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Abstract: Coffee (Coffea arabica) is among the world’s most economically important crops. Coffee
was shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) in traditionally managed
coffee plantations in the tropics. The objective of this study was to assess AMF species richness in
coffee plantations of four provinces in Perú, to isolate AMF isolates native to these provinces, and to
test the effects of selected indigenous AMF strains on coffee growth. AMF species were identified by
morphological tools on the genus level, and if possible further to the species level. Two native species,
Rhizoglomus variabile and Nanoglomus plukenetiae, recently described from the Peruvian mountain
ranges, were successfully cultured in the greenhouse on host plants. In two independent experiments,
both species were assessed for their ability to colonize coffee seedlings and improve coffee growth
over 135 days. A total of 35 AMF morphospecies were identified from 12 plantations. The two
inoculated species effectively colonized coffee roots, which resulted in 3.0–8.6 times higher shoot,
root and total biomass, when compared to the non-mycorrhizal controls. R. variabile was superior to
N. plukenetiae in all measured parameters, increasing shoot, root, and total biomass dry weight by 4.7,
8.6 and 5.5 times, respectively. The dual inoculation of both species, however, did not further improve
plant growth, when compared to single-species inoculations. The colonization of coffee by either
R. variabile or N. plukenetiae strongly enhances coffee plant growth. R. variabile, in particular, offers
enormous potential for improving coffee establishment and productivity. Assessment of further AMF
species, including species from other AMF families should be considered for optimization of coffee
growth promotion, both alone and in combination with R. variabile.

Keywords: beneficial fungi; bio-fertilizer; biological agents; crops; Glomeraceae; Glomeromycota;
inoculation; sustainable agriculture

1. Introduction

Coffee (Coffea arabica L.) is highly valued for its flavor, fragrance and caffeine content,
making it one of the most consumed agricultural commodities worldwide with significant
economic and social implications [1]. It is cultivated across the tropics and sub-tropics both
on industrial-scale commercial plantations as well as family-owned smallholder plots [2,3].
In South America, Perú is an important producer of coffee and is considered among the
ten most important coffee-producing countries globally. Annual exports are currently in
the range of 210,000 tons per annum, with marked increases in recent years, representing
an annual income of 1.1 billion dollars for the more than 200,000 families of small farmers
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involved in its production [4,5]. Within Perú, the San Martín and neighboring Amazonia
Regions account for approximately 50% of the national coffee production [6].

Worldwide, coffee has traditionally been cultivated under the shade-green system,
but with a steady rise in the worldwide demand for coffee, production systems have in-
creasingly shifted to more intensive full-sun systems [7,8]. As a consequence, the majority
of coffee plantations are no longer shade-grown, which accounts for approximately 25%
of the total production area [8]. However, in Central and South America, shade-grown
coffee remains a dominant production system, with the notable exceptions of Brazil and
Colombia [8]. In Perú, the majority of coffee farms (‘fincas cafeteleras’) are highly biodi-
verse with relatively high levels of shade, and cultivation practices characterized by low
reliance on agrochemicals [6,8,9]. Most Perúvian coffee growers though, irrespective of the
cropping system, rely on some type of organic-based mineral fertilizer to improve crop
performance [9]. Perú stands as a principal exporter of ‘organic coffee’ [6], where the crop-
ping systems promote a slower and more equilibrated development of the coffee-cherries
or beans [10], which creates a superior organoleptic quality [11,12], increasing its value in
the ‘specialty coffee’ market [10,13]. Over recent years, the market for ‘specialty coffee’ has
risen, with indications for this to continue increasing [8,12], mainly benefiting smallholder
farmers, who represent around 70% of coffee producers worldwide [14].

In organic and biologically-based coffee production systems, the preservation of di-
verse microbial soil communities towards the maintenance of soil health is a key component
for ecosystem stability and multifunctionality [15–17]. For example, a reduced soil micro-
bial diversity in coffee monocultures negatively affected several soil functions, suppressing
plant growth and reducing coffee production [18]. Additionally, a higher microbiome
diversity is also associated with better host plant suppression of diseases and enhanced
growth on various crops [19,20]. Within these microbial communities, arbuscular mycor-
rhizal fungi (herein abbreviated as AM fungi or AMF) (phylum Glomeromycota) are key
components [19,21,22], being associated with 70–90% of plant species in terrestrial ecosys-
tems [23] and supporting significantly improved plant growth through their extensive
extraradical networks and effective soil nutrient acquisition (P, N, S, K and several microele-
ments [24–33]. Inoculation of AM fungi can be highly beneficial to crop production [34,35].
Establishing whether single or mixed species applications are more advantageous, how-
ever, needs to be assessed for each target crop under prevailing conditions as it is often not
initially clear if inoculation with one species is superior to multi-species inoculation [36–41].
Berruti et al. [42] concluded that the three globally prevalent AMF species, Rhizoglomus
intraradices, Funneliformis mosseae, and R. irregulare, all belonging to the family Glomeraceae,
are the most popularly used inocula. These species are widespread around the globe, colo-
nize a large majority of plant species, and are adapted to a large spectrum of edaphoclimatic
conditions [43]. Otherwise, it might be more advantageous to use native, and thus more
adapted AMF strains, both for ecological-climatological and agronomic reasons [44].

Coffee plants naturally form AMF associations [45,46], showing a high mycotrophy
from the early seedling stage to more advanced, mature stages [47–50]. Various studies
have determined a high AMF diversity in the coffee rhizosphere [51,52], and that the appli-
cation of AMF as biofertilizers improves seedling development and plant growth in the
greenhouse [48,50,53–56]. In total, 70 AMF species have been recorded from the coffee rhi-
zosphere globally [57], but this is most likely a gross underestimation since comprehensive
studies to assess AMF diversity in coffee have only recently been undertaken, mostly within
the last two decades. To date, just ~330 AMF species have been described [58], with esti-
mates indicating that over 1500–2000 AMF species exist [59,60]. Within Perú, recent studies
have led to the description of several new AMF species, such as from the rhizosphere of
inka nut (Plukenetia volubilis), cocoa (Theobroma cacao) as well as from coffee [61–66]. Studies
have also shown that native AMF strains or inocula originating from coffee plantations are
more suitable and provide greater benefits to coffee than the commercial, bulk-produced
strains/species from abroad [67], an effect similarly observed for other crops [42,44]. In
this context, the present study was undertaken to evaluate the AMF diversity in coffee
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plantations in the San Martín State of Perú and whether single or combined inoculations of
prevalent native species provided better biofertilizer effects on seedling development and
early coffee growth. We hypothesized that a high AMF diversity can be found in Peruvian
coffee plantations and that the combined inoculation of native AMF species, belonging to
the Glomeraceae, would be superior for coffee growth than the inoculation with only one
AMF species.

2. Materials and Methods
2.1. Coffee Plantations under Study

Between March and April 2016, soil samples (0–20 cm depth) were taken from the
coffee rhizosphere of 12 coffee plantations (sites) located in 4 provinces of San Martín State
(Table 1). For each site, five plants were selected randomly and sampled separately, with
~1 kg of rhizospheric soil extracted from four equidistant points around the main stem of
each plant. Each soil sample was placed in a single plastic bag, constituting five samples in
total per site, i.e., five replicates per site. The soil samples were transferred to the laboratory
within one day, sieved (5 mm size), air-dried and stored at 4 ◦C.

Table 1. Geographic coordinates of coffee plantations in San Martín State (Peru) under AMF
diversity study.

Province Location Area (ha) Age Associated
Crops Cultivar Fertilizer

Geographic Coordinates
Altitude (m)

X Y

Lamas

Alto Palmiche
(LA-1) 2 6 Inga edulis,

Eucalyptus sp.
Pache,

Bourbon Organic 6◦20′3.10′′ 76◦35′58.96′′ 978

Pamashto
(LA-2) 1 10 Inga edulis Catimor Organic 6◦21′8.59′′ 76◦32′15.66′′ 851

Pueblo Nuevo
(LA-3) 6 10 Inga edulis Catimor,

Bourbon Organic 6◦19′5.68′′ 76◦42′26.41′′ 1088

El Dorado

Palestina
(ED-1) 3 8 Inga edulis,

Citrus sp.
Catimor,

Pache Organic 6◦27′46.32′′ 76◦49′18.70′′ 745

Requena
(ED-2) 1.5 3 -- Catimor,

Pache Organic 6◦31′1.30′′ 76◦45′38.38′′ 468

San Juan de
Talliquihui (ED-3) 1 7

Inga edulis,
Mangifera

indica

Catimor,
Caturra Organic 6◦37′44.26′′ 76◦36′16.96′′ 602

San Martín

Santa Rosa de
Huayali (SM-1) 0.75 4 Inga edulis,

Persea sp. Catimor Organic 6◦44′32.12′′ 76◦ 9′11.51′′ 740

Nuevo Lamas
(SM-2) 2 6 Inga edulis Catimo,

Pache Organic 6◦36′6.67′′ 76◦11′56.36′′ 973

Nuevo Porvenir
(SM-3) 2 6 Inga edulis Caturra,

Pache Organic 6◦45′40.66′′ 76◦ 7′20.22′′ 782

Moyobamba

Barranquita (MO-1) 6 4 Inga edulis,
Musa sp.

Catimor,
Caturra Organic 6◦10′20.91′′ 76◦53′47.71′′ 1054

Palmeras
(MO-2) 2 4 Inga edulis,

Cedrela sp.
Catimor,
Caturra

NPK
(20-7-10) 6◦ 6′25.25′′ 77◦ 1′33.53′′ 945

Cocha Negra
(MO-3) 3 8 Inga edulis,

Citrus sp.
Catimor,
Caturra Organic 6◦32′37.07′′ 76◦54′48.36′′ 860

2.2. AMF Spore Isolation, Identification and Diversity

The AMF was extracted by wet sieving from 50 g soil according to Gerdemann and
Nicolson [68] using 38 and 250 µm sieves, followed by a sucrose density gradient centrifuga-
tion as described by Sieverding [69]. Species were morphologically identified and counted
as described below, and those species with abundant and ubiquitous occurrence (90–100%)
were selected for further multiplication. Species occurrence was calculated from the number
of sites each species was detected, divided by the total number of sites investigated [70].

Spores were observed under a compound microscope after mounting in polyvinyl
alcohol-lactic acid-glycerol (PVLG) [71], Melzer’s reagent, a mixture of PVLG and Melzer’s
reagent [72], a 1:1 mixture of lactic acid and water, and in water [73]. The AMF taxa were
identified on the genus level, and, if possible, up to the species level, using described
morphological spore characteristics, type of spore formation, and their sub-cellular struc-
tures, such as their color, size, number, and structure of walls and wall layers [74,75] using
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the Glomeromycota system as presented by Wijayawardene et al. [58] and updated by
Blaszkowski et al. (2022) [76] and da Silva et al. [77].

The AMF spore abundance and species richness at the 12 sampling sites were deter-
mined by counting the number of spores identified by species and counting the number
of species detected per site, respectively. From each field site a detailed list of AM fungal
species was developed, classifying the spore abundance into four categories (0, 1–2, 3–5 and
≥6 spores per g soil). The most abundant and frequently occurring species were selected
for culturing and further assessment.

2.3. Multiplication of Selected AMF Species

The most abundant and ubiquitous species from the field soil sample evaluation were
multiplied individually using a polyculture of Sorghum vulgare, Brachiaria brizantha and
Medicago sativa. For the multiplication, all 12 field soils were used in 2.5 L pots (~2 kg soil
per pot). Each field soil was first mixed with sand (2:1, v/v) before autoclaving at 121 ◦C for
1 h per day over three days. Five pots per site were used for the cultivation of each AMF
species. The pots were maintained in the greenhouse under ambient temperature conditions
(Temperature oscillated between 21.4 and 33.2 ◦C, and relative humidity between 48 and
75%) for three months before harvesting of the AM fungal inocula. The AM fungal species
that successfully multiplied were used as inocula in two subsequent experiments, to study
their potential to improve coffee plant growth in the greenhouse. These were Rhizoglomus
variabile and Nanoglomus plukenetiae (Corazon-Guivin et al. [62,64]), recently described
from the study region and firstly isolated from the rhizosphere of Plukenetia volubilis L.,
an indigenous agroforestry crop of increasing agronomic importance. Both AMF species
had also been analyzed phylogenetically to confirm the morphological identification of
these AM fungal species (see Corazon-Guivin et al. [62,64]). The two AMF strains used for
the present study were isolated from a coffee plantation in Pamashto (R. variabile) and in
Pueblo Nuevo (N. plukenetiae; Table 1).

2.4. Effects of AMF Inoculation on Coffee Growth: Experimental Details

The effects of the two species, R. variabile and N. plukenetiae, were assessed on coffee
crop growth in the greenhouse of the Laboratorio de Biología y Genética Molecular, Uni-
versidad Nacional de San Martín (Distrito Morales, Jr. Amorarca, cdra. 3 s/n), located
in the province of San Martín in San Martín State (06◦35’28” S, 76◦18’47” W) at 230 m
a.s.l. altitude. The experiment was conducted between March and July 2018 and repeated
between May and September 2018. The pots were maintained under greenhouse conditions
at a mean daily temperature of 29 ◦C (maximum of 38.2 ◦C, minimum of 21.4 ◦C). Mean,
maximum and minimum relative humidity were 64.0, 73.8 and 47.9%, respectively during
the period March to September 2018.

In both experiments, C. arabica cv. Caturra plants aged aprox. one month was used,
which is among the most common cultivars cultivated in Perú. Ripe red coffee cherries were
selectively collected from healthy plants, without any obvious pest or disease symptoms,
from a field in “Naranjal” ubicate in the Rioja Province of the San Martín Department, Perú
in 2018. The berries were manually de-pulped, discarding any small-sized seeds and dried
under shade. They were then surface sterilized by dipping in 0.5% sodium hypochlorite
for 2 min and 95% ethanol for 2 min, and then rinsed in sterile distilled water three times
before placing in germination boxes (1 × 1 × 0.3 m), using autoclaved (121 ◦C, 15 p.s.i.,
30 min) coarse sand as a substrate. The seeds were placed flat-side down onto the sand,
spaced 2.5–3.0 cm in regular rows and covered with a thin layer of finely sieved coarse
sand (2 mm mesh width). After sowing, the seed beds were mulched with a mesh raschel
(80%) to protect the seeds from desiccation and create optimal temperatures of ~25 ◦C for
seed germination. The seed beds were irrigated daily over several weeks until sufficient
uniform plants at the “little soldier” growth stage were available (~15 cm high), soon after
emergence and before the seed-coat was cast off at ~20 days after emergence (Figure 1a,b).
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Figure 1. Inoculation process of coffee seedlings with arbuscular mycorrhizal fungi (AMF), (a) Grow-
ing coffee seeds in nursery beds, (b) Uniform seedlings at the “little soldier” stage, (c) Inoculation
and transplantation of coffee seedlings, (d) Vegetative growth of coffee plants.

Field soil mixed with coarse river sand (2:1, v/v) was used after autoclaving for
1 h per day over three consecutive days. The textural classification of this substrate
was a sandy-loam, with 4.82 of pH, 0.35 dSm−1 electrical conductivity, 1.66% organic
matter, 6.5 mg P kg−1, and 63 mg K kg−1 (0.14 K+meq/100 g). The uniform “little soldier”
seedlings were bare-root transplanted singularly into plastic 3 L pots, filled with 3 kg of
sterile substrate. The pots were first disinfected with ethanol and rinsed with distilled
water. The experiment comprised 4 treatments, each with 36 replications, arranged in a
completely randomized design totaling 144 seedlings, which were placed on greenhouse
tables. Experimental treatments included: (1) single inoculation of R. variabile (Rv) and of
(2) N. plukenetiae (Np), (3) combined inoculation of R. variabile and N. plukenetiae (Rv+Np),
(4) non-mycorrhizal control (Ctrl).

In both experiments, R. variabile and N. plukenetiae were inoculated using 20 g freshly
chopped pieces of mycorrhizal roots from S. vulgare, B. brizantha and M. sativa, which
included hyphae and ~1500 AMF spores; for dual inoculation (Rv+Np), 10 g chopped
roots each of the two inocula were mixed and inoculated (Figure 1c). The non-mycorrhizal
control treatment received washings of 20 g of the inoculum mixture filtered through
Whatman n◦. 42 filter paper. Inoculation of the AMF was conducted at transplanting.
Holes 10 cm depth and 4 cm diameter were prepared using a trowel, which were first filled
with inocula before placing plantlets directly onto the inocula and then completely filling
with sterile soil substrate. The soil moisture was increased to maximum water-holding
capacity and plants subsequently irrigated every three days to maintain the substrate at
field capacity. Fertilizer was applied weekly using 75 mL of the Long Ashton nutrient
solution [78], modified to supply 10.25 µg P mL−1 pot.
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2.5. Assessment of Plant Characteristics

Plant height (cm), stem diameter (mm) and number of leaves were measured at 30 days
after transplanting and then at 15-day intervals until harvest at 135 days. Chlorophyll
content (SPAD) was also recorded on the youngest completely expanded leaf of each plant
using a chlorophyll analyzer (SPAD-502, Minolta Camera Co. Ltd., Osaka, Japan). The leaf
area (cm2) was calculated using ImageJ (https://imagej.nih.gov/ij/). At harvest, the plant’s
total fresh weight was determined using a balance (OHAUS, Adventurer™ Parsippany, NJ,
USA) and the total dry matter was recorded after oven drying at 80 ◦C for 48 h.

2.6. Arbuscular Mycorrhizal Root Colonization

The freshly harvested roots were rinsed with tap water, and the percentage of my-
corrhizal colonization was estimated using the root clearing and staining method [79],
with modifications. Once stained, roots were cut into 1 cm segments, mounted on slides
and observed under a compound microscope (NIKON, Eclipse E200, Tokyo, Japan) at
20×magnification [80].

2.7. Analyses of N, P and K Coffee Plant Contents

At harvest, plant N, P and K contents were analyzed using total leaf matter from each
plant. The N concentration was obtained using the Kjeldahl method [81], P concentration
following digestion in HNO3:HClO4 (4:1), spectr. UV-Vis (λ = 420 nm) and K concentration
by digestion in HNO3:HClO4 (4:1) for atomic absorption spectrophotometry analyses
(Model Varian, AAS Spectra 55B, Victoria, Australia).

2.8. Statistical Analyses

The results of the two independent experiments showed only minor numerical differ-
ences, but no statistical differences (p > 0.05) for each parameter recorded. Thus, the data for
the two experiments were combined for analysis. All measured variables were evaluated for
normality and homogeneity using Shapiro–Wilk [82] and Levene’s [83] tests, respectively.
All the variables evaluated were transformed to a natural logarithm (ln), except for dry
biomass and colonization, which were transformed to a square root (

√
x) to normalize data.

ANOVA analyses were followed by Tukey’s HSD to test for differences among treatments
at p < 0.05 significance level [84]. The data were analyzed using INFOSTAT version 2012.1
software [85]. The ANOVA and the mean comparison tests were conducted on transformed
data, with data back-transformed to the original units for presentation in results.

3. Results
3.1. AMF Species Richness and Spore Abundance per Species

In total, 35 AMF morphospecies belonging to 13 genera, were identified from the
12 study sites by morphological spore identification (Table 2). Of the 35 species, eleven were
not unequivocally identified on the species level. Three of them resembledknown species,
while the lasting eight species might be new to science, according to our knowledge, and
will be part of future taxonomic analyses. At individual sites, between 6 and 18 species
were recorded. Three AMF species were detected across all sites (G. microcarpum, R. variabile
and N. plukenetiae), while A. mellea was recovered from 11 sites, and G. brohultii from 10 sites.
Five further species were found in at least six sites but with lower abundance than the five
most frequently occurring species. The remaining 25 morphospecies were less abundantly
and less frequently observed, or only sporadically detected (Table 2).

https://imagej.nih.gov/ij/
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Table 2. Arbuscular mycorrhizal fungi species identified from twelve coffee plantations in San Martín
State, Peru.

Provinces El Dorado Lamas San Martín Moyobamba Occurrence
(%)

AMF Species ED-1 ED-2 ED-3 LA-1 LA-2 LA-3 SM-1 SM-2 SM-3 MO-1 MO-2 MO-3

Glomus microcarpum ++ ++ ++ +++ ++ +++ +++ + + ++ ++ +++ 100
Nanoglomus
plukenetiae +++ +++ + ++ + ++ ++ + ++ + +++ ++ 100

Rhizoglomus
variabile + +++ + ++ +++ +++ ++ ++ +++ + ++ +++ 100

Acaulospora mellea ++ - ++ +++ +++ +++ ++ ++ +++ + + +++ 92
Glomus brohulti + - - +++ +++ +++ ++ +++ +++ + +++ +++ 83
A. spinosissima + + - + + + - + + + - - 67
Entrophospora
etunicata - + ++ - +++ + +++ ++ +++ - + - 67

Entrophospora
claroidea - - ++ - - +++ ++ ++ ++ + + - 58

Glomus
macrocarpum ++ ++ - - - ++ +++ + + - + - 58

Funneliglomus
sanmartinense + - + ++ - - - - - + + + 50

A. laevis - - - + - ++ - + - ++ + - 42
A. scrobiculata + - - - ++ + - - - + - + 42
Rhizoglomus
fasciculatum - - + - - + + +++ + - - - 42

Ambispora sp.
resembling
A. gerdemannii

- - - - + + - - - - + + 33

Diversispora spurca - - - ++ - ++ + + - - - - 33
A. lacunosa - - - - + - - - - + + - 25
Dominikia sp.1 - - - - - ++ - - - + + - 25
Gigaspora candida - - + - - - - - - + - + 25
Glomus sp. 2 - - + - - - - + - - + - 25
Sclerocystis sinuosa - - - - - ++ - ++ - ++ - - 25
Glomus sp.
resembling
G. spinuliferum

- - - + - - - + - - - - 17

Glomus sp. 3 - - - - - - + - - - - + 17
Glomus sp. 4 - - - - - - + - - - - + 17
A. spinosa - - + - - + - - - - - - 17
Acaulospora sp.
resembling
A. pustulata

- - - - - - + - - - - - 8

A. herrerae - - - - - - - - - + - - 8
A. excavata - - - - - - - + - - - - 8
Dominikia sp. 2 - - - - - - - + - - - - 8
Glomus crenatum - - - - + - - - - - - - 8
Glomus sp. 1 - - - - + - - - - - - - 8
Glomus sp. 5 - - - - - + - - - - - - 8
Rhizoglomus
microaggregatum - - - - + - - - - - - - 8

Sclerocystis
rubiformis - - - - - - - + - - - - 8

Sclerocystis sp. 1 - - - - - - + - - - - - 8
Sieverdingia tortuosa - - - - - - + - - - - - 8

AMF species
richness/site 9 6 11 10 13 17 15 18 10 15 14 11

AMF species
richness/province 14 24 23 21

Location number, 1–2–3. -: absent (0 spores/g); +: 1–2 spores/g; ++: 3–5 spores/g; +++: >6 spores/g. Bold indi-
cates abundant (>3 spores/g) and ubiquitous (i.e., detected in all soil samples) AMF species in the field samples.

3.2. AMF Species Selected for Further Multiplication and Functional Experiments

The species G. microcarpum, R. variabile, N. plukenetiae and A. mellea were the most
abundant and most frequently occurring (92–100% of sites; Table 2). Following three
months of culturing in the greenhouse on S. vulgare, B. brizantha and M. sativa in the twelve
soils, R. variabile and N. plukenetiae were the only species that multiplied well and with
a high spore abundance (Table 3), while A. mellea and G. microcarpum did not multiply
well. Therefore, R. variabile and N. plukenetiae only were considered for further functional
experiments on coffee crop growth promotion.
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Table 3. Dominant sporulating arbuscular mycorrhizal fungi species isolated after culturing for three
months in the screenhouse.

Provinces El Dorado Lamas San Martín Moyobamba Occurrence
(%)

AMF Species ED-1 ED-2 ED-3 LA-1 LA-2 LA-3 SM-1 SM-2 SM-3 MO-1 MO-2 MO-3

A. mellea + + ++ +++ ++ +++ ++ + ++ - - - 75
R. variabile ++ +++ ++ ++ +++ ++ ++ ++ +++ + ++ +++ 100
N. plukenetiae + ++ + ++ + +++ ++ + ++ + ++ ++ 100
G. microcarpum - - - + ++ ++ +++ + ++ ++ +++ - 58

Location number, 1–2–3. -: absent (0 spore/g); +: 1–2 spores/g; ++: 3–5 spores/g; +++: >6 spores/g. Species in
bold indicate abundant and ubiquitous AMF species in trap cultures.

3.3. Effects of AMF on Coffee Plant Growth

The plant growth parameters began to differentiate between treatments at 60–75 days
after inoculation, with mycorrhizal plants having better growth than the controls (Figure 2).
At harvest, mycorrhizal plants were taller and had more leaves and thicker stems than
non-mycorrhizal plants. Plants dual-inoculated and with R. variabile alone were tallest
(mean plant height 20.7 and 20.2 cm, respectively), and 2.2 times higher (p < 0.05) than
plants inoculated with N. plukenetiae alone (15.3 cm; 1.5 times higher than control plants),
and the non-mycorrhizal control (9.6 cm; Figure 3a, F = 655.38, p < 0.0001). Similarly,
stem diameter was higher in the dual-inoculated (3.7 mm) and R. variabile-inoculated
(3.6 mm) plants than the N. plukenetiae-inoculated (3.1 mm), or in the non-mycorrhizal
control (2.1 mm), with mycorrhizal stem girths 1.4–1.7 times thicker than non-mycorrhizal
plants (Figure 3b, F = 1061.76, p < 0.0001). All AMF-treated plants had more leaves than
the control (Figure 3c, F = 118.86, p < 0.0001), with approximately 1.3 times more leaves
than the non-mycorrhizal control at harvest. In line with leaf number, the leaf area index
per plant was greatest in the dual-inoculated (709 cm2) and with R. variabile-inoculated
(691 cm2) plants and significantly lower in N. plukenetiae-inoculated plants (434 cm2), and
lowest in the non-mycorrhizal control plants (155 cm2), and thus up to 4.6 times higher in
the mycorrhizal than non-mycorrhizal treatments (Table 4).

Table 4. Impact of AMF single and dual inoculation on Coffea arabica growth and physiology after
135 days.

Treatment Shoot Fresh
Matter (g)

Roots Fresh
Matter (g)

Shoot Dry
Matter (g)

Roots Dry
Matter (g)

Chlorophyll
Content (SPAD)

Leaf Area
(cm2)

Control (Ctr) 3.0 c ± 0.5 0.8 c ± 0.2 0.77 c ± 0.01 0.21 c ± 0.01 27.4 c ± 0.28 155 c ± 6.01
R. variable (Rv) 15.3 a ± 2.4 7.4 a ± 1.2 3.58 a± 0.04 1.81 a ± 0.05 59.8 a ± 0.50 691 a ± 17.08
N. plukenetiae (Np) 9.7 b ± 1.7 4.4 b ± 1.1 2.25 b ± 0.03 1.04 b ± 0.06 48.9 b ± 0.58 434 b ± 13.35
Rv+Np 15.9 a ± 2.1 7.8 a ± 1.0 3.63 a ± 0.03 1.77 a ± 0.02 60.3 a ± 0.26 709 a ± 14.60
p and F-Value

p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
F = 337.1 F = 373.7 F = 2130.0 F = 303.5 F = 1288.4 F = 376.63

Means ± standard deviation of 34 replicates. Treatments with the same letter do not significantly differ between
each other (ANOVA followed by Tukey’s HSD; p < 0.05)
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Figure 2. Effect of single and dual arbuscular mycorrhizal fungal inoculation on (a) plant height
(cm), (b) number of coffee leaves per plant and (c) stem diameter (cm) in coffee plants along
135 days of vegetative growth measured (15-day intervals). Mean values per treatment. Error
bars indicate standard deviation (±S.D.). Different letters indicate significantly different means
(p < 0.05). Ctr = Non-inoculated, Rv = Inoculation with Rhizoglomus variabile, Np = Inoculation with
Nanoglomus plukenetiae.
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Figure 3. Illustration of coffee leaf, shoot and root growth 135 days in (a) non-mycorrhizal control
plants, after single inoculation with (b) Rhizoglomus variabile, or (c) Nanoglomus plukenetiae, and
(d) after dual inoculation with both AMF species.

At harvest, inoculation of coffee seedlings with AMF led to significantly greater shoot
and root growth (Table 4; Figure 3). Coffee plant fresh and dry shoot and root weights were
consistently heavier after inoculation with dual AMF and single inoculation with R. variabile
compared with inoculation of N. plukenetiae alone, and lowest in the non-mycorrhizal
control (Table 4; Figure 3). The total coffee fresh plant weight was 6.2 and 6.0 times higher
in the dual-inoculated and the R. variabile-inoculated treatments, respectively, compared
to the non-mycorrhizal control plants, and total dry weight was 5.5 times heavier for the
dual-inoculated plants.

The shoot fresh weight of coffee plants was 3.2–5.3 times higher in the mycorrhizal
than non-mycorrhizal treatments (Table 4), and the root fresh weight of the mycorrhizal
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coffee plants was 5.5–9.8 times higher in the mycorrhizal treatments. The shoot dry weight
of the mycorrhizal plants was 2.9–4.7 times higher in the mycorrhizal than non-mycorrhizal
treatments, and the root dry weight of mycorrhizal plants was 5.0–8.6 times higher. Also,
the leaf area index was highest after dual inoculation and inoculation with R. variabile
alone (Leaf area 709 and 691 cm2 per plant, respectively), while it was significantly lower
with N. plukenetiae alone (434 cm2), and lowest in the non-mycorrhizal control (155 cm2),
meaning that the leaf area of mycorrhizal plants was 2.8–4.6 times higher in the mycorrhizal
than non-mycorrhizal treatments (Table 4).

3.4. Arbuscular Mycorrhizal Root Colonization in the Growth-Response Experiments

At harvest, all mycorrhizal treatments colonized roots to a high percentage (68–84%)
by R. variabile, N. plukenetiae, or both fungi, while the non-mycorrhizal control was absent
of any colonization. The highest (p < 0.05) colonization occurred with R. variabile (82%)
and R. variabile + N. plukenetiae (84%), compared to N. plukenetiae alone (68%). See Figure 4,
F = 4864.4, p < 0.0001.
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Figure 4. AM fungal root colonization of coffee plants inoculated with Rhizoglomus variabile, Nanoglo-
mus plukenetiae or a combination in the greenhouse after 135 days. Mean values per treatment
(N = 34). Error bars indicate standard deviation (±S.D.). Columns sharing the same letter were not
significantly different (p < 0.05). Ctr = Non-inoculated, Rv = Inoculation with Rhizoglomus variabile,
Np = Inoculation with Nanoglomus plukenetiae.

3.5. Impact of AMF on Chlorophyll and Mineral Nutrient Contents in Coffee Leaves

The highest leaf chlorophyll content was recorded following inoculation with both
AMF and with R. variabile alone (60.3 and 59.8, respectively), and significantly lower with
N. plukenetiae alone (48.9), and the non-mycorrhizal control (27.4 cm2), which was less than
half of the dual-inoculated and R. variabile-inoculated plants (Table 4). The leaf N, P and
K contents were also significantly higher in plants following AMF inoculation (Figure 5,
nitrogen: F = 55.40, p < 0.0001, phosphorus: F = 5.21, p < 0.027 and pottassium: F = 229.80,
p < 0.0001) at 2.9, 5.0 and 4.4 times higher, respectively, when inoculated with R. variabile
than in the non-mycorrhizal plants. For N. plukenetiae-inoculated plants, the differences
were less pronounced than for R. variabile with 1.8, 3.6 and 2.5 times higher N, P and K than
in the non-mycorrhizal plants. Following dual-inoculation with both fungi the effects were
similar to those with R. variabile for N and K contents, with 3.0 and 4.6 times higher than
in the non-mycorrhizal control, while P content was more similar to the P content with
N. plukenetiae (3.2 times higher than non-mycorrhizal plants).
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Figure 5. Nitrogen, phosphorus and potassium contents (mg kg−1) of coffee leaves after 135 days
in non-mycorrhizal control plants (Ctr), after single inoculation with Rhizoglomus variabile (Rv), or
Nanoglomus plukenetiae (Np), and after dual inoculation with both AMF species (Rv+Np). Mean
values per treatment. Error bars indicate standard deviation (±S.D.). Columns sharing the same letter
were not significantly different (p < 0.05). Ctr = Non-inoculated, Rv = Inoculation with Rhizoglomus
variabile, Np = Inoculation with Nanoglomus plukenetiae.

4. Discussion

AMF species can be identified from field soil samples either by morphological spore
or molecular analyses after DNA extraction [86]. Both approaches have their limitations
and their advantages as described in Oehl et al. [87], but both are laborious and thus
time-consuming and costly. Ideally, they are concomitantly used and should deliver
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complementary data, but the combination of both has been rarely applied so far, also
due to the lack of skills for one or the other methodology [88]. In one of these rare
events, morphological AMF identification was even found to be superior to the molecular
approach [89]. In this study, AMF taxa were identified on the genus level (e.g., Glomus)
and wherever possible to further identify the morphospecies (e.g., Glomus microcarpum,
when the morphotype was unequivocally attributable to this species) or to the morphotype
level (e.g., Glomus sp. resembling G. spinuliferum, when the species resembled to a known
species; or e.g., Glomus sp. 1, when the species most probably is new to science, according
to our knowledge).

In the four coffee-growing provinces of Peruvian San Martin State, 35 different mor-
phospecies were detected in 12 coffee plantations, with 14–24 morphospecies recovered
per province. The majority of previous studies with coffee report a similar AMF species
richness (16–37 species) as found in our study [90–96], with some reporting higher species
richness (43 and 79 species; [52,97]). The large variation in AMF species richness was often
explained by the coffee production systems, with a generally higher AMF richness under
the shadow (shade-green systems), as these systems allow the interaction of coffee with
other plant species of the plantations through the belowground AMF network, as well as
by different climatic conditions of the regions and the edaphic soil characteristics [93].

In our study, the species belonged to 13 AMF genera from 6 families, which demon-
strates a high diversity, when compared with most studies (already cited within this
paragraph). Acaulospora and Glomus genera provided the highest species richness, with 9
and 10 AMF species recorded, respectively. These genera are often the most prevalent in cof-
fee plantations [91,94,98,99]. The genera Rhizoglomus, Sclerocystis, Entrophospora, Dominikia,
Ambispora, Diversispora, Gigaspora and Sieverdingia have also been reported from coffee
plantations worldwide [90,91,93–97] but represent a lower species richness, as reflected in
the current study.

The key important observation of this study was the impressive increase in coffee
seedling growth and development, following inoculation with the two indigenous AMF
species R. variabile and N. plukenetiae, resulting in up to 5.5 times higher total biomass after
135 days, when compared with non-inoculated plants. This is the first functional study with
R. variabile and N. plukenetiae, which were only recently described from coffee plantations in
San Martín State, Perú [62,64]. The inoculation of R. variabile alone improved coffee growth
to a greater extent than that of N. plukenetiae. This is notable, with now a fourth species
within the genus Rhizoglomus, besides the well-known species R. intraradices and R. irreg-
ulare [42], and R. invermaium [100], with elevated beneficial effects on an agronomically
important crop, underlining the importance of Rhizoglomus species for crop plant nutrition.
The results clearly demonstrate the highly mycotrophic nature of coffee, as evidenced by
other AMF-coffee associations [48,50,53,56,101] but moreover, highlight the outstanding
functions of Rhizoglomus for plant nutrition with now a new ‘super strain candidate’ R. vari-
abile for South American coffee plant establishment. Also, during a study to assess more
than 40 AMF strains for their effect on leek (Allium porrum) growth, Rhizoglomus species
and the closely related Oehlia diaphana, were the most beneficial species detected [100].

Our results demonstrate that the genus Nanoglomus (N. plukenetiae) from the family
Glomeraceae can be added to those that provide strong beneficial effects on plant growth.
Nanoglomus plukenetiae belongs to the major Dominikia clade of the Glomeraceae, which has
previously not been recognized among the most beneficial clades of AMF [100].

The combination of both AMF inoculants did not lead to increased coffee growth,
over inoculation with R. variabile alone. The effects of multiple species inoculations do
not necessarily lead to improvements over single inoculations [48,101,102], although Trejo
et al. [50] reported significant coffee growth improvement with various combinations of
AMF consortia. More research and information is needed if, or in which cases, or for
which crop species, single or multiple inoculations with specific AMF species/strains
should be recommended. This would also likely depend on crop cultivar, as well as on
the prevailing edaphic and climatic conditions, and whether cultivated in mono- or mixed
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cropping systems. When inoculating Medicago truncatula with three Rhizoglomus species, R.
intraradices/irregulare, R. aggregatum and R. custos, Kiers et al. [103] observed that host plants
were able to detect, discriminate and select the most beneficial AMF symbionts. Of the three
species, R. intraradices/irregulare was the most outstanding, delivering the highest quantities
of nutrients to M. truncatula and acquiring the highest amount of carbohydrates itself.
Following double or triple combinations of Funneliformis mosseae, R. intraradices/irregulare
and Entrophospora claroidea (all belonging to the Order Glomerales), Jansa et al. [36] obtained
similar results as in our study: no additional crop growth benefits to M. truncatula were
observed following combinations, compared to the inoculation of F. mosseae alone. When A.
porrum was inoculated with the same combinations, however, plant biomass was lower than
inoculation with F. mosseae alone. These studies consequently demonstrate the complexity
of the interactions and associations between host plants and AMF, as well as between
AMF species/strains on the same plant. Maherali and Klironomos [104], working with
Plantago lanceolata showed that host plant growth benefits were greater when combinations
of AMF included species from different families, compared with combinations of species
from within a single family. This concept was further supported by Thonar et al. [105] and
Yang et al. [40] who indicated that different AMF families have complementary functional
capacities in favor of the plant hosts. A number of recorded species of AMF have previously
shown beneficial effects on host plants, such as Dioscorea rotundata, e.g., Entrophospora
etunicata, E. claroidea, A. scrobiculata and A. spinosa [44]. Many other recorded species have,
to date, rarely been cultivated and so their potential benefits remain unknown, for coffee
and for any other hosts. From the 35 AMF species detected and the four most abundant
and frequently occurring AMF species in our study, just two species multiplied efficiently
for inoculum production.

Following inoculation in the current study, AM fungal root colonization for R. variabile
or the combined inoculation was similar (~85%) after 135 days, while colonization for
N. plukenetiae alone was lower (68%). Similarly, Säle et al. [100] also observed that AMF
isolates with the highest root colonization rates provided the greatest growth benefits.
Dumbrell et al. [106], further concluded that AMF species with high root colonization rates
are more effective at creating symbiotic associations and providing more benefits to host
plants than slower-growing fungi. Both R. variabile and N. plukenetiae belong to major clades
of the Glomeraceae, which are known for their high root colonization capacity [100,107,108].

Coffee inoculation with AMF resulted in exceptional root length increases, of up to 84%,
which is higher than previously reported for coffee under greenhouse conditions [47,48,55,
56,104,109]. Such levels of improvement may be an indication of the high AMF dependency
of coffee plants, especially in marginal soils with low fertility [45,48,53,69,110,111].

When considering which AMF isolates should be applied, or developed as a product,
the high colonization rate is an important criterion, as is the speed of colonization and
consequent nutrient assimilation. Voříšková et al. [112], for example, observed the domi-
nance of R. irregulare (92%) in combined inoculations on M. truncatula. Its high capacity
to colonize roots enables it to rapidly occupy root niches and possibly exclude other AMF
species [43,113].

Our results on N, P and K assimilation appeared dependent on the AMF association.
N. plukenetiae had a lower efficiency of P assimilation than R. variabile. Phosphorus can be di-
rectly uptaken by the plant through the mycorrhizal networks [114–116]. Andrade et al. [55],
reported an average three-fold higher P assimilation in mycorrhizal coffee plantlets ini-
tially inoculated with an AMF consortium, reflecting results for N. plukenetiae in our study.
Smith et al. [117], also showed that R. intraradices/irregulare transferred about 100% of the
assimilated P in three plant species, but that Funneliformis caledonius and Gigaspora rosea
delivered much less. However, the mycorrhizal symbiosis can also result in the inactivation
of direct P uptake by the roots [117–120]. In other studies, using the split-root system, in
which different root areas of the same plant were colonized by different AMF, host plants
were able to discriminate between the fungi, delivering Carbon (C) preferentially to the
most beneficial AMF species [22,26,121–123]. In our study, the lowest quantities of P were
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recorded in plants in the dual inoculation treatment with R. variabile and N. plukenetiae,
indicating that either N. plukenetiae interfered in the transfer of P to the plants, or that there
was competition between the two species for P acquisition. In this context, Jansa et al. [36]
reported that certain combinations of AMF strains (consortia) reduced the P content in A.
porrum leaves when compared to single inoculations. In contrast, Crossay et al. [34] found
that combined inoculations with species from different AMF families increased shoot P
concentrations, compared to single inoculations with specific AMF species.

Conversely, to P acquisition, N content was superior following inoculation with R.
variabile alone or combined with N. plukenetiae than with N. plukenetiae alone. Lower N
concentrations in the N. plukenetiae treatment were closely related to the lower biomass
of the coffee roots, and the lower AMF colonization of the roots when compared to the
single or dual inoculations with R. variabile. Numerous studies have shown that AMFs are
able to absorb large amounts of inorganic nitrogen as nitrate-N or ammonium-N [124–129]
and at least partially transfer it to the plant hosts [25,27,100,130–133]. Although N is
much more easily assimilated by plants than P, N limitation in ecosystems may lead to
increased levels of N plant uptake through the mycorrhizal network [124,134] even though
some studies have indicated that N assimilation through AMF is not important for the
plant [135]. Nevertheless, as shown in our study, N assimilation can be affected by specific
AMF species, and that R. intraradices/irregulare is superior to other Glomeraceae species
(Glomus/Simiglomus hoi) [130]. Our findings further confirm, therefore, that although
the AMF symbiosis is not species-specific, the compatibility and efficiency between the
plant host and its AM fungal associates may largely depend on the specific plant-fungal
association [136]. The respective differences in N contents for coffee plants inoculated with
N. pluneketiae and R. variabile, were similarly reflected in photosynthetic activity and leaf
chlorophyll contents (48.9 vs. 59.8 SPAD, respectively), which may have limited the transfer
of C to the fungi. Various studies have previously demonstrated the strong correlation
between leaf N contents and photosynthesis [137–139].

As for P, AMF can also increase the K availability for host plants, which can otherwise
be low due to its strong mineral absorption [43,140–143]. In our study, treatment with AMF
led to over four times higher K contents in coffee leaves (42.9–77.6 mg K kg−1) than the non-
mycorrhizal control (17.5 mg kg−1), which is much higher than Andrade et al. [55] reported
for mycorrhizal coffee seedlings. Similar to our study, Garcia and Zimmermann [142] and
Olsson et al. [144,145], also found a clear relationship between the P and K leaf contents
during the AM symbiosis.

5. Conclusions

The current study clearly shows the high growth-promoting and biofertilizing po-
tential of two recently described AMFs for coffee seedlings. Both fungi are indigenous to
Peruvian coffee plantations but are not restricted to South American ecosystems. Remark-
ably, Rhizoglomus variabile is now the sixth known Rhizoglomus species, after R. intraradices,
R. irregulare, R. fasciculatum, R. clarum and R. invermaium, demonstrating the huge potential
to promote crop growth. The potential benefits of these closely related species, conse-
quently, demand greater attention for their benefit to agriculture. Similarly, Nanoglomus
also appears to be a genus of interest towards enhancing plant growth and agronomic
performance, but the combination of both studied species belonging to the same AMF
family had no synergistic effects for the coffee plants. Our study further demonstrates the
importance of identifying the most suitable species/strains. Nevertheless, multiple species
applications might be most beneficial either for the crop plants or for the whole plant-soil
system, especially when AMF strains from other AMF families could be integrated. The
results indicate an initial step towards the use of such AMF strains as a profitable and
environmentally sustainable strategy for the establishment of coffee plantations, both in
traditional and sustainable modern low-input agro-forestry systems. Further steps towards
the commercial production of AMF, based on R. variabile, would be to evaluate other rele-
vant species from the Glomeromycetes, alone and in combination with R. variabile, and to
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select the most beneficial combinations for coffee production in the Peruvian mountains
and beyond.
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