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Abstract
The cassava (Manihot esculenta Crantz) breeding program at the International

Institute of Tropical Agriculture (IITA) has adopted genomic selection to accel-

erate genetic gain. The program continues to develop varieties broadly adapted

across Nigeria’s diverse agroclimatic zones. However, for this purpose, genotype-

by-environment interaction (GEI) presents a challenge. To decide whether broad

adaptation breeding is a good strategy, we evaluated broad versus narrow adapta-

tion strategies using stochastic simulation, assessing genetic gain, genetic variance,

heritability, and selection accuracy at 0 versus realistic levels of GEI variance. To

parameterize the models, we analyzed historical data from four phenotypic evalu-

ation stages of the IITA breeding program to estimate genetic and error variances,

and genetic correlations across environments. Based on these observed parame-

ters, the genomic-enabled breeding programs exhibited higher genetic gain than

the conventional program for both GEI variances. At realistic GEI variance, the

narrow adaptation program showed higher genetic gain than the broad adaptation

program. Across all programs, the genetic variance declined over time, though the

genomic-enabled programs showed higher initial variance due to the selection of

parents at earlier stages. At realistic GEI variance, an increase in genetic vari-

ance was observed in the narrow adaptation program due to its conversion of GEI

between mega-environments into main genetic variance within mega-environments.

This higher genetic variance led to higher heritabilities and selection accuracies. This

study highlights the potential of genomic selection in accelerating genetic gain and

suggests that dividing the IITA cassava breeding program to target more than one

mega-environment should be considered.

Abbreviations: AYT, advanced yield trial; CET, clonal evaluation trial; GBLUP, genomic best linear unbiased predictor; GEBV, genomic estimated

breeding value; GEI, genotype-by-environment interaction; GS, genomic selection; ME, mega-environment; PYT, preliminary yield trial; QTL, quantitative

trait locus; SDN, seedling nursery; TP, training population; UYT, uniform yield trial.
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1 INTRODUCTION

The breeding strategy used by International Institute of Trop-

ical Agriculture (IITA) cassava (Manihot esculenta Crantz)

breeders has evolved over time. Phenotypic recurrent selec-

tion was mainly used from the inception of the IITA cassava

breeding program until 2012, when genomic selection (GS)

was integrated to accelerate the rate of genetic improve-

ment for complex traits like fresh root yield (de Oliveira

et al., 2012; Wolfe et al., 2017; Yonis et al., 2020). GS is

a marker-based selection approach using genome-wide and

densely distributed molecular markers to increase the effi-

ciency of selection on polygenic traits (T. H. E. Meuwissen

et al., 2001). This approach involves using a training pop-

ulation (TP) and selection candidates. The TP needs to be

phenotyped for desired traits in a target population of envi-

ronments (TPEs) and genotyped to train the statistical model

to predict genomic estimated breeding values (GEBVs) on the

selection candidates (Jannink et al., 2010).

The implementation of GS-enabled population improve-

ment is a complex task involving a cyclic crossing of

promising parental clones, evaluation in several stages, and

selection procedures over long periods of time (Ali et al.,

2020). The assessment of the long-term effects of the chosen

breeding strategy, particularly in the early phase of a breed-

ing program, is demanding (Hoyos-Villegas et al., 2019). It is

also impractical and not cost-effective to experiment with dif-

ferent breeding strategies due to limited resources budgeted

for breeding.

A broad adaptation breeding program is a scenario where

genotype-by-environment interaction (GEI) is ignored, and

available resources are used to target all environments the

breeding institute serves in a single breeding program (Braun

et al., 1997; Ewing et al., 2019). In contrast, a narrow adapta-

tion breeding program would partition all environments into

two or more mega-environments (MEs) and create separate

breeding programs where the available resources are parti-

tioned between MEs (Gauch & Zobel, 1997). IITA’s cassava

breeding strategy is an example of the former, as it aims to

develop broadly adapted cultivars with high and stable yield

performance across all of Nigeria and other west-African

countries. However, in the presence of high GEI, the broad-

adaptation breeding strategy will be challenging due to the

difficulty of finding individuals that perform well across all

environments. In that case, a narrow adaptation breeding strat-

egy may be appropriate, as it breeds cultivars that respond

relatively better under specific set of environments only.

With the recent advances in computing power, simulation

can be a valuable tool for plant breeders to cost-effectively

evaluate different breeding scenarios and determine the best

strategy toward making informed decisions in accordance

with simulation results (Sun et al., 2011). Stochastic sim-

ulation, as used in this study, mimics the mechanisms of

Core Ideas

1. Simulation is a cost-effective approach to assess

different breeding strategies toward making

informed decisions.

2. Genomic selection outperformed a conventional

breeding program in terms of rates of genetic

gain, irrespective of genotype-by-environment

interaction variance.

3. Breeding for narrow adaptation by splitting Nige-

rian locations into two mega-environments out-

performed breeding for broad adaptation.

4. Not all biological complexities of genetic effects

and real-world breeding programs can be captured

in simulation.

crossing, recombination, and evaluation, including their ran-

dom components. Hoyos-Villegas et al. (2019) pointed out

that stochastic simulation is appropriate to simulate entire

breeding programs that are usually too involved to be deter-

ministically modeled. It can also be used to study the rate of

genetic improvement over time, selection and predictive accu-

racy, and cost-effectiveness of GS under different schemes

(Gaynor et al., 2021).

There are many open-source simulation applications that

are currently accessible to plant breeders, including QU-

GENE (Podlich & Cooper, 1998), AlphaSim (Faux et al.,

2016), AlphaSimR (Gaynor et al., 2021), Modular Breeding

Program Simulator (Pook et al., 2020), ADAM-Plant (Liu

et al., 2019), and BreedingSchemeLanguage (Yabe et al.,

2017), to support crucial decision-making for cultivar devel-

opment, particularly in modern breeding programs involving

marker- and genomics-assisted selection methods. These

applications have been beneficial for assessing existing breed-

ing strategies in actual field-based breeding programs (Wang

et al., 2003) and have also been used to develop novel breeding

strategies.

The simulation of any novel breeding strategy involves

two major phases: (i) burn-in phase, simulating the current

strategy, and (ii) future breeding phase, simulating the new

strategy that might be adopted. The burn-in phase provides

a realistic starting point for all simulated breeding strate-

gies. Gaynor et al. (2017) pointed out three levels of burn-in

phase as follows: (i) the simulation of the species’ initial

genome sequences, (ii) the assignment to the initial sequences

to founder haplotypes for the first generation of parental

individuals, and (iii) simulation of years of conventional

breeding without GS. After the burn-in, a future breeding

phase is a testing phase for several simulated breeding pro-

grams branched off from the burn-in phase that may involve
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either phenotypic or GS or both are tested for a certain number

of years.

Stochastic simulations have been implemented in many

crops, including wheat (Triticum) (Gaynor et al., 2017), maize

(Zea mays L.) (Powell et al., 2020), clonally propagated

crops (Covarrubias-Pazaran et al., 2022; Werner et al., 2020),

tea (Camellia sinensis) (Lubanga et al., 2022), and sorghum

(Sorghum bicolor spp.) (Muleta et al., 2019). However, to our

knowledge, no simulation studies have been published on cas-

sava (or other clonally propagated crop) to compare breeding

for broad versus narrow adaptation in a GS context.

The principal goal of this study is to identify a breed-

ing strategy that will maximize gains for cassava in Nigeria

by assessing the relative value of broad adaptation breed-

ing with one breeding program versus narrow adaptation

breeding partitioning breeding resources between two sets of

testing locations. To achieve this goal, we simulated a con-

ventional breeding scheme based on phenotypic selection as

a baseline where the number of crosses, number of proge-

nies per cross, number of replicates per evaluation stage, and

other simulation parameters mimicked the actual IITA cassava

breeding program. Then we assessed simulated gain in breed-

ing schemes targeting broad versus narrow adaptation in the

GS context.

2 MATERIALS AND METHODS

2.1 Historical trial data

We chose parameters for the simulation study by analyz-

ing historical data from 198 field trials sourced across four

evaluation stages: clonal evaluation trial (CET, 13 trials), pre-

liminary yield trial (PYT, 49), advanced yield trial (AYT,

76), and uniform yield trial (UYT, 60) of the IITA cassava

breeding program located in Nigeria. The trials were eval-

uated for diseases, yield-related traits, and other agronomic

traits of interest in nine crop growing seasons (2013–2022)

across 11 locations in different agro-ecological zones. These

data were used to estimate genetic, GEI, and error variances

for each evaluation stage, and genetic correlations across trials

(Bakare et al., 2022) to be used to parameterize stochastic sim-

ulations of the IITA cassava breeding program. For the CET

stage, the trials were established as an augmented randomized

complete block design in which the checks were replicated in

every block to account for field spatial variability and to esti-

mate the error variance. However, for other evaluation stages

(PYT, AYT, and UYT) where the planting materials were

sufficient, the trials were laid as randomized complete block

design.

2.2 Statistical analysis of historical data

Statistical analyses of historical data were carried out for each

evaluation stage. We modeled fresh root yield trait using the

lmer() function from the lme4 library (Bates et al., 2015)

within the R statistical environment (R Core Team, 2022). The

statistical model of fresh root yield for CET trials was fitted

as follows:

𝐲 = 𝜇 + 𝐗1𝐛 + 𝐗2𝐜 + 𝑝𝛽 + 𝐙1𝐠 + 𝜖 (1)

where y is the (n × 1) vector of observed fresh root yields,

in which n is the number of observations in the trial; μ is the

intercept (global mean); b is the (b × 1) vector of fixed effect

of blocks with its associated incidence matrix X1 of dimen-

sion n × b; c is the (c × 1) vector of fixed effect of checks

with its associated incidence matrix X2 of dimension n × c; p
denotes the proportion of plant stands harvested as a covari-

ate (e.g., if 28 stands were planted but only 21 were harvested,

p = 0.75); 𝛽 is a regression coefficient relating p and y; g is

the (g × 1) vector of random effect of new genotypes with its

associated design matrix Z1 of dimension n × g, where g is

assumed to follow a Gaussiam distribution 𝑔 ∼ 𝑁(0, 𝐼𝑛𝜎2𝑔 ),
and ϵ is a residual term that is assumed to follow a Gaussian

distribution, 𝜖 ∼ 𝑁(0, 𝐼𝑛𝜎2𝜖 ). For other evaluation stages, the

univariate linear mixed model was fitted as follows:

𝐲 = 𝜇 + 𝐗1𝐛 + 𝑝𝛽 + 𝐙1𝐠 + 𝜖 (2)

where all terms were as defined in the previous equation.

In each fitted model, we derived a standardized residual

value for each observation as a deviation of the observed data

point from the predicted value scaled by the residual standard

deviation. We refitted the model after excluding data points

whose absolute value of standardized residuals was above 3,

considered to be outliers.

2.2.1 Use of variance estimates from
historical data

After data curation within trials, data from all trials were

assembled and analyzed using a standard GEI model that

included main effects for environment and a random effect

for GEI to obtain estimates of genetic, GEI, and error vari-

ances. The default genetic variance among founders used by

AlphaSimR is 1. To simplify comparisons to other studies and

species, we left that default. We adjusted error variances to

obtain heritabilities of 0.05 and 0.2 in the seedling nursery

(SDN) and CET, respectively. Error variances for the PYT,
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4 BAKARE ET AL.Crop Science

AYT, and UYT were adjusted to maintain the historical error

variance ratios between those trials and the CET. Finally,

to choose an appropriate GEI variance, we used the histor-

ical GEI variance observed in the UYT, which covered all

agro-ecological zones of Nigeria. We set the simulated GEI

variance so that the ratio of simulated genetic to GEI variance

was equal to the observed ratio (see “Trait simulation” below).

2.3 Simulated founder genotypes

Stochastic simulation was implemented using the AlphaSimR

package (Gaynor et al., 2021) in R (R Core Team, 2022)

programming software environment. A diploid founder pop-

ulation size of 25 outbred cassava clones was used to form

the genome and genotypes of initial parents in the burn-in

phase based on simulated founder sequences. The biallelic

genome sequences for 18 chromosome pairs of the founders

were simulated using the Markovian Coalescent Simulator

(Chen et al., 2009) in AlphaSimR (Gaynor et al., 2021). For

each genotype, we considered a genetic map of 18 chromo-

some pairs with an average genetic length of 1.43 Morgans

(M), resulting in a total genetic length of 25.7 M. The effec-

tive population size (Ne) was 100 to mimic a history of

natural and artificial selection. We assumed each chromo-

some had 150 randomly sampled segregating quantitative

trait loci (QTLs) (2700 genome-wide) and 500 segregating

loci as single nucleotide polymorphisms (SNPs) per chromo-

some (9000 genome-wide), corresponding to the number of

observed SNPs. The positions of QTLs and SNP markers were

randomly distributed, and sites for SNP markers and QTL

across the entire genome did not overlap.

2.4 Trait simulation

We simulated a single complex trait (fresh root yield) by mod-

eling three genetic effects: additive, dominance, and GEI,

referred to as an ADG trait in AlphaSimR (Gaynor et al.,

2021). The genetic value of this trait was the sum of additive,

dominance, and GEI effects over the 2700 QTLs, modeled as

follows:

GV (𝐱, 𝑤) = 𝜇 + 𝑎 (𝐱) + 𝑑 (𝐱) + 𝑔 (𝐱, 𝑤) (3)

where GV(x, w) represented an individual’s genetic value,

with x denoting a vector of QTL genotype dosages and w
representing an environmental covariate inducing GEI. The

intercept (𝜇) is the trait mean in the founder population. The

overall additive effect across the n-vector sites of QTL is

derived as 𝑎 (𝐱) =
𝑛QTL∑
𝑖 = 𝑖

𝑎𝑖𝐱𝑖, where ai were randomly sampled

from a normal distribution set so that the additive genetic vari-

ance of the founder population has an expected value of 0 and

variance of 1. Dominance effects for all loci were derived as

𝑑 (𝐱) =
𝑛QTL∑
𝑖 = 1

{
𝛿𝑖 × ||𝑎𝑖|| , 𝑖𝑓 𝐱𝑖 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

the product of locus-specific dominance degree (𝛿i) and

absolute value of its additive effect ai. Dominance degrees

were sampled from normal distribution with 𝛿𝑖 ∼ 𝑁(𝜇𝛿, 𝜎2𝛿 ),
where 𝜇𝛿 is the mean dominance degree set to 0.20 to simulate

positive directional dominance and 𝜎2
𝛿

is the dominance vari-

ance equal to 0.1 (de Andrade et al., 2022; Wolfe et al., 2016).

A dominance degree of 0 denotes no dominance, and a domi-

nance degree of 1 signifies complete dominance. Dominance

degrees between 0 and 1 correspond to partial dominance, and

values above 1 correspond to overdominance.

The GEI effects were modeled as g(x, w) = wb(x), where

w was an environmental covariate w ∼ N(0, 1) and b(x) was a

genotype-specific slope defined as follows:

𝑏 (𝐱) = 𝜇𝐺 +
𝑛QTL∑
𝑖 = 1

𝑔𝑖𝑥𝑖𝑎

where 𝜇𝐺 represents an intercept value and
∑

𝑔𝑥𝑎 denotes

sum over all QTL of products of locus-specific genotype-

by-environment effects (g) and scaled additive dosages (xa).

For a given environment, the user specifies the environmental

covariate w. Given the distribution of w, a covariate of 0 rep-

resents the average of all environments (Bajgain et al., 2020;

Bakare et al., 2022). We simulated a testing network of nine

locations. For each location in each year, the covariate for that

location was sampled from a distribution with ranges for each

location as in Table 1.

The ranges shown in Table 1 were obtained from the loca-

tion means of the environment loadings for Factor 2 from

Table 3 of Bakare et al. (2022). We chose Factor 2 because

(unlike Factor 1) it induced crossover GEI. With this evalu-

ation network, the environmental covariates range from −1.9

to 2.1. Across locations, the distribution of the environmental

covariate was therefore not a standard normal but a truncated

normal with a variance of 0.44. To preserve the relative ratio

of genetic to GEI variances, we took observed variances from

historical UYT trials of 6.5 (GEI) and 7.7 (genetic). Thus, we

set the simulated GEI variance to (6.5/7.7) × (1/0.44), where

the 1 in the formula is default variance of the environmental

covariate and the 0.44 comes from the reduced variance due

to truncation. We rounded this value to 2.0. Consequently, we

simulated two levels of genotype-by-environment variance:

variance of GEI= 0 as baseline and GEI variance= 2.0, which

is estimated from historical data.
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BAKARE ET AL. 5Crop Science

T A B L E 1 Ranges of environmental covariates inducing the genotype-by-environment interaction for each of the nine locations in the breeding

evaluation network. For each phenotyping year, a covariate was randomly sampled from these ranges for each location.

Environmental covariates Loc1 Loc2 Loc3 Loc4 Loc5 Loc6 Loc7 Loc8 Loc9
Minimum −1.9 −0.9 −0.9 −0.8 −0.6 −0.3 0.0 0.1 0.9

Maximum −0.7 0.3 0.3 0.4 0.6 0.9 1.2 1.3 2.1

Abbreviation: Loc, location.

T A B L E 2 Global parameters used for the simulation of evaluation stages in cassava breeding scheme optimization.

Simulation parameters used across stages for breeding scenarios
Broad adaptation Narrow adaptation

Scaled error variance

ME1 ME2
Stage nReps nClones Location(s) nClones Location
F1/SDN 1 19.0 10,000 L5 5000 L5 L5

CET 1 4.0 1000 L5 500 L5 L5

PYT 2 3.7 200 L3, L7 200 L7 L3

AYT 2 2.4 60 L3, L4, L6, L7 60 L6, L7 L3, L4

UYT 3 2.3 30 L1, L2, L3, L4, L6,

L7, L8, L9

30 L6, L7, L8, L9 L1, L2, L3, L4

Abbreviations: AYT, advanced yield trial; CET, clonal evaluation trial; ME1, mega-environment 1; ME2, mega-environment 2; nClones, number of clones evaluated;

nReps, number of replicate(s) of each clone; PYT, preliminary yield trial; SDN, seedling nursery; UYT, uniform yield trial.

2.5 Simulation design

The simulation was run for 30 1-year breeding cycles in two

phases: 20 years of burn-in and 10 years of future breeding.

We ran 50 independent replicates with each of the two levels

of genotype-by-environment variance.

2.5.1 Burn-in phase

The burn-in phase used conventional breeding with phe-

notypic selection to serve as a common starting point for

comparing the breeding scenarios. Before the burn-in phase,

we filled the cassava breeding pipeline with outbred clones

through seven overlapping cycles of random crossing, evalu-

ation, and selection. For every cycle or simulation replicate,

we started with 25 new parents to generate 200 biparental

crosses with 50 seedlings per cross, resulting in a base popu-

lation (cycle 0) size of 10,000 seedlings. The population of

10,000 F1 seedlings resulting from the crossing block was

evaluated as an unreplicated seedling nursery trial in one loca-

tion. Visual selection in the seedling nursery is modeled as

selection on yield, where we assumed a low heritability of

0.05, which corresponds to a high error variance (Table 2)

relative to the additive variance of the founder population. In

the second year, the top 1000 clones from the seedling nurs-

ery were advanced to the CET and clonally propagated as an

unreplicated trial in a single location. We scaled the observed

error variance of 67.6–4.0, which corresponds to a heritabil-

ity of 0.2 relative to the founder population. In the third year,

200 clones were evaluated in PYT, the first stage of repli-

cated yield trial in two locations with an error variance of 62.4

scaled to 3.7 (4/67.6× 62.4). In the fourth year, 60 clones were

advanced to AYT and evaluated in a replicated field design

in four locations with an error variance of 41.1 scaled to 2.4

(4/67.6 × 41.1) per location. In the fifth year, 30 clones were

evaluated in the UYT in eight locations with an error variance

of 39.5 scaled to 2.3 (4/67.6 × 39.5) per location. In the sixth

year, the same 30 clones from previous year were reevaluated

in UYT. These clones were also considered as potential can-

didates for next year’s crossing block. In the seventh year, the

four clones with the best mean performance over the previous

2 years of UYT evaluation were considered for variety release.

2.6 Future phase breeding strategies

We compared conventional phenotypic selection with broad-

and narrow-adaptation GS programs. Conventional pheno-

typic selection was simply the continuation of the burn-in

strategy described above. Broad adaptation GS used the same

field assessment as the conventional program, but clones con-

stituting the TP were also genotyped. Then, the candidate

clones were advanced to subsequent stages based on phe-

notypic value and genomic estimated total genetic values

(GETGV). The breeding cycle time was shortened by select-

ing new parental clones based on GEBV (Crossa et al., 2017;

T. Meuwissen et al., 2016) from the combined population
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6 BAKARE ET AL.Crop Science

of CET, PYT, AYT, and UYT stages. Like the conventional

breeding scheme, the SDN and CET were evaluated in one

location, and the PYT, AYT, and UYT were evaluated in

two, four, and eight locations, respectively. We simulated 200

crosses of 50 progeny planted in the SDN. The five top indi-

viduals per family were selected to advance 1000 individuals

to CET.

In the narrow adaptation program, the testing sites were

split into two MEs (ME1 and ME2). The TPEs were split such

that environmental covariates ranging from −0.3 to 2.1 were

assigned to ME1 and environmental covariates ranging from

−1.9 to 0.4 were assigned to ME2, and both had common

location 5, where the CET and SDN were established, with

an average environmental covariate of 0.0. The mean envi-

ronmental covariates of ME1 and ME2 were 0.62 and −0.42,

respectively. For each ME, the cohorts at PYT, AYT, and

UYT were evaluated at one, two, and four locations, respec-

tively (i.e., half as many locations as for the corresponding

stages in the broad adaptation program). In contrast to the

broad adaptation program, 100 crosses with 50 progeny each

were simulated in each ME, again advancing the five best

individuals per family. Thus, 500 individuals were advanced

per ME for a total of 1000 individuals as part of the broad

adaptation program.

2.7 Training population and genomic
prediction model

The training datasets for GS models were initiated with geno-

typed and phenotyped individuals starting in the first year

of the future breeding phase from the CET, PYT, AYT, and

UYT. The initial TP had 1290 clones and 1880 phenotypic

records for broad adaptation, representing the total number of

clones and clone-by-location combinations across the evalua-

tion stages. In contrast to the narrow adaptation program, each

ME had a TP of 940 phenotypic records on 790 clones. In

each cycle of selection, the training set was updated by adding

all the new individuals from PYT, AYT, and UYT. For com-

putational reasons, we did not retain all CET individuals in

the TP. Rather, in each year, only that year’s CET, represent-

ing the current selection candidates, was included in the TP.

Prior to fitting the genomic prediction model, we filtered the

simulated SNPs marker dataset using qc.filtering() function of

ASRgenomics library (Gezan et al., 2021) to remove markers

with minor allele frequency less than 0.05 and heterozygosity

greater than 0.95.

The genomic best linear unbiased predictor (GBLUP)

model was implemented in a linear mixed model framework

using ASREML-R version 4.0 (Butler et al., 2017) as in:

[
𝐗′𝐑−𝟏𝐗 𝐗′𝐑−𝟏𝐙
𝐙′𝐑−𝟏𝐗 𝐙′𝐑−𝟏𝐙 +𝐆−𝟏𝛌

] [
𝑏

𝐮

]
=
[
𝐗′𝐑−𝟏𝐲
𝐙′𝐑−𝟏𝐲

]
(3)

where is y is the vector of simulated phenotypic value from

the TP; b is fixed effect estimates of environment; u is the

vector of random breeding values of clones distributed as

𝐮 ∼ 𝑁(0, 𝐺𝜎2𝐮); in which 𝜎2𝐮 is the additive genetic vari-

ance and G is the additive genomic relationship derived

from marker information following VanRaden method 1 (Van-

Raden, 2008). X and Z are design matrices for fixed and

random effects, respectively. R is the variance structure of

residual, 𝑒 ∼ 𝑁(0, 𝑅𝜎2𝑒), which assigned inverse variance

weight to each observation according to the empirically

observed error variance from each stage. Note that λ is a

shrinkage factor expressed as a ratio of error variance to

genetic variance of breeding values.

2.8 Comparison of breeding programs

The progress of each breeding program was tracked across

the 50 independent simulation runs based on three metrics:

genetic gain, genetic variance, broad- and narrow-sense her-

itabilities on entry-mean basis, and selection accuracy over

the 10 cycles of future breeding. The mean and variance of

genetic value were calculated and saved for each cycle at the

CET. We visualized the trend of change in genetic mean and

variance for CET entries over cycles of selection (years 0–10)

where year 0 was defined as the last year of the burn-in phase.

The breeding strategies were also compared based on her-

itability, which is one of the key parameters driving the rate

of genetic gain for a quantitative trait in a breeding program.

We calculated the broad-sense heritability for the conven-

tional breeding program from clones pooled from the PYT,

AYT, and UYT evaluation stages by fitting a BLUP model.

For the GS programs, we fitted a GBLUP model that included

both additive and nonadditive effects to estimate broad- and

narrow-sense heritabilities from clones constituted from the

TP. The performance of each breeding strategy depended

on its prediction accuracy, measured as Pearson’s correlation

between true genetic value and the GEBV selection criterion

(Desta & Ortiz, 2014). This accuracy was calculated for each

evaluation stage.

3 RESULTS

3.1 Parameter estimates from historical
data and parental candidate for crossing

The parameter estimates resulting from analyzing historical

data provided prior information to simulate phenotypic val-

ues, which mimic empirical data from each evaluation stage

of the IITA breeding scheme. We observed a decline in both

genetic and error variances from early stage (CET) to late

stage (UYT) of the breeding program (Figure 1).
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BAKARE ET AL. 7Crop Science

F I G U R E 1 A comparison of mean genetic and error variances derived from statistical analysis of 198 historical trial data over four evaluation

stages: clonal evaluation trial (CET, 13), preliminary yield trial (PYT, 49), advanced yield trial (AYT, 76), and uniform yield trial (UYT, 60) trials,

in the International Institute of Tropical Agriculture (IITA) cassava breeding program. Error bars are ± one standard error of the mean estimated over

trials.

The distribution of the evaluation stage from which the 25

selected parents came from across the CET, PYT, AYT, and

UYT in each breeding cycle was displayed for each simulated

breeding program (Figure S1). In the conventional program,

parents could only be selected from the AYT and UYT. From

the GS programs, they could already be selected in the CET

since they were genotyped. Given those constraints, parents

were chosen by truncation selection, irrespective of the eval-

uation stage they came from. Thus, the percentage of lines

coming from each stage was not predetermined but depended

on the relative genotypic or breeding values of clones from

each stage. Across all programs, most parents were selected

from the AYT. The broad and narrow programs differed in

that in the latter, more clones were selected from the CET than

in the former.

3.2 Realized parameters for assessing
breeding programs

3.2.1 Genetic gain

The genetic gain was measured as a change in mean genetic

values over 10 cycles of selection during the future breed-

ing phase. The plot of the trend of genetic gain showed that

genomic-enabled breeding programs outperformed the con-

ventional breeding programs at both levels of GEI variance

(Figure 2). In the absence of GEI variance, we observed

no significant difference among the three breeding scenarios

until after six cycles when genomic-based scenarios were sig-

nificantly better than the conventional program. The slopes of

linear regression of mean genetic values on years of breeding
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8 BAKARE ET AL.Crop Science

F I G U R E 2 The trend of genetic gain of three breeding scenarios at two levels of genotype-by-environment interaction (GEI) variance over 10

cycles of selection averaged across 50 simulation runs. Genetic gain is a change in the mean genetic value of entries at clonal evaluation trial (CET)

stage over time. The trend over time is displayed with error bars. The error bars are ± one standard error of the mean of the reported simulated

parameter.

were 0.30, 0.35, and 0.33 for conventional, broad, and narrow

adaptation, respectively, at GEI variance of 0 (Figure S2). At

high GEI variance (GEI variance = 2.0), the narrow adapta-

tion breeding program showed the highest gain (Figure 2), and

we observed slopes of 0.30, 0.33, and 0.52 for conventional,

broad, and narrow adaptation breeding, respectively (Figure

S2).

3.2.2 Genetic variance

Genetic variance observed at the CET declined for all the

breeding strategies over breeding cycles at GEI variance = 0

(Figure 3). The pattern of loss of genetic variance differed

across breeding strategies. Genetic variance declined contin-

uously in the conventional program for both levels of GEI

variance. In the absence of GEI variance, a bump in CET

genetic variance occurred in the third year of the GS pro-

grams, after which their genetic variances declined more

rapidly than the conventional program (Figure 3). This bump

in CET genetic variance coincided with the first CET com-

posed of individuals coming from crosses of parents selected

by GS. At high GEI variance, CET genetic variance increased

sharply for narrow adaptation at the onset of GS, which coin-

cided with partitioning the program between the two MEs.

Afterward, we observed a more rapid decline in the narrow

program genetic variance relative to both broad adaptation

and conventional programs (Figure 3).

3.2.3 Heritability

In the conventional program, broad-sense heritability esti-

mates were 0.29 and 0.13 for GEI variances of 0.0 and

2.0, respectively, averaged across 10 cycles of selection

(Figure 4). We did not estimate narrow-sense heritability in

the conventional program because the program did not use a

relationship matrix. For the genomic-based breeding strate-

gies, the presence of GEI variance affected heritabilities in

opposite directions for the broad and narrow adaptation pro-

grams. For the broad program, heritabilities declined from

0.28 and 0.36 (narrow- and broad-sense) to 0.16 and 0.20 in

the presence of GEI (Figure 4). In contrast, for the narrow pro-

gram, heritabilities increased from 0.24 and 0.29 to 0.35 and

0.41 (Figure 4).

3.2.4 Selection accuracy

We observed a consistent increase in selection accuracy from

early to late evaluation stages for all the breeding strategies

at both levels of GEI variance (Figure 5). The mean selection

accuracy for the conventional breeding program ranged from

0.18 (SDN) to 0.83 (UYT) and 0.19 (SDN) to 0.79 (UYT)

for GEIs of 0.0 and 2.0, respectively. For the broad adapta-

tion program, it ranged from 0.19 (SDN) to 0.86 (UYT) and

0.19 (SDN) to 0.82 (UYT) for GEI of 0.0 and 2.0, respec-

tively. Narrow adaptation showed a similar trend with mean
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BAKARE ET AL. 9Crop Science

F I G U R E 3 Trend of genetic variance of three breeding strategies at two levels of genotype-by-environment interaction (GEI) variance over 10

cycles averaged across 50 simulation runs. Genetic variance is the variance of genetic value of entries at clonal evaluation trial (CET). The error bars

are ± one standard error of the mean of reported simulated parameter.

F I G U R E 4 A comparison of broad and narrow-sense heritabilities over the three simulated breeding strategies. GEI, genotype-by-environment

interaction.

selection accuracy varying from 0.19 (SDN) to 0.80 (UYT)

and from 0.13 (SDN) to 0.87 (UYT) for GEIs of 0.0 and 2.0,

respectively.

At GEI variance = 0, conventional and broad adaptation

accuracies were similar. Narrow adaptation had similar accu-

racy to those for the SDN and CET but had lower accuracy at

PYT, AYT, and UYT. As for GEI variance = 0, the selection

accuracy for conventional and broad adaptation was at GEI

variance = 2 and had similar medians. However, at GEI vari-

ance = 2, accuracies in the narrow adaptation program were

lower at SDN and CET but higher at PYT, AYT, and UYT

compared to other programs.
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10 BAKARE ET AL.Crop Science

F I G U R E 5 Distribution of selection accuracy across evaluation stages of three breeding strategies at two levels of genotype-by-environment

interaction (GEI) variance over 10 cycles of selection averaged across 50 simulation runs. Selection accuracy is the Pearson’s correlation between

true genetic value and phenotypic selection criterion for conventional and estimated breeding value for genomic-enabled breeding strategies. AYT,

advanced yield trial; CET, clonal evaluation trial; PYT, preliminary yield trial; SDN, seedling nursery; UYT, uniform yield trial.

4 DISCUSSION

This study used stochastic simulation to assess the perfor-

mance of broad and narrow adaptation GS breeding programs

for IITA cassava breeding in Nigeria. The primary purpose

of the study was to support the IITA program in deciding

whether to transition to breeding for narrow adaptation from

its current broad adaptation approach. It would be straightfor-

ward to come up with simulation parameters and conditions

that would favor either broad or narrow adaptation breed-

ing. We tailored these simulations to the IITA program by

extensively analyzing their trials and using the resulting vari-

ance components to parameterize the simulations. We note,

however, that we set the simulated GEI variance based on

empirical estimates of total GEI variance for cassava in Nige-

ria. GEI variance simulated by AlphaSimR is always of the

crossover type, which is more problematic for breeding and

more strongly favors narrow adaptation. Thus, our parame-

terization may have favored the narrow adaptation breeding

program. A full assessment of this issue should be the subject

of further research.

The way AlphaSimR induces GEI is by supplying an envi-

ronmental covariate to each testing environment (Gaynor

et al., 2021). In a previous study (Bakare et al., 2022), a

factor analytic covariance structure applied to IITA’s UYT tri-

als showed that testing environments could be characterized

by three latent factors. Empirically, the values of environ-

mental loadings on these factors also allowed the calculation

of genetic correlations between performance across environ-

ments (Figure S3). Though we found the three-factor model

to be most parsimonious (and the four-factor model was close,

Bakare et al., 2022), AlphaSimR only uses an environmental

covariate in one dimension. We used the second factor, which

induced crossover interaction, to parameterize distributions

for the environmental covariates sampled for each phenotypic

evaluation in the simulated locations. The limitation of one

covariate in AlphaSimR prevented us from simulating envi-

ronments that closely mimicked the observed distribution of

genetic correlations (Figure S4). The empirical and simulated

distributions had similar ranges (the former varying from−0.4

to 1.0 and the latter from −0.7 to 1.0), but the shapes of the

distributions differed. It is unclear what impact this differ-

ence might have on the relative performance of broad versus

narrow adaptation programs.

The realized genetic gains from GS-enabled breeding pro-

grams were greater than those of a conventional breeding

program. This finding was consistent with previous simula-

tion studies in other crop species, including tea, rice, wheat,

and sorghum (Lubanga et al., 2022; Muleta et al., 2019;

Sabadin et al., 2022; Tessema et al., 2020), which affirmed

that breeding programs implementing GS can achieve higher

genetic gain than phenotypic selection breeding programs.

These findings revealed that the use of the GS technique can

enhance the efficiency of the breeding program even in the

presence of G × E due to information sharing among geno-

typed clones over years and locations (Heffner et al., 2009). It
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BAKARE ET AL. 11Crop Science

is worth noting that the conventional program still achieved

reasonable genetic gain, albeit slightly lower, even in the

presence of GEI.

The genetic variance over breeding cycles declined for all

three breeding strategies, regardless of the level of GEI vari-

ance. At a GEI variance of 0, the bump in genetic variance

observed in the GS programs (Figure 3) was attributed to

the fact that year 3 was the first year in which progeny from

parents selected by GS were evaluated in the CET. Progeny

from GS had higher variance than progeny from the burn-

in because in the latter parents only derived from the AYT

and UYT stages, whereas under GS, parents could come from

the CET through UYT stages (Figure S1). Variance among

individuals in the AYT and UYT is lower than that of ear-

lier stages (Figure 1), both because of selection bottlenecks

and because of the Bulmer effect (Bulmer, 1971). Conse-

quently, progenies resulting from crossing in the GS program

had higher variances than from crossing in the conventional

program.

When GEI was present, the initial increase in genetic

variance of narrow adaptation was due to individuals being

partitioned into two MEs to train GS model. The model

AlphaSimR uses to induce GEI shows how this partition-

ing affects main genetic and GEI variances. As described,

each environment is characterized by a single covariate,

𝑤. The GEI deviation for individual 𝑥 is 𝑤𝑏(𝑥), where

𝑏(𝑥) is a genotype-specific slope determined by the geno-

type of 𝑥 and parameterized to have 0 mean and a vari-

ance equal to the overall GEI variance. The variance of

the product is var(𝑤𝑏) = 𝐸(𝑤)2 var(𝑏) + var(𝑤)𝐸(𝑏)2 +
var(𝑤)var(𝑏). Over all environments, 𝐸(𝑤) = 0, var(𝑤) =
1, 𝐸(𝑏) = 0, and var(𝑏) = varGEI, causing the desired GEI

variance (Gaynor, 2023). But selecting for narrow adaptation

necessarily means not evaluating over all environments, but

over a subset. Assume that this subset is characterized by

covariates 𝑤𝑛 where the n subscript indicates values sampled

within the narrow TPE. The distribution of 𝑤𝑛 is different

from that of 𝑤. In particular, 𝐸(𝑤𝑛) ≠ 0 and var(𝑤𝑛) <

var(𝑤). The distribution of 𝑏 is unchanged. Therefore, when

selecting for narrow adaptation, we have:

var
(
𝑤𝑛𝑏

)
= 𝐸

(
𝑤𝑛

)2 var (𝑏) + var
(
𝑤𝑛

)
var (𝑏)

The two components of var(𝑤𝑛𝑏) correspond to the two

impacts of selecting for narrow adaptation: the 𝐸(𝑤𝑛)2var(𝑏)
component corresponds to the increase in the genetic variance

within the narrow TPE relative to the broad all-environment

TPE. It results from the conversion of a fraction of the GEI

variance present across all environments into main genetic

variance within narrow MEs. The var(𝑤𝑛)var(𝑏) component

corresponds to the fact that within a narrow TPE, the G × E

variance will be lower than the all-environment G × E vari-

ance because var(𝑤𝑛) < var(𝑤). To see that 𝐸(𝑤𝑛)2var(𝑏)
does correspond to an increment of the genotypic vari-

ance within the narrow TPE, calculate that increment as

follows:

v𝑎𝑟
𝑥

[
𝐸
(
𝑤𝑛𝑏|𝑥)] = v𝑎𝑟

𝑥

[
𝐸
(
𝑤𝑛)𝐸(𝑏|𝑥)] = 𝐸

(
𝑤𝑛

)2var (𝑏)
Here, the first equality is correct because the covariance

between 𝑤𝑛 and 𝑏 is 0, and 𝑤𝑛 does not depend on 𝑥. The

second equality is correct because 𝐸(𝑤𝑛) is a constant. Note

that this increment is nonzero precisely because 𝐸(𝑤𝑛) ≠ 0.

The broad-sense heritabilities estimated from GS-enabled

breeding programs were higher than those of the conven-

tional breeding program. This reflected the earlier selection

of parents, such that parents were more variable under GS

than conventional breeding. In the absence of GEI, we had

higher heritability estimates for broad adaptation breeding

programs relative to narrow adaptation programs. This higher

heritability reflected the increased replication over locations

possible in the larger broad adaptation program. At a GEI

variance of 2.0, however, it was evident that narrow adapta-

tion breeding programs showed higher heritability estimates

compared to broad adaptation breeding programs. This higher

heritability was a direct consequence of the higher within

ME genetic variance discussed above. Targeting narrow

adaptation increased the heritability because the within ME

genotypic variance was greater than the genotypic variance

across all environments.

The selection accuracy, measured as the correlation

between true genetic value and the selection criterion,

increased consistently from the early stage (SDN) to the late

stage (UYT) for all breeding strategies. This increase could

be attributed to an increase in the number of replications and

locations, which increased the heritability of the trait. How-

ever, the observed variation in selection accuracy could be

due to at least two factors. First, we selected the best indi-

viduals between the evaluation stages based on the highest

phenotypic value or estimated total genetic value, resulting

in a reduction in genetic variation. Second, in a stochastic

simulation, there will be variation in accuracy from stage

to stage, year to year, and replicate to replicate. The accu-

racy in the narrow breeding program was similar to the broad

program at SDN and CET because they both had one obser-

vation at one location, but it was lower at PYT, AYT, and

UYT because for those stages, the narrow program only had

half as many locations. At GEI = 2, the higher accuracy

observed in narrow breeding program came from the fact that

GEI variance has been converted to main effect genetic vari-

ance, resulting in higher heritability and consequently higher

accuracy.
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12 BAKARE ET AL.Crop Science

5 CONCLUSIONS

In conclusion, the results suggested that use of GS-enabled

breeding strategies can increase genetic gain of cassava breed-

ing programs. The clearest practical result from the study was

that under GEI conditions, as we believe they are experienced

in the IITA program, more rapid gain was observed when

breeding for narrow than broad adaptation. The recommenda-

tion in favor of breeding for narrow adaptation is strengthened

by the fact that even when GEI = 0, the condition that should

most favor breeding for broad adaptation, gains by breeding

for narrow adaptation were a close second. While the results

provide valuable insights, there are some limitations to con-

sider. First, the study focuses on a specific breeding program

and crop (cassava), which might limit the generalizability of

the findings to other breeding programs or crops. Addition-

ally, the simulation-based approach used in this study did not

account for the costs of labor, phenotyping, and genotyping.

The underlying assumptions and parameter values used may

not fully capture the complexities of real-world breeding

programs. Future research could involve validation of these

findings using real-world data to strengthen the findings

and expand their applicability to other breeding programs

and crops.
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