fluted pumpkin genetic diversity and
population structure in southern Nigeria. The SCoT markers
were very informative in distinguishing the fluted pumpkin land-
races. Hierarchical cluster analysis and PCA grouped the landraces
into four clusters, with no apparent relationship to geographical
regions of the collection. The two landraces, ToIm003 and
ToEd005 formed an out-group in the PCA plot and may be

considered for breeding purposes. Generally, population genetic
diversity analysis revealed a narrow genetic base for the three flu-
ted pumpkin populations. This was further supported by a close
genetic identity and the distance between the populations. The
south-west population exhibited higher diversity than the south-
east and south-south populations. Evaluation of population struc-
ture divided the landraces into three subpopulations that exhibited
varying degrees of allelic admixture. An AMOVA indicated that
the populations displayed very weak differentiation. The narrow
genetic background may likely pose a significant hurdle to improv-
ing fluted pumpkin from local plant propagules. Therefore, to
facilitate future exploitation and improvement, broadening and
enriching the genetic base of cultivated fluted pumpkin particu-
larly through CRISPR-Cas 9 gene editing and advanced backcross
quantitative trait loci technology are strongly recommended. Safety
measures for the future, including ex situ conservation is recom-
mended in addition to on-farm conservation. The results of the
study have significant implications in the characterisation, conser-
vation, improvement and utilization of fluted pumpkin.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S1479262123000308.
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