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Abstract
Traditional simulation models are often point based; thus, more research is needed to

emphasize spatial simulation, providing decision-makers with fast recommendations.

Combining machine learning algorithms with spatial process-based models could be

considered an appropriate solution. We created a spatial model in R (APSIMx_R)

to generate fine-resolution data from coarse-resolution data, which is typically avail-

able at the regional level. The APSIM crop model outputs were then deployed to train

and test the artificial neural network, creating a hybrid modeling approach for robust

spatial simulations. The APSIMx_R package facilitates preparing the required model

inputs, executes the prediction, processes, and analyzes the APSIM crop model out-

puts. This note demonstrates the use of a new approach for creating reproducible crop

modeling workflows with the spatial APSIM next-generation model and machine

learning algorithms. The tool was deployed for spatial and temporal simulation of

potential wheat yield under different nitrogen rates and various wheat cultivars. The

spatial APSIMx_R was validated by comparing the simulated yield at 100 kg N ha−1

to the analogues’ actual yield at the same grid points, which showed good agreement

(d = 0.89) between the spatially predicted and actual yield. The hybrid approach

increased such precision, resulting in higher agreement (d = 0.95) with actual yield.

When the interaction between cultivars and nitrogen levels was considered, it was

found that the novel cultivar Sakha95 is nitrogen voracious, exhibiting a larger drop

in yield (65%) under minimal nitrogen treatment (0 kg N ha−1) relative to the potential

yield.

Abbreviations: ANN, artificial neural network; APSIM, agricultural production system simulation; GEM, genotype × environment × management; ML,

machine learning; RB, relative bias.
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1 INTRODUCTION

New technology will transform farming and agribusiness,

making it more profitable (Popescu et al., 2022). Crop mod-

els have been widely used in cropping system simulations for a

variety of purposes, including agricultural water management

(Kheir et al., 2021), food security and nutrition, and geno-

type × environment × management (G × E × M) interactions

(Cooper et al., 2021), and narrowing yield gaps (Asseng et al.,

2018; Getnet et al., 2022). Crop models have recently demon-

strated the ability to predict genetic yield potential despite

significant difficulties (Guarin et al., 2022). The majority of

crop models now in use are created for field-scale modeling

and simulate agronomic factors using homogenous (average)

field conditions (You et al., 2022). However, simulation at the

field scale is no longer sufficient to address precision agricul-

ture concerns (Pasquel et al., 2023), confirming the necessity

of spatial simulation, which shifts crop model simulation

scale from field scale to finer scale (Pasquel et al., 2022). In

addition, if models are parameterized with coarse-scale infor-

mation, such as an entire country, and then used to address

consequences at a finer geographical scale, there is a greater

possibility of generating incorrect inferences due to substan-

tial biases (Ogle et al., 2006). Spatial simulation can also help

in determining the yield heterogeneity at regional scale and

contribute to understanding the nature of recent yield progress

(Lobell & Azzari, 2017; van Ittersum et al., 2013; van Wart

et al., 2013). One of the agricultural system models that has

been developed through many years of research and has been

used to comprehend G × E × M effects on yield under present

changing climatic scenarios is the Agricultural Production

System Simulation (APSIM) model (Asseng et al., 2002; D.

P. Holzworth et al., 2014; Keating et al., 2003; Pasquel et al.,

2023). The APSIM initiative recently upgraded APSIM to

APSIM Next Generation, which can be run on different oper-

ating systems. APSIM Next Generation contains several lines

of code in different programming languages, integrates mul-

tiple disciplines, includes more complex farming systems,

and runs faster for larger simulation analysis (D. Holzworth

et al., 2018). Most crop modelers use the APSIM graphi-

cal user interface to prepare the input files and execute the

model, but in large-scale studies, this method is time con-

suming, especially when big data and complex management

practices are used. The most ideal solution for this issue is to

develop ad hoc scripts in any appropriate programming lan-

guage (i.e., Python, R, and SAS) to automate various stages

of the simulations. This will allow users to quickly generate

input files, perform simulations, and make the scripts eas-

ier and more available for other user groups. Although there

are various packages developed in R (Alderman, 2020) and

Python (X. He et al., 2015) for running the Decision Sup-

port System for Agrotechnology Transfer Cropping Systems

Model (DSSAT; Hoogenboom, Porter, Boote et al., 2019;

Core Ideas
∙ Crop models are frequently point based, while

developing spatial models is required.

∙ We developed a spatial Agricultural Production

System Simulation model in R to generate fine-

resolution data.

∙ The spatial model-based R was integrated with

an artificial neural network, creating a hybrid

approach.

∙ The developed approach is used to determine the

yield heterogeneity at scale.

∙ The hybrid approach’s simulated yield correlated

positively with farmer yield.

Hoogenboom, Porter, Shelia et al., 2019; Jones et al., 2003),

no packages were developed with the APSIM next-generation

model for the spatial simulation, indicating the state-of-the-art

of the developed script in this application note. The generic

framework of APSIMx_R can manipulate all inputs of the

model, such as soil features, weather datasets, management

practices, and genetic parameters, in a customized grid cell

resolution. Machine learning (ML) algorithms could be used

for simulations in approaches similar to biophysical models

by creating links between input parameters (production fac-

tors) and target variables (Reichstein et al., 2019). Execution

of ML in the cloud, as Google colaboratory (colab), is much

better than in any other environment (Elnashar et al., 2020;

Zeng et al., 2022). ML outperforms crop models because

it first considers new features such as yield trend (technol-

ogy advances) that most crop models do not have, works

well in large datasets, extracts the important features (Fal-

connier et al., 2023; Kheir et al., 2022a, 2022b , Attia et al.,

2022), and considers a biotic stress factors (Pradhan et al.,

2023) and other features such as topography. Meanwhile, crop

models have distinct advantages when it comes to mimicking

plant physiological processes, demonstrating the importance

of integrating both MLs and crop models to improve predic-

tion accuracy (Attia et al., 2022). In addition, more research

is needed to integrate crop model-based programming scripts

with ML algorithms. This application note shows a stepwise

process on how to develop APSIMx_R and integrate with an

artificial neural network (ANN), an ML model for simulat-

ing crop management practices system spatial simulations at

various spatial scales.

2 APSIMX_R_ML APPROACH

A field experiment was conducted at the Menoufya location

(latitude 30.7 and longitude 31) in the Nile Delta during two
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F I G U R E 1 Flowchart of the process and steps required to form the hybrid APSIMx_R_ML approach and key outputs. First, APSIMx was

executed in R using different functions, daily weather data from NASA power, and soil data from International Soil Reference and Information

Centre (ISRIC) to simulate wheat phenology, yield, and yield attributes of three calibrated cultivars at the required cell resolution. The agricultural

production system simulation (APSIM) inputs (soil and weather) and outputs excluding grain yield such as phenology, leaf area index, grain size,

grain protein, and grain number in unit area were integrated with other datasets of yield trend and topography (elevation, slope, and aspect) to train

and test artificial neural network (ANN). Actual yield was used as dependent variable in training and testing ANN. The default method by dividing

the entire data set into 80% training and 20% testing using a random selection approach was used to train and test ANN. aPhenology and maturity

dates, yield attributes include leaf area index, grain protein, grain size, and grain number per unit area, were used as inputs (independent variables) to

ANN.

growing seasons (2019/2020 and 2020/2021) with different

wheat (Triticum aestivum) cultivars (Sakha95, Giza171, and

Misr3). Various datasets were obtained from this experiment

to calibrate and evaluate the APSIM model. Soil physical

and chemical properties, daily climatic dataset, soil initial

irrigation, and fertilization conditions before each growing

season, grain yield, biomass yield, leaf area index at anthesis,

number of grains per m2, grain size, anthesis date, maturity

date, nitrogen content in grains, irrigation water applied and

dates of application, and fertilization (time and doses) were

all measured in this dataset. The manual calibration method

was used, and Table S1 shows the calibrated parameters for

each cultivar. The APSIM R package necessitates first a recall

to the APSIMX file, which contains its main components in

the interface of the target directory (Figure 1). The source

code contains the APSIM spatial function, working directory,

selected spatial resolution, target country shapefile, number

of years required for the weather dataset, crop type, simulation

time, start and end of simulation, target cultivar, and instal-

lation of various packages (Supporting Information). Egypt

is the case study (Figure S1), and wheat is the target crop

because of its importance to food security and the fact that

Egypt is the world’s largest importer of wheat. APSIMx_R

was used to spatially predict potential yield and yield under

three nitrogen fertilizer levels (0, 100, and 200 kg N ha−1) in

Egypt at 1˚ grid resolution for three novel calibrated cultivars

of wheat (Sakha95, Giza171, and Misr3) over 30 years

(1991–2020). The model outputs included wheat phenology

(anthesis and maturity dates), aboveground biomass, nitrogen

content in biomass, grain yield, grain protein, grain size,

and grain number. The outputs except grain yield with other

inputs to APSIMx_R, such as weather data and soil data,

were combined with other datasets, including technology

trend and topography dataset (elevation and slope), to train

and validate the ANN algorithm using the actual dataset of

yield over 30 years, creating a hybrid approach (Figure 1).

The observed yield increased over time from 1991 to

2020, except in the warmest years (2010), demonstrating
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F I G U R E 2 Actual spatial yield (A) and heterogeneity of simulated yield under zero application of nitrogen (B), 100 kg N ha−1 (C), and yield

at 200 kg N ha−1 (D) over Egypt. Simulation has been done by the developed approach APSIMx_R_ANN at resolution of 1.0˚ averaged over 30

years (1990–2020) and three cultivars. (E) represents the distribution of yield for different variables as actual yield (A), yield at zero application of

nitrogen (B), yield at 100 kg N ha−1 (C), and yield at 200 kg N ha−1 (D). Boxplots (F) demonstrate a visual indication of how a dataset’s mean,

median, mode, minimum, maximum, and outlier values are spread out and compared to each other for the different variables actual yield (A), yield at

zero application of nitrogen (B), yield at 100 kg N ha−1 (C), and yield at 200 kg N ha−1 (D).

the importance of including the technology trend in the

simulation. The increased production was mostly ascribed to

technological advances in farm management, genetic

enhancement programs, agricultural mechanization, and

other technologies (Günay et al., 2021; Moeinizade et al.,

2020). Despite the relevance of crop models in simulating

crop phenology and physiology over ML, integrating other

inputs that crop models (CMs) cannot examine, such as

technology trend and geography, highlights the importance

of building a hybrid approach from crop models and ML.

The application of permutation importance in ANN was used

to find the most significant features to enhance prediction

accuracy while excluding non-important ones (Altmann

et al., 2010).

The ANN algorithm was built in Python and executed in

Google Colab as a cloud computing environment, and the

source code is hosted on an open-source project on GitHub

(https://github.com/DrAhmedKheir/tANN-.git). We selected

ANN rather than other ML algorithms because deep learning

has different hidden layers and can learn and model nonlin-

ear and complex relationships, which is critical because many

of the relationships between inputs and outputs in real life

are nonlinear and complex (Kheir, Ammar, Attia et al., 2022;

Kheir et al., 2023). ML approaches have some advantages over

crop models, including the capacity to involve additional input

variables that crop models cannot. In the current case, technol-

ogy trend and topography (i.e., elevation, slope, and aspect)

were included as external variables in ML, highlighting the

outperformance of ML over CMs. The hybrid approach was

used to predict potential yield and yield under different N

levels due to the importance of nitrogen to crop growth and

development (Bhattarai et al., 2021; Figure 2).

https://github.com/DrAhmedKheir/tANN-.git
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F I G U R E 3 Actual and spatial simulated yield at 100 kg N ha−1 by APSIMx_R (blue), and hybrid APSIMx-R_ANN approach (green) averaged

over 30 years at 1˚ resolution. Determination coefficient (R2), relative root mean square deviation (RRMSD), relative bias (RB), mean absolute error

(MAE), and Willmott degree of agreement (d) represent the correlation significance of both approaches with the actual yield.

3 VALIDATION AND APPLICATION OF
THE DEVELOPED APPROACH IN SPATIAL
SIMULATION OF WHEAT YIELD

Egypt’s Ministry of Agriculture and Land Reclamation

(MALR, 2021) provided the actual on-farm wheat produc-

tion. These datasets for wheat grain yield from 50 locations

covering all agroclimatic zones were collected during a 30-

year period (1991–2020) and used to train and validate the

developed approach. The developed approach was used for the

spatial simulation of wheat yield in the Excellence in Agron-

omy (EiA), a CGIAR-funded initiative specifically under the

Government of Egypt use case at cell resolution 1.0˚ for dif-

ferent cultivars under various nitrogen fertilizer application

practices. The simulation was conducted over 30 years and

included potential yield, yield without application of N fer-

tilizer, yield at 100 kg N ha−1 (common application with

smallholders), and 200 kg N ha−1 (Figure 2). The total county

yield heterogeneity (Figure 2B–D) was computed as the dif-

ference between the 95th percentile yield and the mean yield

(Lobell & Azzari, 2017). The spatial pattern of predicted

yield was in agreement with actual yield, particularly under

moderate and high nitrogen doses (Figure 2E). The highest

producing areas were primarily in the northern parts (Nile

delta), with yields reaching up to 12 t ha−1, while yields

dropped in the western and southern parts due to salinity

and temperature stressors, respectively. Yield heterogeneity

ranged from 0% to 18% of mean yield, suggesting that small-

holder yield may be raised by 15% on average if all farmers

achieved the 95th percentile of present yield (Figure 2B–D).

The greater heterogeneity occurred in the western and south-

ern parts, which coincided with lower yielding counties. The

density distribution of the spatially simulated yield under

100 kg N ha−1 and 200 kg N ha−1 was in agreement with

the actual yield, while yield under 0 kg N ha−1 showed left

skewness and a lower yield (Figure 2E). The application rate

of 100 kg N ha−1 was selected in the simulation because

it is the most common application rate among smallholder

farmers in Egypt, allowing us to validate our approach by

comparing simulated yield to actual farmer yield (Figure 3).

In this regard, APSIMx_R’s long-term simulation of wheat

yield revealed a good agreement (d= 0.89) with actual yield at

the same nitrogen fertilizer application (Figure 3). When the

hybrid approach of APSIMx_R_ANN was used (Figure 3),

such agreement increased (d= 0.95) and the relative bias (RB)

decreased to 3%. In addition to correlation (R2) and Will-

mott degree of agreement (d), different statistical indicators,

such as relative root mean square deviation (RRMSD), RB,

and mean absolute error (MAE), were considered and con-

firmed the synchronization with actual yield, demonstrating
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F I G U R E 4 Predicted grain yield by the hybrid approach under different nitrogen (N) levels with average growing season temperature (A),

different cultivars (B), Sankey plot of yield subjected to nitrogen levels, and cultivars (C). Panel (C) visualizes the flow from cultivars to nitrogen

application rates to explore the best cultivar under higher N rates and vice versa.

the importance of the developed approach for mapping yield

gap analysis in similar or different environments.

Wheat grain yield declined with increasing growing

season temperatures when fertilization, cultivar interactions,

and average growing season temperatures were included

(Figure 4A,B). The yield decline with increasing growing

season mean temperature was greater with zero nitrogen

fertilization than with a higher N rate (Figure 4A). Giza171

surpassed other cultivars in terms of yield increase with

rising growing season mean temperatures, followed by

Sakha95 and Misr3 (Figure 4B). Considering the sensitivity

of the cultivars investigated to N levels, Figure 4C revealed

that Sakha95 is the most responsive cultivar to nitrogen

fertilization, recording the lowest yield with zero nitrogen

fertilization and the highest yield under 200 kg N ha−1

treatment. Under low nitrogen conditions, however, Giza171

outperformed all other cultivars. As a result, Giza171 is

the best cultivar for hot temperatures and low nitrogen

levels, whereas Sakha95 is the best for normal conditions.

Accordingly, Sakha95 showed the lowest yield reduction

(48% and 65%) under 0 kg N ha−1, and 100 kg N ha−1,

respectively, relative to the potential yield (Figure 5). The

hybrid APSIMx_R_ML approach predicted spatial potential

yield and yield under varied nitrogen levels for several

genotypes, proving its utility in assessing yield gaps under a

wide variety of GEM interactions.

4 DISCUSSION AND FUTURE
DIRECTIONS

ML techniques were recently used in site-specific recom-

mendations (Qin et al., 2018), but further application in an

integrated approach with spatial modeling has received less
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F I G U R E 5 Change of grain yield for

different cultivars under various nitrogen (N)

levels relative to the potential yield.

attention so far. Field survey data of actual wheat yields

from multi-farms covering the most heterogeneous soils,

management practices, and temperature gradients would be

considerably superior to using present statistics on yield

in limited areas (50 locations) in verifying the developed

approach. This is the main limitation of the current study,

which may be overcome by conducting a large-scale survey to

collect actual farmers’ yields, but this would necessitate more

financing. The target cultivars (Sakha95, Giza171, and Misr3)

were calibrated and evaluated in APSIMx using a field dataset

from two Nile delta growing seasons. Meanwhile, the best

calibrations necessitate datasets from different locations and

growing seasons to assure heterogeneity in climate, soils, and

topography (Coudron et al., 2021; Kheir, Ammar, Attia et al.,

2022), which adds another limitation to the current work. Esti-

mating model parameters with little observational data raises

the possibility of discovering several parameter value com-

binations for which the model output fits the observations

equally well. This phenomenon, also known as equifinality,

prevents the estimation of unique and recognizable parameter

values (D. He et al., 2017). However, preparing crop growth

and phenology for a large number of fields using standard

ground-based sample methods can be inconveniently time-

consuming, opening the way for the use of remote sensing

datasets as a quick and low-cost method (Ko et al., 2006;

Maas, 1993; Xia et al., 2021). The integration of the devel-

oped APSIMr package with ANN acts as a scientific modeling

workflow that provides fast, accurate, and low-cost spatiotem-

poral simulation, which is very important for food security

and nutritional analysis. Further advancements may include

improvements in biophysical functions that involve a multi-

model ensemble as well as the use of deep learning algorithms

in conjunction with ML. The developed approach should be

applied under broad range of GEM interactions using remote

sensing observations. This will aid in identifying the yield gap

of the targeted crops as well as the innovations that will fill

these gaps and support food security, especially in light of

climate change, rapid population growth, and limited natural

resources. Furthermore, attention should be paid to use the

developed approach in quantifying greenhouse gas emissions

and the impact of cover crops on soil health (Joshi et al., 2022).
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