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Abstract. Sustainable intensification schemes that increase crop production and soil fertility, such as integrated soil fertility

management (ISFM), are a proposed strategy to close yield gaps and achieve food security in sub-Saharan Africa while main-

taining soil fertility. However, field trials are insufficient to estimate the potential impact of such technologies at the regional or

national scale. Upscaling via biogeochemical models, such as DayCent, from the field-scale to a larger region can be a suitable

and powerful way to assess the potential of such agricultural management practices at scale, but they need to be calibrated5

to new environments and their reliability needs to be assured. Here, we present a robust calibration of DayCent to simulate

maize productivity under ISFM, using data from four long-term field experiments. The experimental treatments consisted of

the addition of low- to high-quality organic resources to the soil, with and without mineral N fertilizer. We assess the potential

of DayCent to represent the key aspects of sustainable intensification, including 1) yield, 2) changes in soil carbon, and 3)

global warming potential. The model was calibrated and cross-evaluated with the probabilistic Bayesian calibration technique.10

The standard parameters of DayCent led to poor simulations of maize yield (Nash–Sutcliffe modeling efficiency; EF 0.33)

and changes in SOC (EF -1.3) for different ISFM treatments. After calibration of the model, both the simulation of maize

yield (EF 0.51) and the change in SOC (EF 0.54) improved significantly compared to the model with the standard parameter

values. A leave-one-site-out cross-evaluation indicated the robustness of the approach for spatial upscaling (i.e., the significant

improvement, described before, was achieved by calibrating with data from 3 sites and evaluating with the remaining site).15

The SOC decomposition parameters were altered most severely by the calibration. They were an order of magnitude higher

compared to the default parameter set. This confirms that the decomposition of SOC in tropical maize cropping systems is

much faster than in temperate systems and that the DayCent temperature function is not suitable to capture this with a single

parameter set. Finally, the global warming potential simulated by DayCent was highest in control -N treatments (0.5-2.5 kg

CO2 equivalent per kg grain yield, depending on the site) and could be reduced by 14 to 72% by combined application of20
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mineral N and manure at a medium rate. In three of the four sites, the global warming potential was largely (> 75%) dominated

by SOC losses. In summary, our results indicate that DayCent is suitable for estimating the impact of ISFM from the site to

the regional level, that trade-offs between yields and global warming potential are stronger in low-fertility sites, and that the

reduction of SOC losses is a priority for the sustainable intensification of maize production in Kenya.

1 Introduction25

Similar to many countries of Sub-Saharan Africa (SSA), the low maize yields in Kenya, on average 1.7 t ha-1 compared to the

global average of 5.6 t ha-1 over the last decade (2011-2021) (FAO, 2023), are in part responsible for low self-sufficiency of

food production. Consequently, around 20% of the Kenyan population lives with severe food insecurity (World-Bank, 2021b).

If yields are not improved, increased demand due to population growth will further deteriorate self-sufficiency and in general

food security in the coming decades (Zhai et al., 2021): yield declines resulting from more frequent extreme weather events30

could further exacerbate this situation (Lobell et al., 2011). One of the key limitations to sustainable maize production in SSA

is the lack of mineral fertilizer and organic inputs. Integrated soil fertility management (ISFM) is a sustainable intensification

practice that can alleviate these limitations by combining the use of mineral fertilizers with organic inputs (Vanlauwe et al.,

2010). Different studies reported that ISFM has the potential to more than double maize yields in Kenya, especially in currently

unfertile soils, due to the effects on soil fertility, including soil organic matter (SOM) content (Chivenge et al., 2009, 2011).35

However, in addition to the amount and quality of fertilizer and organic inputs, the effectiveness of ISFM in increasing yields

strongly depends on local site conditions, such as soil and climate (Chivenge et al., 2011). Furthermore, increasing SOM also

contributes to minimizing the negative effects of climate change, and there may be considerable potential in carbon-depleted

soils in SSA (Corbeels et al., 2019).

Hence, to close yield gaps in a resource-efficient way and to assess the climate change mitigation potential of ISFM, we40

need to understand the effects of long-term implementation of ISFM at larger scales. Ideally, this would be facilitated by

implementing a large number of long-term experiments (LTE) across a representative range of soil and climatic conditions.

However, due to the high demands in terms of cost, labor, and time associated with maintaining LTE, the number of LTE that

evaluate variation in the effects of ISFM practices due to site-specific conditions is very limited. In addition, using statistical

predictive techniques to upscale results obtained with a low number of sites could lead to low predictive power and large45

predictive errors, because it is unlikely that the effects of variation in soils and climate on yield and the development of soil

organic matter (SOM) would be fully captured by the statistical models.

Biogeochemical process-based ecosystem models, such as DayCent (Parton et al., 1998; Del Grosso et al., 2001), are able

to simulate the influence of the important driving variables of yield and SOM formation using semi-mechanistic functions

developed through decades of agronomic and soil research. Because they (partly) embed our current understanding of the50

complex ecosystem processes, they are more robust for upscaling of the yield potential (Saito et al., 2021) and the SOM

building capacity (Lee et al., 2020), compared to statistical predictive techniques. However, to avoid bias in model output, it
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is best practice that models are calibrated and validated to local conditions (Necpálová et al., 2015) whenever they are applied

outside the range of usual conditions, for example, in a new climate zone with different soils.

Although DayCent has been used to estimate the development of SOM stock in Kenya on a national scale (Kamoni et al.,55

2007) and recently the efficiency of conservation agriculture in Ethiopia (Lemma et al., 2021), DayCent’s modules of SOM

and maize crop growth have never been rigorously calibrated and validated for tropical agroecosystems in SSA. A recent test of

DayCent in Kenyan maize growing systems showed that SOM turnover is underpredicted by DayCent (Nyawira et al., 2021).

Because SOM in biogeochemical models is coupled to nitrogen (N) mineralization, there is the potential that this translates

into biased crop responses to N and biased crop growth rates in any upscaling exercise. A potential solution to this issue is60

the joint calibration of soil and crop parameters in DayCent, using long-term data from local trials. Ideally, it would include

the uncertainty in the model parameters and outputs (Clifford et al., 2014), so a propagation of errors is possible in upscaling

exercises (Stella et al., 2019). This is especially relevant because a recent study showed considerable uncertainty in DayCent

SOM turnover rates, even when using a range of long-term experiments for calibration (Gurung et al., 2020).

In order to use DayCent to assess the potential of ISFM to contribute to closing the yield gap while minimizing environmental65

impact in Kenya and other SSA countries, the aim of this study was to use Bayesian calibration to derive robust DayCent

parameters of SOM cycling and maize growth in Kenya. We used the experimental data of four long-term ISFM trials conducted

in Kenya for almost two decades (Laub et al., 2022, 2023). Of these, two sites were in humid western Kenya and two in

subhumid to semi-arid central Kenya. Their treatments were different additions of organic resources (1.2 and 4 t C ha-1 yr-1

including farmyard manure, high-quality Tithonia diversifolia and Calliandra calothyrsus residues as well as low-quality low70

quality stover of Zea mays and sawdust), combined with (+N) or without (-N) 120 kg mineral N fertilizer ha-1 season-1. They

thus contain a range of experimental conditions and inputs. The goal was to evaluate to what extent DayCent can replicate the

differences in yields and SOM development in response to different qualities and rates of organic resources combined with

different rates of N fertilizer and between sites. Furthermore, because ISFM can simultaneously be a source of N2O to the

atmosphere (Leitner et al., 2020) and mitigate CO2 emissions from the soil (Laub et al., 2022), the second objective was to75

evaluate the total global warming potential of different rates of organic material in ISFM to find the optimal balance between

limiting greenhouse gas emissions from the soil and optimizing the yield (that is, sustainable intensification).

Thus, the specific objectives of this study were (i) to test the capability of an uncalibrated version of DayCent to simulate

yield and SOC development of the different ISFM practices, (ii) to calibrate DayCent to represent ISFM under Kenyan condi-

tions using experimental data from the 4 LTE, displaying the confidence in model parameters by Bayesian calibration, and (iii)80

to use the calibrated model to gain an understanding of possible trade-offs between yield and SOM increases under ISFM, and

to understand the global warming potential of the different ISFM treatments.
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2 Material and Methods

2.1 The experimental sites

The present study used data pooled from four experimental sites. The experiments tested different organic resource treatments85

at different rates in combination with the application of mineral N fertilizer in the context of ISFM. The experimental setup was

identical between the sites. The sites are located in agriculturally important areas in western and central Kenya. The Embu and

Machanga sites are both located in Embu County, in the central part of Kenya. The Aludeka site is located in Busia County in

western Kenya, while Sidada is located in the adjacent Siaya County, just south of Busia (Table A1). The experiments in Embu

and Machanga were initiated in early 2002 and the experiments in Aludeka and Sidada were initiated in early 2005. Therefore,90

19 years of data were available in central and 16 years in western Kenya (2 sites x 16 years + 2 sites x 19 years = 70 site years =

140 site seasons). The sites cover a range of altitudes, temperatures, and precipitations. Embu, with a mean annual temperature

(MAT) of 20 °C and 1200 mm annual precipitation, is the coolest of all sites, while Machanga has a MAT of 24°C and receives

the lowest amounts of annual precipitation (800 mm). Sidada (23°C, 1700 mm) and Aludeka (24°C, 1700 mm) have a high

MAT and receive significantly more precipitation than the sites in central Kenya. There are two rainy seasons at each site,95

which corresponds to two maize growing seasons per year. The long rainy season runs from March to August/September, the

short rainy season runs from October until January/February. In terms of soil texture, Machanga and Aludeka have low clay

content (13% clay at both sites), while Sidada and Embu are rich in clay (56 and 60%, respectively).

All experiments were set up as a split plot design with three replicates, with different qualities and quantities of organic

resources as main plots and the presence or absence of N fertilizer as subplots. Maize was grown continuously in all experi-100

ments, with two crops per year, one in the long rainy season and one in the short rainy season. The design was similar in all

four sites and has been described in detail for the Embu site (Chivenge et al., 2009; Gentile et al., 2011). Organic resource

treatments consisted of high quality Tithonia diversifolia (TD) green manure and Calliandra calothyrsus (CC) prunings, low

quality stover of Zea mays (MS) and sawdust from Grevillea robusta trees (SD), locally available farmyard manure (FYM)

and a control treatment (CT) without any organic resource additions. Organic resources differed in quality by the contents of105

N, lignin and polyphenols (Table A2). Each organic resource was applied at two rates, 1.2 and 4 t C ha-1 yr-1, while only one

amount of applied mineral fertilizer, 120 kg N ha-1 (CaNH4NO3) in each of the two growing seasons was tested. Of that, 40

kg N ha-1 were applied with planting, and the remaining 80 kg N ha-1 about six weeks after planting. Organic resources were

applied only once a year, prior to planting for the long rainy season in January or February. They were incorporated to a depth

of 15 cm with hand hoes. Furthermore, a blanket application of 60 kg P ha-1 as triple superphosphate and of 60 kg K ha-1 as110

muriate potash at planting was provided to all plots once each season. The plots were kept weed free by hand weeding, between

two and three times per season, and selective application of pesticides was used when necessary to protect against armyworm,

stemborer, and/or termites.

4

https://doi.org/10.5194/egusphere-2023-1738
Preprint. Discussion started: 21 August 2023
c© Author(s) 2023. CC BY 4.0 License.



2.2 The DayCent model

The DayCent model (version 2020 of DD_EVI) is a terrestrial ecosystem model of intermediate complexity (Del Grosso et al.,115

2001). It simulates C and N fluxes within the soil-plant-atmosphere continuum on a daily basis and has been parameterized

for many crops and ecosystems (Necpalova et al., 2018). It has submodules to simulate plant growth, organic resource and soil

organic matter (SOM) decomposition, mineralization of N, soil water and temperature, N gas fluxes, and CH oxidation4. The

net primary productivity of plants is a function of their genetic potential, a simplified phenology, solar radiation, temperature,

and stresses, such as reduced water or N availability. Here, we used the non-growing degree day version of the DayCent crop120

module, which does not simulate phenology but has a seedling stage with reduced growth until a certain biomass (full canopy)

is reached. SOC and soil N in the upper 20 cm are represented by active, slow, and passive SOM pools, while litter and organic

resources are represented by structural and metabolic litter pools (Parton et al., 1987). All soil pools are conceptual and have

no measurable counterparts, whereas the litter pools are semiquantitative, that is, their division is based on the measurable ratio

of lignin to N in organic resources and plant litter. For temperate conditions, DayCent has been shown to adequately simulate125

crop yields, SOC and soil N dynamics and N2O emissions (Del Grosso et al., 2005; Necpálová et al., 2015; Necpalova et al.,

2018; Gurung et al., 2020, 2021). Yet, for tropical conditions the performance has not been studied in similar detail. A recent

paper showed that the general model fit of the uncalibrated model was suboptimal (Nyawira et al., 2021).

2.3 Data used for the DayCent model evaluation/calibration

In a process that was repeated four times, a large data set was used based on three of the four sites for the model calibration and130

the validation was performed based on the fourth site. The plot-scale yield of maize grain and the aboveground biomass, both

on a dry matter basis (t ha-1), were available for each cropping season between 2002 and 2020 (further details in Laub et al.,

2023). In addition to that, plot-scale SOC and total N contents in the top 15 cm were available for several points over time. In

Embu and Machanga, soil samples were taken every two to three years since initiation in 2002 until 2021, but in Sidada and

Aludeka, only in 2005, 2018, 2019 and 2021 (further details in Laub et al., 2022). Because bulk density was not available for135

most soil samples and in 2021 there was no significant difference in topsoil bulk density between treatments at any site, the

mean bulk density per site was used to calculate SOC stocks of the top 15 cm of soil depth. All simulations were conducted at

the site scale, so the plot-scale (i.e. replicate) measurements were aggregated to the site scale, calculating means and variances.

DayCent calculates SOC to a depth of 20 cm, so we rescaled the SOC stocks for the top 15 cm to the top 20 cm, using the

formula of Jobbágy and Jackson (2000):140

SOC20(kg ha−1) =
1−β20

1−β15
∗SOC15 (1)

Here, SOC20 and SOC15 are SOC stocks in kg ha-1 in the top 20 and 15 cm soil depth, respectively. The parameter β is the

relative decrease of SOC stocks with depth, for which we took the mean values across sites (0.9725), calculated from the 2021

sampling, where samples from 0-15, 15-30, and 30-50 cm were available for all of the sites.
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Data on N2O emissions were used in the model evaluation phase, but not for model calibration, because the data were scarce145

and subject to high variability. The N2O measurements were conducted after N fertilization in 2005 (weekly measurements

form March to June in Embu and Machanga and daily measurements in Machanga in November), in 2013 and 2018 (weekly

measurements form March to beginning of May in Sidada and Aludeka), and in 2021 (weekly measurements form mid-March

to mid-May in Sidada). They were conducted with the static chamber method (Hutchinson and Mosier, 1981). Measuring

frames were permanently installed in the plots for a whole rainy season. The chambers (0.27 × 0.375 × 0.11 m) were made of150

polyvinylchloride and equipped with a vent tube and a fan to homogenize gas inside them before gas sampling. The measured

N2O emissions were evaluated at two levels of aggregation. First, as site means per measurement day (from the three replicates,

similar to all other data) and second as cumulative emissions over the whole season, for which we first used the trapezoid

method at the plot scale (Levy et al., 2017), specifically, the trapz function of R (Tuszynski, 2021). Site-scale means and

variances were then computed for these cumulative N2O emissions, similar to all other measurements.155

Furthermore, data on soil mineral N (Nmin), measured as NH4
+ and NO3

-, and measured moisture content at soil depths

of 0-15 cm, were available from several measurement campaigns in the years 2012, 2013, 2018, 2019 and 2020. Finally, in

the control and the 1.2 t C plots of the Calliandra, farmyard manure and maize stover treatments, continuous soil moisture

measurements from sensors placed in each replicate at 10 cm soil depth (EC-5 Soil Moisture Sensor, Meter, Germany), were

available for Sidada and Aludeka sites (March 2018 to December 2020). These soil moisture measurements were used to160

determine the optimal pedotransfer functions for soil hydraulic conductivity before the actual model calibration phase.

2.3.1 Model driving variables and model assumptions

The site-specific crop management data used to run the DayCent model was obtained from field management operation records

for each season at each site. This included specific dates for the yearly application of organic resources (in all but the control

plots), manual plowing before planting, maize planting, split application of mineral N at rates of 40 kg and 80 kg N ha-1 per165

season, weeding and harvest dates. Pesticide application events and gap filling plus maize thinning are not part of standard

DayCent management and were therefore not included in the DayCent schedule file. Our model runs therefore, assumed no

occurrence of pests or diseases and an optimal plant density from the start, which in practice was ensured by manual thinning

and gap filling.

The climate data used to run DayCent consisted of recorded data at each of the sites. However, filling the data gaps170

was necessary due to unavailability and loss of recorded data. In Embu and Machanga, manual recordings of daily min-

imum and maximum temperature and precipitation were available from 2002 until the end of 2007, but from 2008 un-

til 2017, only measured precipitation was available. After 2017, high-quality data from newly installed TAHMO stations

(https://tahmo.org/climate-data/) were available near the Machanga and Embu sites, with daily values for temperature and

precipitation. In Aludeka and Sidada, manual recordings of daily minimum and maximum temperature and precipitation175

were available for all years from 2005 to 2017, during which high-quality weather stations were installed (Meter climate

station, Meter Environment, Munich, Germany). These data gaps were filled by using the NASA POWER product (https:

//power.larc.nasa.gov/docs/methodology/). A bias correction for the minimum and maximum temperature of NASA POWER
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data was performed, using a linear regression with measured data as dependent variable (y) and NASA POWER data as in-

dependent variable (x). Specifically, the slope and intercept of the regression equation y =mx+ b, were used to produce a180

corrected estimate of these data. In our specific case, the slopes were not significantly different from 1, but intercepts (b)

were significantly different from 0. The specific intercepts for maximum temperature were -0.3°C, -0.4°C, +3°C and +6°C for

Embu, Machanga, Sidada and Aludeka, respectively. The intercepts for the minimum temperature were -0.25°C, -0.5°C, -3°C

and +1°C for Embu, Machanga, Sidada, and Aludeka, respectively. For precipitation, no bias correction was done.

The data on the hydraulic properties of the soil needed in DayCent (volumetric field capacity, wilting point, and saturated185

hydraulic conductivity Ks) were calculated based on the soil texture measured at each site. We tested two pedotransfer functions

to see which one provided a better fit: (1) the widely applied function of Saxton and Rawls (2006) and (2) the function of

Hodnett and Tomasella (2002), which was specifically designed for tropical soils. Within the Hodnett and Tomasella (2002)

equation, Ks was calculated using the Saxton and Rawls (2006) equation, with values of the water retention curve, α and n

(van Genuchten, 1982), taken from Hodnett and Tomasella (2002), because their equation does not provide a way to estimate190

Ks. In initial test simulations, we compared the observed versus soil moisture contents in the top 15 cm, for which continuous

measurements were available from Sidada and Aludeka from 2018 to 2020. In this comparison, the pedotransfer functions

of Hodnett and Tomasella (2002) showed better agreement between the measured and simulated soil moisture contents than

Saxton and Rawls (2006) and were consequently used in the application of the model at the four LTE sites.

2.3.2 Initial model parameterization and selection of potentially sensitive parameters for calibration195

To parameterize the organic inputs, the mean lignin content and C/N ratio of the different organic materials across sites (Table

A2) were used. This was justified because measurements were not available for all sites and years and because an analysis of

variance of data from the years 2002, 2003, 2004, 2005 and 2006 for Embu and Machanga and from the year 2018 for all sites

did not indicate any significant differences in lignin contents and C/N ratios between the sites or years. The C content in maize

grain was assumed to be 42.5% throughout the simulation period. This was the mean value of measured grain C content across200

sites (standard deviation 1.8%), which were available from the short rainy season 2018 and long rainy season 2019 (data not

shown).

The DayCent simulations were conducted at the site scale using averaged values across all three replicate plots for soil texture

and SOC and soil N stocks, yield and aboveground biomass. This was done to reduce the computation time of the sensitivity

analysis and calibration. Additionally, initial tests with the default DayCent parameterization showed that applying the model205

to each experimental replicate individually did not lead to better agreement between measured and simulated values than a

single simulation of the average soil parameters of the three replicates. Therefore, final model simulations were conducted with

averaged values for soil parameters (i.e., texture, bulk density, soil pH) across the three replicates per site. For data used in

model calibration and evaluation, the site-specific variance for each type of measurement was used as a measure of uncertainty

of the measured data (specifically, the median variance per site and measurement type computed from the three replicates from210

each time point of each treatment). Site-specific variances were used because a statistical analysis of the data in earlier work
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had shown that variance heterogeneity existed only between sites, but not between treatments at the same site (Laub et al.,

2022, 2023).

The standard parameter values of the DayCent 2020 version were taken as initial model parameters. The exceptions were the

decomposition parameters of the SOM pools. For these, we used updated estimates from a recent Bayesian calibration (Gurung215

et al., 2020) that included data from most of the well-known long-term experiments in Europe and the US (and textures from

15-50% clay). To our knowledge Gurung et al. (2020) provide the most up-to-date decomposition parameters, and hence, we

assigned the median of reported parameter values for each SOM pool as initial parameter values in our model simulations.

Furthermore, for the parameters determining the minimum and maximum proportion of nitrified N lost as N2O, we used the

most recent values from Gurung et al. (2021), who showed that older parameters overestimate N2O emissions. To identify220

which model parameters to include in the global sensitivity analysis (see section 2.4) and in the model calibration, we screened

the literature for recently conducted sensitivity analyzes of the DayCent model (Necpálová et al., 2015; Gurung et al., 2020)

and additionally used the DayCent manual to identify and add further parameters of potential importance for the processes

considered in our study (i.e., plant productivity and soil C and N cycle). This resulted in a selection of 66 parameters (Table 1

and Table A3). Some of these parameters represented groups of the same type of parameters that can each be individually cali-225

brated in DayCent, e.g., the "tillage multiplier" of SOM turnover can have different values for different SOM pools. However,

because the tillage multipliers are usually the same for all SOM pools in the standard DayCent parameterization, we decided to

have the same tillage multiplier value for active, slow, and litter pools. In addition, some of the parameters can have different

values between the SOM pools of the surface and soil (for example, C / N ratios and turnover). For simplicity, we decided to

assign the same C/N ratios and a constant ratio to the turnover of surface and soil SOM pools. Because the turnover rates of230

the SOM pools are typically faster on the surface than in the soil, we defined a new parameter that represents the value ratio

of the surface to the soil parameters (i.e., decX(2)/decX(1)). This allowed us to jointly evaluate the sensitivity and calibrate

parameters related to surface and soil SOM pools without adding too much complexity. Finally, the parameters for minimum

and maximum values of nitrification and loss of nitrified N as N2O, were reformulated as maximum and the difference between

the minimum and maximum parameters (i.e., N2Oadjust_(max-min) and aneref(1)-anaref(2)). This was done to ensure that the235

maximum was always higher than the minimum value in order to avoid numerical problems.

2.3.3 Spin-up and site history simulation to initialize SOC and soil N contents

As is standard practice in DayCent, the initialization of SOM pools was conducted through a spin-up run, which was followed

by a simulation of the history of the site before experiment establishment based on the knowledge of site managers. The

spin-up has the aim to initialize the SOM pools to equilibrium using the typical input of biomass of the native vegetation240

type. The type of native vegetation for each site was determined from an available potential vegetation map (Kamoni et al.,

2007) and confirmed by site managers as tropical evergreen forest in Embu, dry savanna in Machanga, and humid savanna in

Sidada and Aludeka. A 2000-year spin-up simulation was sufficient to reach a steady state of SOM pools. Site managers had

a good knowledge of the type of historical cropping systems, e.g., arable vs. grasslands, types of crop rotation (e.g., maize

monoculture vs. crop rotation with legumes), manure inputs and management, but without detailed information on the duration245
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of these systems. Therefore, the duration of cropping systems after native vegetation was adjusted at each site so that the

measured initial SOC stocks corresponded to the simulated SOC stocks at the start of the experiment. Additionally, to achieve

suitable levels of soil N stocks after the spin-up, the maximum C/N ratio of the SOM pools had to be increased. It was increased

from 14 to 20 for the active SOM pool and from 8 to 13 for the passive SOM pool (parameters varat12&11(1,1) and varat3(1,1),

respectively). Due to computational time constraints and to ensure a match between simulated and observed initial SOC and250

soil N levels, the spin-up and site history simulations were not included in the sensitivity analysis and Bayesian calibration.

2.4 Global sensitivity analysis

To reduce the dimensionality of the calibration of the model, we performed a parameter screening (van Oijen, 2020). For this

purpose, a global sensitivity analysis was conducted to quantify the relative importance of different model parameters to the

relevant model outputs regarding our study focus on maize yield and ISFM greenhouse gas mitigation potential. The goal was255

to fix less influential model parameters to their default values, reducing the computational cost for performing the consecutive

Bayesian calibration (see section 2.5). Global sensitivity analysis was performed using the Sobol method (Saltelli, 2002a, b),

which allows for the estimation of the proportion of variance in the model outputs that is explained by each model parameter,

considering the interaction terms of first-order and higher-order (Gurung et al., 2020). The "sensitivity" package (function

sobolSalt; Iooss et al., 2021) of R version 4.0 (R Core Team, 2020) was applied. This function implements a simultaneous260

Monte Carlo estimation of first-order and total-effect Sobol indices. The computational cost is N(p+ 2) model runs, N being

the dimension of the two matrices to construct the Sobol sequence, p being the number of parameters (66 in our case). Our

tests indicated similar results for N = 500/1000, so we chose a dimension of 1000. The preselection of model parameters

to include (Tables 1 and A3) is described above. Independent uniform prior distributions were used for the global sensitivity

analysis, with the upper and lower parameter boundaries centered around the default parameter value obtained as described265

below. We based the global sensitivity analysis parameter ranges on previous sensitivity analyses (e.g. Necpálová et al., 2015;

Gurung et al., 2020), on plausible ranges reported in the DayCent manual and on how the parameters varied between different

maize parameterizations. The parameters were then grouped by how large the ranges were. The parameters that had very small,

small and moderate ranges were varied by ±10, 25 and 50% from the default parameter value, respectively. For parameters

with large and very large ranges, the upper/lower boundaries were the default parameter values multiplied/divided by 3 and270

10, respectively. Additionally, we assumed that the maize parameters of the second highest production level (C5 in DayCent)

would best represent the production levels in the experiment. The parameter sensitivity was independently determined for the

mean maize grain yield, aboveground biomass, as well as for the SOC and soil N stocks at the end of the simulation period.

2.5 Combined Bayesian calibration of plant and soil model parameters

Joint Bayesian calibration of the sensitive DayCent parameters was performed using all available data on maize grain yield,275

aboveground biomass, and SOC stocks. The main reason for only using these data was that the yields, SOC stocks, and their

trade-offs were the focus of this study. A second, technical reason, was that the creation and readout of daily simulations

outputs, needed to match simulated and measured soil moisture content, mineral N content and /N2O fluxes, slowed down the
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Table 1. DayCent model parameters and possible range of values. Displayed are parameters considered for calibration due to total sensitivity

index > 2.5% (top) and with a total sensitivity index > 1% (bottom). The remainder of parameters (<1%) can be found in the supplementary

(Table A3).

Possible ranges Initial Lower Upper Calibrated

Parameter Description of values Units value value value value+

Included in calibration (total sensitivity >2.5%)

himax Maximum harvest index for maize moderate g g-1 (C) 0.40 0.20 0.60 0.52

ppdf(1) Optimum temperature for growth of maize very small °C 30.00 27.00 33.00 29.10

ppdf(2) Maximum temperature for growth of maize very small °C 45.00 40.50 49.50 48.15

prdx(1) Potential aboveground production of maize large g C m-2 langley-1 2.25 0.75 6.75 2.45

clteff(1,2&4) Tillage multiplier for SOM turnover large unitless 10.00 3.33 30.00 18.10

aneref(3) Min. impact of soil anaerobiosis on SOM turnover fixed unitless 1.00 0.20 1.00 0.73

dec4 Max. turnover rate of passive SOM pool very large g g-1 yr-1 0.0035 0.00035 0.035 0.033

dec5(2) Max. turnover rate of slow SOM pool large g g-1 yr-1 0.10 0.03 0.30 0.19

fwloss(4) Scaling factor potential evapotranspiration moderate unitless 0.75 0.38 1.125 1.02

pmco2(1&2) C lost as CO2 with metabolic litter turnover* fixed g g-1 (C) 0.54 0.30 0.95 0.62

ps1co2(1&2) C lost as CO2 with structural litter turnover* fixed g g-1 (C) 0.50 0.40 0.99 0.89

& rsplig

Not included in calibration (total sensitivity <2.5% & > 1% )

frtc(1) C allocated to roots at planting, without stress small fraction of NPP 0.50 0.38 0.62 -

frtc(3) Time after planting at which maturity is reached small number of days 90.00 67.50 112.50 -

pramn(1,2) Min. aboveground C/N ratio at maturity small C/N ratio 62.50 46.88 78.12 -

hiwsf Max. harvest index reduction with water stress moderate g g-1 (C) 0.60 0.30 0.90 -

teff(1) Temperature inflection point (effect on SOM turnover) moderate unitless 17.05 8.53 25.58 -

varat21&22(2,1) Min. C/N ratio for material entering slow SOM pool small C/N 12.00 9.00 15.00 -

basef Soil water of bottom layer lost via base flow moderate fraction H2O 0.30 0.15 0.45 -

N2Oadjust_max Proportion of nitrified N that is lost as N2O large g g-1 (N) 0.004 0.0013 0.012 -

MaxNitAmt Maximum daily nitrification amount large g N m-2 0.40 0.13 1.20 -
*(1 - microbial carbon use efficiency); +highest likelihood parameter set across all four sites

whole calibration by a factor of 5, which made Bayesian calibration unfeasible (one iteration would have taken more than three

months on our virtual machine with 64 cores). Following (Gurung et al., 2020), model parameters that had a total sensitivity280

index of at least 2.5% for either yield, aboveground biomass, or SOC were considered influential and thus were altered in

Bayesian calibration. This resulted in 11 parameters to be calibrated (Table 1).

Bayesian calibration is a probabilistic inverse modeling/data assimilation technique, which is used to estimate the joint pos-

terior distribution of model parameters (θ) given the measured data (D) and the model structure (M ), expressed as p(θ|D,M).

It uses the proportionality form of Bayes‘ theorem, where p(θ|D,M) is proportional to the prior belief about model parameters,285

p(θ) times the likelihood function, p(D,M |θ):

p(θ|D,M)∝ p(θ) ∗ p(D,M |θ) (2)
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While the prior, p(θ), is chosen based on previous knowledge of the model parameters, the likelihood function, p(D,M |θ),

measures how well the model and the data match. In practice it is derived for a given set of parameter sampled from the prior,

by running and evaluating the model using the measured data, the simulated counterpart and the variance-covariance matrix290

of the data. We used the median variances per site for each type of measurement (computed from the three replicates) as the

diagonal elements of the variance-covariance matrix. Due to the large number of observations and the mostly balanced dataset,

the off-diagonal elements were set to 0.

The sampling importance resampling method, which was used in this study, is a direct form of Bayesian calibration, which

has recently been used by Gurung et al. (2020), to calibrate the parameters of the SOM module of DayCent using a large295

collection of temperate long-term experiments. It samples the prior by running the model for a large sample of parameter sets

of size I from the prior, computing the likelihood for each sample, and filtering the prior based on importance weights w(θz)

w(θz) =
p(D,M |θz)

∑I
i=1 p(D,M |θi)

(3)

where p(D,M |θz) is the likelihood function of the zth parameter set and w(θz) is the corresponding importance weight. It

is consistent with the proportionality form of Bayes‘ theorem in that it uses the importance weights w(θz) as probabilities for300

sampling from the prior, without replacement, to derive the posterior. Overall, a total of 200000 simulations were performed,

from which, as in 0.1% (200) of the parameter sets were sampled to derive the posterior distribution through resampling

(Gurung et al., 2020). It was assured that this number of simulations was sufficient by splitting the simulations into two

halves and visually assessing the similarity of derived posteriors for these subsets. In our experience, the sampling importance

resampling algorithm is ideal for DayCent, which is prone to model crash when using inappropriate parameter combinations.305

This method does not depend on chains, but rather on model runs that are independent of each other. This means that an

erroneous run does not stop the algorithm, as would be the case in chain-dependent methods such as Markov chain Monte

Carlo. In addition, this strategy allows for an efficient cross-validation of the posterior parameter set.

To evaluate the model by comparing measured vs. modeled data, we conducted a leave-one-site-out cross-validation. This

means that each of the sites is left out one by one for an independent evaluation, while the other three sites were used to compute310

the resampling weights and derive the posterior parameter distributions. Hence, the evaluation is representative of up-scaling

exercises of the DayCent model to other sites, because it involves evaluation of the model performance across different sites.

Here, the SIR algorithm was also advantageous. We stored the model results for each parameter set by site, which meant that

the cross-evaluation could be done by a simple filter by site, without rerunning the model for each iteration. In contrast to model

cross-validation, the parameter posterior distributions are not displayed by site. They are displayed for all four combined sites;315

hence the full dataset without leaving any site out was used to derive them. This was done to present the most representative

posterior distributions and to make efficient use of all available data.
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2.6 Model evaluation

We used the following standard model evaluation statistics (Loague and Green, 1991):

MSEy =
1
n

n∑

z=1

(Oyz −Pyz)2 (4)320

RMSEy =
√
MSEy (5)

EFy = 1−
∑n

z=1(Oyz −Pyz)2∑n
z=1(Oyz − Ōy)2

(6)

Here, MSEy is the mean-squared-error and RMSE is its root. EFy is the Nash-Sutcliffe modeling efficiency. Oyz is the

measured value of the z-th measurement of the y-th type of measurement, Ōy the mean of the y-th type of measurement

and Pyz the simulated value corresponding to Oyz. We further divided MSEy into squared bias (SB), nonunity slope (NU) and325

lack of correlation (LC), as suggested by Gauch et al. (2003). We expressed them as a percentage of the MSEy:

SBy(%) =
(Ōy − P̄y)2

MSEy
∗ 100 (7)

NUy(%) =
(1− by)2 ∗ (

∑n
z=1(O

2
yz)

n )
MSEy

∗ 100 (8)

LCy(%) =
(1− ry)2 ∗ (

∑n
z=1(P

2
yz)

n )
MSEy

∗ 100 (9)

Here, P̄ y is the mean predicted value of the y-th measurement type, b the slope of the regression of P on O and r the330

correlation coefficient between O and P. The indicators LC, SB and NU show the nature of model errors, that is, a high LC

shows that it is mostly random, a high SB a systematic bias, while a high NU shows issues of model sensitivity.

2.7 Net global warming potential

To compare different ISFM treatments in terms of their greenhouse gas emissions, their net global warming potential (GWP) on

a yearly basis (CO2eq ha-1 yr-1) was derived from the outputs over the whole simulation period. It was calculated from changes335

in the SOC content and cumulative emissions of N2O using 100-year time horizon of global warming potentials (Necpalova

et al., 2018):

GWP =
44
12
∗∆SOC + 265 ∗N2O (10)
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Figure 1. Results of the uncertainty-based global sensitivity analysis of the most relevant DayCent model parameters. Parameter sensitivity

was independently determined for the mean maize aboveground biomass, grain yield, and SOC and soil N stocks at the end of the simulation

period. Only parameters with a Sobol sensitivity index >1% are displayed.

Here, ∆SOC is the change in SOC content (kg C ha-1 yr-1), N2O the cumulative N2O flux (kg N2O ha-1 yr-1). The CH4

oxidation capacity was not considered, because it usually makes a very limited contribution to GWP in rainfed maize cropping340

systems and we did not have data to evaluate the reliability of this simulated flux. In addition to GWP we calculated yield-

scaled GWP (in CO2eq kg-1 maize grain yield) by dividing the cumulative GWP over the entire simulation period by cumulative

simulated yields (dry matter base).

3 Results

3.1 Most sensitive DayCent parameters345

The results of the global sensitivity analysis showed that of the 66 model parameters included, only 20 parameters had a Sobol

total sensitivity index >1% for either maize grain yield, aboveground biomass, SOC or soil N stocks (Fig. 1). Of these, only 11

parameters had a Sobol total sensitivity index >2.5%, a threshold that captures the most influential parameters and represents
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a suitable selection of parameters for model calibration (Gurung et al., 2020). The parameters that turned out to be the most

sensitive, with a Sobol total sensitivity index >10% for at least one type of measurement were radiation use efficiency (prdx(1);350

for all measurement types); the optimal and maximum temperature for maize growth (ppdf(1) and ppdf(2), respectively; only

for grain yield of maize and aboveground biomass), and maximum harvest index (himax; only for crop yield). Further, the

turnover rate of the slow and passive SOM pools (dec5(2) and dec4, respectively; only for SOC and soil N), the decomposition

multiplier after tillage events (clteff(1,2&4); only for SOC and soil N) and the fraction lost as CO2 upon metabolic litter

pool turnover (pmco2(1&2), i.e., 1 - microbial carbon use efficiency (CUE); only for SOC and soil N) belonged to the most355

sensitive model parameters. The parameters of further importance, with a Sobol total sensitivity index <10% and >2.5%,

were the minimum value for the impact of anaerobic soil conditions (aneref(3); only for SOC and soil N), the scaling factor for

potential evapotranspiration (fwloss(4); only for maize grain yield), and the fraction lost as CO2 upon structural litter and lignin

turnover (ps1co(1&2)&resplig, i.e., 1-CUE; only for SOC and soil N). The fact that the Sobol 1st order and total sensitivity

indexes were similar for most parameters suggested only a limited number of interactions between the parameters identified360

by the global sensitivity analysis.

3.2 Posterior parameter distributions from the Bayesian model calibration

Following the global sensitivity analysis, 11 selected parameters were calibrated using the same ranges of possible values

as defined for the sensitivity analysis. Four parameters were fully constrained by the Bayesian calibration, one was partly

constrained and tended towards the upper boundary. Four showed a tendency, but values from the whole prior range were365

present in the posterior distribution. Finally, two showed almost no difference to the uniform prior distribution (Fig. 2). Very

clearly constrained were the potential maximum maize production and the maximum maize harvest index (2.5 g C m-2 langley-1

for prdx(1) and 0.48 g g-1 for himax), with values slightly higher than the default values and somewhere in between the maize

with the highest and second highest production levels (default DayCent maize parameters, named C6 and C5). Furthermore,

the scaling factor for potential evapotranspiration was clearly constrained and slightly higher than the default value (fwloss(4),370

0.9 vs 0.75). The turnover rate of the slow SOM pool was also clearly constrained, but was centered around a value twice

the default (0.2 vs 0.1 g g-1 yr-1 for dec5(2)). The turnover rate of the passive SOM pool was clearly constrained at the lower

end of possible values, it was centered around a much higher value than the default value (0.03 vs 0.0035 g g-1 yr-1 for dec4)

and tended towards the upper boundary. A test with even broader ranges (up to 0.1 g g-1 yr-1) showed that the value around

0.03 g g-1 yr-1 was in fact the center of the posterior distribution of this parameter (Fig. A1), but allowing the parameters375

to vary that much reduced the model performance to unfeasible levels (model output not shown). The optimal production

temperature for maize (ppdf(1)) tended to have values lower than the default value, while the opposite was true for the maximum

production temperature (ppdf(2)). Also the parameters representing CO2 loss upon turnover of metabolic and structural litter

pools (pmco2(1&2) and ps1co2(1&2)&rsplig) tended towards higher values than the default values of these parameters (i.e.,

lower carbon use efficiencies, because the parameters represent 1-CUE), but they were not clearly constrained. Finally, the380

parameters representing the increase of the SOM pools turnover after tillage (clteff(1,2,&4)) and the maximum rate limitation

of soil under anaerobic conditions (aneref(3)), were poorly constrained.
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Figure 2. Prior compared to the posterior model parameter distribution resulting from the uncertainty-based Bayesian model calibration of

DayCent. Dashed vertical lines represent the values of the default parameter set. The posterior distributions are based on all four study sites

combined. For the description of the parameters see Table 1.

Only a few strong correlations existed between the parameters of the posterior parameter set (Fig. A2). Namely, there

was a strong positive correlation (r = 0.63) between the potential maximum production of maize (prdx(1)) and the optimal

temperature for maize growth (ppdf(1)), the latter also being positively correlated with the maximum temperature for maize385

growth (ppdf(2); r = 0.45). Furthermore, there was a negative correlation (r = -0.43) between the effect of tillage on SOM

turnover and the amount of CO2 loss upon turnover of the metabolic litter pool (pmco2(1&2)). The other correlations of the

parameters were weak (i.e., below ± 0.4) and therefore were of low importance.

3.3 Simulation of maize grain yields and aboveground biomass at harvest

Although the overall variation of maize grain yields between sites and treatments could be captured with the set of default390

model parameters, the comparison of model results obtained with the default parameters compared to the set of parameters

chosen for each site by leave-one-site-out cross-validation showed that the Bayesian calibration significantly improved the fit of

the model for both maize grain yield and aboveground biomass (Fig. 3). The calibration improved the simulation of grain yield

for all sites and for aboveground biomass for all sites except Machanga (Fig. A9). It should be noted that despite excluding the

evaluation site in the calibration step, the calibrated model was unbiased and errors mostly random for both yield (i.e., lack of395

correlation (LC) increased from 90% to 97%) and aboveground biomass (LC increased from 71% to 91%).

Furthermore, while DayCent was inclined to overestimate the lowest and underestimate the highest values of yields and

aboveground biomass, the mean yields and aboveground biomass per treatment throughout the simulation period were sim-

ulated well for most treatments (Fig. A4). The exception to this was that DayCent poorly distinguished the mean yields and

aboveground biomass of treatments with high compared to very high rates of N inputs (i.e., differences between the different400

organic resources and the control within the +N treatment). An additional test of the model sensitivity of mean yields to dif-

ferent levels of mineral N fertilizer in the control provided further insights into this (Fig. A6). In this test, the yields stopped
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Figure 3. Simulated compared to measured maize grain yields at the four study sites for the default DayCent parameter set (top-left) versus

the calibrated parameter set by leave-one-site-out cross-validation (top-right). The same is displayed for maize aboveground biomass (AGB),

showing the default DayCent parameter set (bottom-left) versus the calibrated parameter set (bottom-right). The 2985 data points correspond

to the observations from the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic

resource and chemical nitrogen fertilizer treatments. Grey bands show the 95% confidence intervals of measured (horizontal) values and

the 95% credibility intervals of posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe modeling efficiency; RMSE, root mean

squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.
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increasing at mineral N rates that were lower than the maximum N rates provided in the organic resource +N treatments by

mineral N and organic resources combined (up to >500 kg N per year or > 250kg N per season). In Machanga and Embu,

simulated mean yields stopped increasing at around 100 kg N ha-1 per season, which is less the 120 kg N ha-1 per season that405

the control +N received. In Aludeka and Sidada, simulated mean yields stopped increasing at 200 to 250 kg N ha-1 per season,

but most of the response to N was below 120 kg N ha-1 per season (Fig. A6).

Although the mean yields of the high-quality inputs in the -N treatments were well simulated, some of the low-quality input

treatments in Aludeka and Sidada, namely maize stover at 1.2 t C ha-1 yr-1 , and sawdust at 1.2 and 4 t C ha-1 yr-1, had lower

simulated yields than the observed mean yields in their -N treatments (Fig. 4). The same was true for the control -N in Aludeka,410

but the yields for sawdust -N at 4 t C ha-1 yr-1 in Machanga were overpredicted compared to measurements. Interestingly, the

95% credibility intervals for yield and aboveground biomass produced by the leave-one-site-out cross-validation contained

only about 30% of measured data and also tended to be considerably smaller than variance-based 95% confidence intervals for

the measured data.

3.4 Simulated SOC stocks in response to integrated soil fertility management415

In contrast to the simulation of maize yields, the change in SOC stocks following the application of organic resources at

different rates (1.2 and 4 t ha-1 yr-1) was poorly simulated by DayCent with the set of default parameters. The simulated SOC

losses were too low compared to the observations (Fig. 5). The posterior parameter set obtained through Bayesian calibration

with strongly increased SOM turnover rates showed a tendency for a higher loss of CO2 from the turnover of metabolic and

structural litter pools. With the posterior parameter set, the model, in the leave-one-site-out cross-validation, simulated the420

change in SOC much more accurately than with the default parameter set (EF of 0.54 vs -1.3; LC of 88% vs 42%; Fig. 5).

The 95% credibility intervals of the simulated values contained 47% of the measured data. It should be noted that under- or

overestimation of the change in SOC stocks from the start to the last year of the experiment was rather related to site than to

treatment. In Embu, for example, all treatments except the control +N treatment tended to have lower observed than simulated

SOC losses, while in Aludeka most treatments except the control -N treatment showed weaker predicted than observed SOC425

losses (Fig. A3). These tendencies are also evident when comparing the temporal dynamics of measured versus simulated SOC

stocks (Fig. 6). Most of the treatments were well simulated, but it is noteworthy that there is considerable variability in the

measured SOC stocks between different time points.

3.5 Simulated N2O emissions and global warming potential

The simulations and measurements of N2O emissions on a daily basis were not well aligned. This is clear from the negative430

modeling efficiencies and the absence of a clear correlation between observed and measured values (Fig. 7). Peaks of N2O

emissions were often simulated on different dates than the measurements, but treatments with higher N loads tended to have

higher simulated and higher measured N2O fluxes. This was most noticeable in +N compared to -N treatments (Fig. A10).

For cumulative N2O emissions per season on the other hand, there was a much better alignment between the simulated and

measured values. All sites showed positive modeling efficiency (highest EF 0.34 for Aludeka, lowest EF 0.21 for Machanga;435
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Figure 4. Barplots of mean simulated and mean measured yield and aboveground biomass (AGB) from cross-validation. Error bars represent

standard deviation.
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Figure 5. Simulated compared to measured changes in SOC stocks since the start of the experiment at the four study sites for the default

DayCent parameter set (left) versus the calibrated parameter set by leave-one-site-out cross-validation (right). The 724 data points correspond

to the observations from the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic

resource and chemical nitrogen fertilizer treatments. Grey bands show the 95% confidence intervals of measured (horizontal) values and

the 95% credibility intervals of posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe modeling efficiency; RMSE, root mean

squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.

Fig. 7). Additionally, the correlation between cumulative simulated and measured N2O emissions was much higher than for

daily emission fluxes (R2 between 0.26 for Sidada and 0.81 for Aludeka, compared to R2 close to 0).

The simulated changes in SOC and simulated cumulative N2O emissions, showed positive global warming potentials (GWP)

for all treatments (Fig. 8). No treatment acted as a greenhouse gas sink, but the amount of emissions, as well as the contribution

of N2O and CO2 differed strongly between sites and treatments. In the control -N treatment, it ranged from 1.4 t CO2 equivalent440

ha-1 yr-1 in Aludeka to 5.1 t CO2 equivalent ha-1 yr-1 in Sidada and Embu. The relative contribution of N2O from site to site

also differed strongly by site. In Aludeka, for example, between 32 (CT+N) and 82% (FYM4+N) of the simulated GWP in

the +N treatments came from N2O, while at all other sites, none of the treatments had more than 25% of GWP associated

with N2O emissions. Compared to the control -N treatment, which is closest to the low-input agriculture practiced by most

smallholder farmers, all organic resource input treatments in the -N treatments were projected to have lower emissions (Fig.445

8). The reductions ranged from -0.2 t CO2 equivalent ha-1 yr-1 to 1 t CO2 equivalent ha-1 yr-1. Apart from that, the only site

where the addition of mineral N (+N treatment) could lead to a higher simulated GWP per ha than the control -N treatment

was Embu, and this was only the case for the treatments of Calliandra, Tithonia and farmyard manure in both 1.2 and 4 t of C
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Figure 6. Measured (dots) versus simulated SOC stocks over time at the four study sites for the different organic resource and chemical

nitrogen fertilizer treatments. Error bars represent 95% confidence intervals for measured data, the black solid line the simulation by the best

parameter set for each site. Grey bands represent the 95% credibility intervals of the model posterior simulations, calibrated by leave-one-

site-out cross-validation.
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Figure 7. Simulated compared to measured N2O emissions at the four study sites for the different organic resource and chemical nitrogen

fertilizer treatments, based on the calibrated parameter set using leave-one-site-out cross-validation. Displayed are the measured versus

modelled per treatment for the days where measurements were conducted (top) and for the mean of cumulative flux measurements per season

using the trapeziod method (bottom). The 808 data points (top) correspond to the daily measurements from the experimental treatments over

one to two seasons, depending on the site. Symbols represent the different organic resource and chemical nitrogen fertilizer treatments.

Error bars represent 95% confidence intervals based on BC (simulations) and variance (measurements). Abbreviations: EF, Nash-Sutcliffe

modeling efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.
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Figure 8. Cumulative simulated global warming potential of N2O emissions and CO2 emissions due to loss of SOC at the four study

sites for different organic resource and chemical nitrogen fertilizer treatments, combined throughout the simulated period (16 years for

Aludeka/Sidada; 19 years for Embu/Machanga). The global warming potential is expressed in CO2 equivalent over a 100-year horizon.
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input ha-1 yr-1. Furthermore, Embu and Machanga tended to have high simulated emissions per kg of maize yields (0.9 to 1.6

and 0.8 to 2.5 kg CO2 equivalent per kg of yield, respectively, due to lower yield). On the contrary, the simulated emissions450

ranged between 0.1 and 0.7 kg CO2 equivalent per kg of yield in Aludeka and between 0.4 and 0.9 kg CO2 equivalent per kg

of yield in Sidada. Notably, none of the +N treatments in Sidada and Aludeka had higher emissions than 0.5 kg CO2 equivalent

per kg of yield.

4 Discussion

4.1 Robustness of the Bayesian calibration shown by cross evaluation455

As shown by our leave-one-site-out cross-validation (Figs. 3 and A7), the Bayesian calibration considerably improved the

capability of DayCent to predict maize grain yield, aboveground biomass and changes in SOC stocks at the four long-term

ISFM experimental sites. The model evaluation statistics from this calibration exercise were comparable to those of other

recent publications that combined the predictions of yield and SOC (Necpalova et al., 2018; Levavasseur et al., 2021; Nyawira

et al., 2021). However, these studies generally showed a better simulation of crop yield than SOC, which is in contrast to our460

results, where crop yield and SOC were simulated equally well. Of the three types of measurements, simulated changes in SOC

stocks related to different treatments were most improved after model calibration, reducing the strong bias towards simulated

gains in SOC, where instead losses were measured. In general, the screening of the model parameters with the global sensitivity

analysis proved valuable in reducing the complexity of the calibration problem. The most sensitive parameters (Table 1) were

well constrained, while the least sensitive parameters (aneref(3), ppdf(2) and ps1co2) were difficult to constrain. This suggests465

that a reasonable threshold for including a parameter in model calibration may even be greater than a total Sobol sensitivity

index of 2.5%. This result is similar to the study of Gurung et al. (2020), where the parameters with a total sensitivity index

<10% were also poorly constrained. In our study, it was possible to constrain the most sensitive parameters (prdx(1), himax,

dec(5)); exceptions were the two parameters pmco2(1&2) and clteff(1,2&4), but their correlation (r = -0.43) is a reasonable

explanation of why they could not be well constrained despite high sensitivity. Possibly, the algorithm cannot distinguish470

whether organic resources are poorly stabilized due to tillage disturbance, a fast turnover rate of the slow SOM pool, or a low

carbon use efficiency of metabolic and/or structural litter pools. Such a correlation between SOM stabilization and turnover

parameters is common in soil models (e.g. Ahrens et al., 2014; Laub et al., 2021), especially if the SOM pools do not represent

measurable fractions (Laub et al., 2020).

Robust predictions of crop yields and changes in SOC stocks, as achieved by our cross-validation, are an important basis for475

potential future upscaling exercises of crop yield and SOC model predictions to national scales. While many model calibration

exercises often display an overly optimistic picture of the capacity of models to represent SOC dynamics, by displaying how

well the models represent absolute levels of SOC (e.g., in Nyawira et al., 2021; Ma et al., 2022; Levavasseur et al., 2021),

the changes in SOC since the start of an experiment, shown in this study, are much more robust evaluation. Since models are

typically parameterized to fit the observed SOC stock at the start of the experiment, absolute SOC will always closely resemble480

measurements, with the possible exception of experiments that run for many decades. The fallacy of this approach was shown
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by Necpalova et al. (2018); Gurung et al. (2020), where the absolute SOC overoptimistically masks the bias of change in SOC

stocks. This is also the case for the present study, as is clear from the results of the model simulations for the absolute SOC

stocks compared to the changes in the SOC stocks (Fig. A7). Since our calibration shows a good fit and is free from serious bias

even for changes in SOC stocks (that is, 88% of the errors are LC and not systematic; EF is 0.55), the calibrated DayCent model485

can be used in a robust manner to estimate the change of SOC stocks under different ISFM management in Kenya. Furthermore,

because the model evaluation and calibration were performed at different sites, it seems reasonable to use DayCent for other

sites with similar climate and soil conditions, even beyond Kenya. In that respect, the leave-one-site-out cross-validation is

using the data most efficiently: for evaluation, we leave one site out, but for further model upscaling exercises, ideally the full

posterior model parameter set including all sites (Fig. 2) should be used. A computationally less expensive alternative is to use490

only the single parameter set with the highest likelihood (Table 1).

4.2 Bayesian calibration suggests that SOC is lost at higher rates in tropical than in temperate soils

To estimate the potential yield and long-term sustainability of cropping systems without major bias using biogeochemical

models, regionalized model calibrations are needed (Rattalino Edreira et al., 2021; Yang et al., 2021). Therefore, while previous

studies have simulated crop productivity under ISFM and similar practices with default parameter sets (e.g. Nezomba et al.,495

2018; Nyawira et al., 2021), the results of our study indicate that especially to estimate the effect on SOC, local calibration is

very much needed (Fig. 5). In fact, the turnover of the slow and passive SOM pools was approximately two and eight times

higher than in a recent Bayesian calibration of DayCent for temperate systems (Gurung et al., 2020), indicating a faster SOM

turnover under tropical conditions, as expected. However, since the SOM pools in DayCent do not correspond to measurable

fractions and we did not have additional data (e.g., 14 C), constraining the related parameters is expected to be subject to high500

uncertainty (e.g. Ahrens et al., 2014). Nevertheless, our results of high SOM turnover in Kenya are in line with the results of two

recent studies, which also found that the default parameterizations of the DayCent (Nyawira et al., 2021) and the LPJGUESS

model (Ma et al., 2022) underestimated the loss of SOC in two other long-term experiments in Kenya. In our study, the low

Sobol total sensitivity indices of the maize productivity parameters for the SOC stocks suggest a limited importance of root

input in the soil system for the storage of SOC. These results align with a statistical analysis of SOC stocks across depth at the505

same experimental sites (Laub et al., 2022), which found limited differences between cropped and bare plots, and with another

recent tropical long-term experiment (Cardinael et al., 2022), which estimated that less than 1 t of carbon input ha-1 per year

came from maize roots.

Overall, the considerably higher simulated SOM turnover rates in this study compared to those in temperate regions (Gurung

et al., 2020) suggest that the lower SOM stabilization potential of highly weathered minerals in tropical soils (Doetterl et al.,510

2015) is not adequately accounted for in DayCent. DayCent only includes an effect of clay content. Possibly, the effect of

weathered minerals is large for both slow and passive SOM pools (increased turnover by 21 and 23 in this study, respectively)

and is not adequately represented by texture alone. It was recently shown that the Millenial model, which has measurable

pools, could better simulate the global SOC distribution than the CENTURY model, which has conceptual pools (Abramoff

et al., 2022). Recent attempts to move DayCent in that direction have also shown some promising results (e.g. Dangal et al.,515
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2022). Furthermore, it is possible that hand tillage twice a year and potential erosion also played a role in the high SOC

losses that informed these fast turnover rates. Because DayCent does not include erosion and erosion was not measured in the

experiments, the exact role of these processes is hard to determine. Therefore, the different calibrations of the DayCent model

in our study and in Gurung et al. (2020), suggest that the calibration developed in this study should only be used for soils of

similar mineralogy and under a similar climate and for a similar maize cropping system.520

4.3 Maize crop module is more universally applicable than soil carbon module

Although the mean yields per treatment were well represented and the provisioning of N via organic resource mineralization

was well captured, as demonstrated by a good agreement between the mean simulated and measured yields in the -N treatments

(Fig. 4), the improvement in the simulated maize grain yield through the joint Bayesian model calibration of SOM pools and

the maize crop highlights the interconnectedness of both. Thus, even if the crop parameterization is correct, as indicated by525

the low difference between initial and calibrated maize parameters, too low SOM pool turnover rates, by underestimating

mineralization of N from soil, results in too high demand of maize for mineral N addition to produce a suitable yield. This can

be seen in the poor simulation of the low input treatments of Sidada before calibration and their improvement after calibration

(Fig A5). Interestingly, in contrast to SOC turnover rates, the values of the maize crop parameters in this study were close

to the set of default parameter values of DayCent, especially the maximum production capacity (prdx(1)). This suggests that530

the traits of the maize are universally represented in DayCent, whereas the turnover of the SOM is not. In this context, the

changes in the values for optimal and maximum temperature for maize growth (ppdf(1) and ppdf(2)) could be attributed to

the adaptation of local maize species to the higher temperatures in Kenya. For example, Yang et al. (2021) conducted region-

specific Bayesian model calibration of DayCent maize growing parameters and found ppdf(1) to very between 26 and 32 °C.

Therefore, the different optimal temperatures (33° C) and highest temperatures (40° C) for the calibration of maize to US535

conditions by Necpálová et al. (2015) do not contradict the range of parameters of our study.

An interesting observation is that the model bias for the mean yield of maize appears to be treatment specific (i.e., the

mean yields of +N treatments of farmyard manure at 4 t C ha-1 yr-1 at all sites and of Tithonia at the same rate in all but

Sidada, were underpredicted by DayCent), while the bias for SOC stocks was mostly site specific (i.e., SOC loss in Aludeka

was underpredicted, while overpredicted in Embu). As discussed above, the site bias of SOC is likely due to the fact that soil540

texture alone is insufficient to explain the mineralogy-driven storage potential of SOC (e.g. Reichenbach et al., 2021; Mainka

et al., 2022). On the other hand, our sensitivity test to mineral N input suggests that the yield bias at high N is due to DayCent’s

inability to capture yield increases above 100-150 kg N per ha and season (Fig. A6); the +N treatments of Tithonia, Calliandra

and farmyard manure at 4 t C ha-1 yr-1 supplied on average >250 kg N per ha and season. Another reason may be that DayCent

does not include other potential beneficial effects of treatments, such as increased pH from farmyard manure application (Xiao545

et al., 2021; Mtangadura et al., 2017) and higher nutrient retention and water infiltration of treatments that maintained SOC

stocks compared to those that showed a decline of SOC.
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4.4 N2O emissions and global warming potential

In general, the poor match between daily observed and measured N2O emissions (Fig. A10) illustrates the difficulty of simulat-

ing the timing of microbial processes, in which nitrate (NO3
-) is converted to N2 and N2O gasses, with intermediate complexity550

models such as DayCent. Several recent studies show that poor simulation of N2O emissions by process models is common

(Zhang and Yu, 2021; Wang et al., 2020), which is attributed, among other factors, to a poor representation of soil hydraulics.

For example, Sommer et al. (2016) found mainly overestimated N2O emissions in Kenya. Gaillard et al. (2018) reported that

there is a bias in simulated N2O emissions by most models, postulating an underestimation of strong N2O flushes. This also

seems to be the case in our study, at least for treatments with high N inputs such as farmyard manure +N. Without resorting to555

more intricate water flow equations, it could be difficult to make further improvements to the simulation of soil water content

and N2O emissions, particularly in terms of accurately predicting daily and hourly events. DayCent is driven by inputs that

are only resolved at daily time steps and fed with pedotransfer functions that are poorly represented in the tropics (Van Looy

et al., 2017). However, the fact that cumulative N2O emissions were better captured than daily emissions and that there was no

systematic under- or over-prediction of cumulative N2O emissions, does suggest that simulated N2O emissions were generally560

reasonably well predicted with this current DayCent calibration. This is important for the predictions of the GWP. Because

the simulation of SOC change showed low bias, we can conclude that this part of the GWP is well represented. Depending

on the site and treatment, N2O emissions contributed between 80% (Aludeka) and up to 20% of the GWP (other sites; Fig.

8). However, the larger confidence intervals of the measured compared to the simulated cumulative N2O emissions suggest

that the DayCent model cannot fully represent the variability. Although DayCent’s simulation of N2O emissions is superior to565

using emission factors (dos Reis Martins et al., 2022), simulating N2O emissions remains challenging due to the complexity of

the processes involved and the high temporal and spatial variability.

Despite this uncertainty, which has not yet been resolved, our analysis of yield-scaled and area-based GWP showed the

importance of the unit of reference. Our modeling results show that ISFM with maize monocropping cannot be seen as a

negative emission technology. All treatments had a positive absolute GWP, which is consistent with the reported losses of570

SOC in long-term maize cultivation in SSA (Sommer et al., 2018; Laub et al., 2022). It is also consistent with the postulate

that closing SSA yield gaps will boost absolute N2O emissions (Leitner et al., 2020). However, the strong differences in the

yield-scaled GWP between treatments, such as a 72, 32, 63 and 14 % lower yield-scaled GWP in the FYM 1.2+N treatment

compared to the control-N treatment, show that the yield-scaled GWP is highly relevant in practical terms. Low-emission and

high-yield ISFM treatments, such as FYM 1.2+N, producing between 2 and 4 t of yield per season at emissions between 0.2575

and 1 kg CO2 equivalent per kg of yield, are a suitable mitigation practice compared to standard practice, control with little

or no inputs of organic or chemical fertilizer. The difference in the yield-scaled GWP ranges of +N treatments that existed

between western Kenyan sites (Aludeka and Sidada; 0.1 to 0.5 kg CO2 equivalent per kg of yield) compared to central Kenyan

sites (Embu and Machanga; 0.8 to 1.1 kg CO2 equivalent per kg of yield), furthermore, show that N fertilizer should only

be applied to responsive soils (Sileshi et al., 2022) to avoid high N2O emissions at minimal yield. Consequently, sustainable580

intensification and mitigation of greenhouse gases can go hand in hand.
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4.5 DayCent suitable to upscale simulations of "real" ISFM, but not sensitive for very high N inputs

Because mean yields were represented well by the calibrated version of DayCent, it can be used to upscale to national levels

and predict the potential of ISFM to lower yield gaps. However, the levelling off of mean yields at very high N loads (Fig.

A6) indicates that it may not be suitable to estimate the maximum achievable yields (e.g., Ittersum et al., 2016) and it should585

be restricted to predictions for medium input levels of N. Given that the historical rates of N fertilizer application in Kenya

were less than 50 kg of N ha-1 (World-Bank, 2021a), the model seems suitable to simulate the effect of applying real ISFM,

which aims at maximum N use efficiency (Vanlauwe et al., 2010), with N rates considerably below the maximum N rates

of the simulated field trials (e.g., 80 kg N per season; Mutuku et al., 2020). The prediction of mean yields worked well for

Calliandra and farmyard manure treatments at 1.2 and 4 t C ha-1 in the -N treatment and was also acceptable for CT+N, i.e. all590

treatments that supply N at the desired rate for ISFM. Hence, at these N-levels, simulated mean yields are likely representative

of the ISFM yield potential. The poorer performance of sawdust is less relevant for upscaling, because this is a treatment for

scientific understanding (testing if SOC really forms more efficient from lignin rich materials; Palm et al., 2001b). In summary,

the mean yield potential and the change in the SOC stocks were well represented, so the calibration seems suitable for assessing

the long-term effect of relevant ISFM treatments on soil fertility, yield, and greenhouse gas emissions as well as their trade-595

offs. Since year-to-year variations of yield were not captured very well, it is questionable how well the current calibration could

represent scenarios of climate change, where temperature and precipitation patterns will become more erratic. In the absence

of major pests (which in the trials were controlled), the yearly variation in precipitation and temperature should be responsible

for the differences, and if these are not well represented, we cannot trust that we can apply DayCent outside of the climatic

range that it was calibrated for.600

5 Conclusions

In this study, we demonstrated the effectiveness of jointly calibrating the SOM and plant modules of DayCent to simulate

maize productivity under integrated soil fertility management (ISFM) in Kenya, using a Bayesian calibration. The calibration

successfully constrained the most sensitive model parameters, which were identified by a global sensitivity analysis. Although

the default DayCent maize plant parameterization represented the tropical conditions in Kenya well (i.e., the highest probabil-605

ity posterior parameter values were close to the default parameterization), the highest probability posterior SOM turnover rates

were two and eight times faster than the default for the passive and slow SOM pool, respectively. This indicates that there is the

potential for large losses of SOC in highly weathered tropical soils. However, SOM turnover was subject to high uncertainty,

showing that the current module structure suboptimally captures SOM dynamics in highly weathered tropical soils. Never-

theless, our leave-one-site out cross validation showed that the calibration-derived parameter set is robust for upscaling of the610

model to larger areas in Kenya. At the same time, mean maize grain yields were much better represented than the year-to-year

variability of yields, posing the question whether the effects of climate change can be adequately captured by DayCent. Finally,

while no ISFM treatment was predicted to act as an absolute sink of greenhouse gases, yield-scaled emissions were lowest in

treatments with high and intermediate yields.
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Appendix A: Appendix

A1 Site and organic resource characteristics

Table A1. Locations, soil properties and climatic conditions of the study sites. Soil properties are given for the 0 - 15 cm depth layer.

Coordinates are given in the WGS 84 reference system.

Soil characteristics Embu Machanga Sidada Aludeka

Latitude -0.517 -0.793 0.143 0.574

Longitude 37.459 37.664 34.422 34.191

Initial soil C (%) 2.9 0.3 1.54 0.83

Initial N (%) 0.3 0.02 0.12 0.08

Initail bulk density (g cm-3) 1.26 1.51 1.3 1.45

pH (H2O) 5.43 5.27 5.4 5.49

Clay (%) 59.8 13.2 55.7 13.4

Soil type (FAO, 1998) Humic Nitisol Ferric Alisol Humic Ferralsol Acrisol

Altitude (m)* 1380 1022 1420 1180

Annual rainfall (mm)* 1175 795 1730 1660

Mean annual temperature (◦C) 20.1 23.7 22.6 24.4

Months of long rainy season 3 - 8 3 - 8 3 - 9 3 - 9

Months of short rainy season 10 - 01 10 - 01 10 - 01 10 - 01
*Means calculated based on measured data from 2005 to 2020
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Table A2. Mean measured chemical characteristics (and 95% confidence intervals) of organic resources applied at all sites. Measurements

were available from Embu and Machanga from 2002 to 2004, all sites from 2005 to 2007 and in 2018. Significant differences in residue

properties were found between the different organic resources, but not between sites and years. Same letters within the same row indicate the

absence of significant differences for that property (p < 0.05). Abbreviations: n.c. = not classified * according to Palm et al. (2001a).

Measured property Tithonia Calliandra Maize stover Sawdust Farmyard manure

C (g kg-1) 345b (333-357) 396c (383-409) 397c (386-408) 433d (416-449) 234a (213-255)

N (g kg-1) 33.2d (28.9-38.2) 32.5d (28.3-37.3) 7.2b (6.5-8) 2.5a (2.1-2.8) 18.1c (15-21.8)

C/N ratio 12.4a (10.8-14.1) 13.6a (11.9-15.5) 58.7b (52.8-65.2) 199.1c (174.1-227.7) 12.3a (9.9-15.4)

P (g kg-1) 2.3d (1.8-2.9) 1.1c (0.8-1.5) 0.4b (0.3-0.6) 0.1a (0-0.2) 3.1d (2.3-3.9)

K (g kg-1) 37.2c (21.2-65.2) 8.7b (5-15.3) 9b (6-13.5) 2.8a (1.6-4.9) 19.4bc (7.8-48.6)

Lignin (g kg-1) 90ab (62-117) 105b (77-133) 48a (37-60) 172c (144-199) 198c (154-242)

Polyphenols (g kg-1) 19c (14.9-24.3) 108.7d (85.3-138.6) 11.3b (9.5-13.6) 4.9a (3.8-6.2) 7.8ab (5.2-11.5)

Lignin/N ratio 2.6a (1.8-3.7) 3.1ab (2.2-4.3) 6.2c (4.8-8) 58.3d (41.1-82.8) 6.9bc (3.9-12.3)

Quality / turnover rate* High / fast High / slow Low / fast Low / slow n.c.

Class* 1 2 3 4 n.c.

kg N in 4.0 t C ha-1 yr-1, -N [+N] 323 [563] 295 [535] 68 [308] 20 [260] 324 [564]

kg N in 1.2 t C ha-1 yr-1, -N [+N] 97 [337] 88 [328] 20 [260] 6 [246] 97 [337]
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Table A3. DayCent model parameters (and feasible ranges) of parameters which were not included in the Bayesian model calibration due to

a Sobol total sensitivity index < 1%.

Range Initial Lower Upper Model

Parameter Description width Units value value value file

frtc(2) C allocated to roots at time frtc(3) without stress small fraction of NPP 0.20 0.15 0.25 crop.100

frtc(4) Max. increase in C going to roots under stress small fraction of NPP 0.10 0.08 0.12 crop.100

frtc(5) Max. increase in C going to roots under stress (maturity) small fraction of NPP 0.10 0.08 0.12 crop.100

biomax AGB at which min.and max. C/E ratios of plant increases small g biomass m-2 700.00 525.00 875.00 crop.100

pramx(1,2) Max. aboveground C/N ratio with biomass > biomax small C/N ratio 125.00 93.75 156.25 crop.100

prbmn(1,1) For computing min. C/N ratio for belowground matter small C/N ratio 45.00 33.75 56.25 crop.100

efrgrn(1) Fraction of above ground N which goes to grain. small fraction 0.75 0.56 0.94 crop.100

flig(1,1) Intercept for annual rainfall effect on lignin content small fraction of lignin 0.12 0.09 0.15 crop.100

ppdf(3) Right curve shape for temperature effect on growth curve very small unitless 1.00 0.90 1.10 crop.100

ppdf(4) Right curve shape for temperature effect on growth curve very small unitless 2.50 2.25 2.75 crop.100

favail(1) Fraction of N available per day to plants moderate fraction of N 0.15 0.07 0.22 crop.100

(aneref(1)-anaref(2)) Rain/ET ratio below which, no effect of anaerobiosis small unitless 1.00 0.50 1.50 fix.100

aneref(2) Rain/ET ratio with max. anaerobiosis effect moderate unitless 3.00 1.50 4.50 fix.100

damr(1,1)&(2,1) Fraction of surface N and soil N absorbed by residue large fraction of N 0.02 0.01 0.06 fix.100

damrmn(1) Min. C/N ratio allowed in residue after direct absorption moderate C/N 15.00 7.50 22.50 fix.100

dec1(2) Max. structural litter turnover small g g-1 yr-1 4.90 3.68 6.12 fix.100

dec2(2) Max. metabolic litter turnover small g g-1 yr-1 18.50 13.88 23.12 fix.100

dec3(2) Max. active pool turnover small g g-1 yr-1 7.30 5.47 9.12 fix.100

(decX(2)/decX(1)) Ratio soil to surface turnover (newly defined parameter) small unitless 1.25 0.94 1.56 fix.100

fwloss(1) Scaling factor; interception & evaporation by biomass moderate unitless 1.00 0.50 1.50 fix.100

fwloss(2) Scaling factor; bare soil precipitation evaporation moderate unitless 1.00 0.50 1.50 fix.100

fwloss(3) Scaling factor; transpiration water loss moderate unitless 1.00 0.50 1.50 fix.100

pabres Residue amount which results in max. direct N absorption moderate g C m-2 100.00 50.00 150.00 fix.100

teff(2) Y location of temperature inflection point (decomposition) large unitless 11.75 3.92 35.25 fix.100

teff(3) Step size of temperature effect on decomposition moderate unitless 29.70 14.85 44.55 fix.100

teff(4) Inflection point slope of temperature effect (decomposition) very large unitless 0.25 0.02 2.46 fix.100

varat11&12(1,1) Max. C/N ratio for material entering active pool small C/N 20.00 15.00 25.00 fix.100

varat11&12(2,1) Min. C/N ratio for material entering active pool small C/N 3.00 2.25 3.75 fix.100

varat21&22(1,1) Max. C/N ratio for material entering slow pool small C/N 20.00 15.00 25.00 fix.100

varat3(1,1) Max. C/N ratio for material entering passive pool small C/N 13.00 9.75 16.25 fix.100

varat3(2,1) Min. C/N ratio for material entering passive pool small C/N 6.00 4.50 7.50 fix.100

drain Fraction of excess water lost by drainage fraction of H2O 0.80 0.20 0.90 site.100

dmp_st Damping factor for calculating soil temperature by layer large unitless 0.00 0.00 0.01 sitepar.in

N2Oadjust_(max-min) Proportion of nitrified N that is lost as N2O (difference) large fraction of N 0.00 0.00 0.01 sitepar.in

Ncoeff Min water/temperature limitation coefficient (nitrification) large unitless 0.03 0.01 0.09 sitepar.in

dmpflux The damping factor for soil water flux large unitless 0.00 0.00 0.00 sitepar.in

astlig_TD lignin fraction content of organic matter small g g-1 biomass 0.09 0.07 0.11 omad.100

astrec(1)_TD C/N ratio of added organic matter very small C/N ratio 12.40 11.16 13.64 omad.100

astlig_CC lignin fraction content of organic matter small g g-1 biomass 0.10 0.08 0.13 omad.100

astrec(1)_CC C/N ratio of added organic matter very small C/N ratio 13.60 12.24 14.96 omad.100

astlig_MS lignin fraction content of organic matter small g g-1 biomass 0.05 0.04 0.06 omad.100

astrec(1)_MS C/N ratio of added organic matter very small C/N ratio 58.70 52.83 64.57 omad.100

astlig_SD lignin fraction content of organic matter small g g-1 biomass 0.17 0.13 0.21 omad.100

astrec(1)_SD C/N ratio of added organic matter very small C/N ratio 199.10 179.19 219.01 omad.100

astlig_FYM lignin fraction content of organic matter small g g-1 biomass 0.20 0.15 0.25 omad.100

astrec(1)_FYM C/N ratio of added organic matter small C/N ratio 12.30 11.07 13.53 omad.100

31

https://doi.org/10.5194/egusphere-2023-1738
Preprint. Discussion started: 21 August 2023
c© Author(s) 2023. CC BY 4.0 License.



A1 Posterior, when allowing even larger ranges

Figure A1. Prior compared to posterior parameter distribution resulting from increasing the ranges of the uncertainty based Bayesian cali-

bration. Dashed vertical lines represent the default parameter sets. The posterior distributions are based on all four sites combined.
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Figure A2. Correlation of parameters from the posterior parameter sets. The posterior distributions are based on all four sites combined.
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A2 Barplots of SOC and comparing measured and simulated mean yield
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Figure A3. Barplots of simulated and measured change of SOC stocks until 2021 from cross-validation, at the four study sites for the different

organic resource and chemical nitrogen fertilizer treatments. Error bars represent 95% confidence intervals based on BC (simulations) and

variance (measurements).
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Figure A5. Measured and simulated maize grain yields over time, at the four study sites for the different organic resource and chemical

nitrogen fertilizer treatments for the uncalibrated (top) and calibrated DayCent model (bottom).
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A3 Site specific sensitivities of yield to N fertilizer635
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Figure A6. N response curve by site using the calibrated DayCent parameters. This was done to explain why DayCent insensitive at high N

levels. N was given in 50/50 split application, at the two real dates.
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A4 SOC stocks
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Figure A7. SOC: 1st DayCent outputs initial (left) vs calibrated by leave-one-site-out cross-validation (right). Grey bands denote the 95%

confidence intervals of measured (horizontal) and posterior simulated (vertical) values.
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A5 Calibration improvement by Site

y = c(−3.361) + c(−0.2327) ⋅ x,  r2 = 0.0277
EF: −8.888; RMSE: 10.36
SB(%): 65; NU(%): 25; LC(%): 10

y = c(1.449) + c(0.09625) ⋅ x,  r2 = 0.104
EF: −0.38; RMSE: 11.116
SB(%): 35; NU(%): 0; LC(%): 65

y = c(−1.046) + c(0.1284) ⋅ x,  r2 = 0.0354
EF: −1.236; RMSE: 9.028
SB(%): 46; NU(%): 11; LC(%): 43

y = c(−1.601) + c(−0.03131) ⋅ x,  r2 = 0.00404
EF: −2.033; RMSE: 15.099
SB(%): 57; NU(%): 10; LC(%): 33

Aludeka Embu Machanga Sidada

−10 0 10 20 30 −10 0 10 20 30 −10 0 10 20 30 −10 0 10 20 30

−10

0

10

20

30

Measured loss of SOC stocks (t ha−1 in 0−20 cm)

S
im

ul
at

ed
 lo

ss
 o

f S
O

C
 s

to
ck

s 
(t

 h
a−1

 in
 0

−
20

 c
m

)

Calliandra

Control

Farmyard manure

Maize stover

Sawdust

Tithonia

−N +N

y = c(0.1423) + c(0.3214) ⋅ x,  r2 = 0.501
EF: −0.043; RMSE: 3.589
SB(%): 46; NU(%): 6; LC(%): 48

y = c(7.449) + c(0.621) ⋅ x,  r2 = 0.582
EF: 0.351; RMSE: 6.55
SB(%): 35; NU(%): 0; LC(%): 64

y = c(4.315) + c(0.4998) ⋅ x,  r2 = 0.658
EF: 0.598; RMSE: 4.035
SB(%): 6; NU(%): 10; LC(%): 85

y = c(3.468) + c(0.7397) ⋅ x,  r2 = 0.715
EF: 0.705; RMSE: 4.748
SB(%): 3; NU(%): 0; LC(%): 96

Aludeka Embu Machanga Sidada

−10 0 10 20 30 −10 0 10 20 30 −10 0 10 20 30 −10 0 10 20 30

−10

0

10

20

30

Measured loss of SOC stocks (t ha−1 in 0−20 cm)

S
im

ul
at

ed
 lo

ss
 o

f S
O

C
 s

to
ck

s 
(t

 h
a−1

 in
 0

−
20

 c
m

)

Calliandra

Control

Farmyard manure

Maize stover

Sawdust

Tithonia

−N +N

Figure A8. Simulated compared to measured changes in SOC stocks since experiment start for the default DayCent parameter set (top) vs

the calibrated parameter set by leave-one-site-out cross-validation (bottom). Grey bands denote the 95% confidence intervals of measured

(horizontal) values and the 95% credibility intervals of posterior distribution (vertical).
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Figure A9. Simulated compared to measured yield for the default DayCent parameter set (top) vs the calibrated parameter set by leave-one-

site-out cross-validation (bottom). Grey bands denote the 95% confidence intervals of measured (horizontal) values and the 95% credibility

intervals of posterior distribution (vertical).
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A6 N2O emissions

Figure A10. Temporal development of measured (black) vs simulated (red) N2O emissions by site. The black error bars represent the 95%

confidence intervals due to spatial replication error, the red error bars represent the 95% credibility intervals of simulated N2O emissions

resulting from parameter distribution of the posterior parameter set.
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