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Abstract
In many markets, consumers believe things about prod-
ucts that are not true. We study how incorrect beliefs
about product quality can persist even after a consumer
has used a product many times. We explore the example
of fertilizer in East Africa. Farmers believe much local fer-
tilizer is counterfeit or adulterated; however, multiple
studies have established that nearly all fertilizer in the area
is good quality. We develop a learning model to explain
how these incorrect beliefs persist. We show that when
the distributions of outcomes using good and bad quality
products overlap, agents can misattribute bad luck or bad
management to bad quality. Our learning model and its
simulations show that the presence of misattribution
inhibits learning about quality and that goods like fertil-
izer with unobservable quality that are inputs into produc-
tion processes characterized by stochasticity should be
thought of as credence goods, not experience goods. Our
results suggest that policy makers should pursue quality
assurance programs for products that are vulnerable to
misattribution.
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1 | INTRODUCTION

Nearly 40% of Sub-Saharan Africa’s population lives in extreme poverty, with the majority of the
poor engaged in agriculture—a low-productivity sector characterized by persistently low crop
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returns. Improving agricultural productivity is central to reducing poverty in the region (Bravo-
Ortega & Lederman, 2005; Byerlee et al., 2009) and will require increased use of modern agricultural
inputs including chemical fertilizer. The global average nitrogen fertilizer application1 is 70 kg per
hectare; farmers in Sub-Saharan Africa average only 15 kg per hectare (FAOStat, 2021). A number
of explanations for this persistently low fertilizer use have been explored in the literature, including
information problems about the technology or its benefits (Esponda & Pouzo, 2010; Krishnan &
Patnam, 2013), heterogeneity in returns (Marenya & Barrett, 2009; Suri, 2011), credit constraints
(Carter et al., 2013; Karlan et al., 2014), and behavioral constraints (Duflo et al., 2011).2

Bold et al. (2017) suggest farmers do not use fertilizer because they believe that locally available
fertilizers may be bad quality and therefore have low productivity. Farmers in the Bold et al. (2017)
Uganda sample on average believed that fertilizer in their local market contained 38% less nitrogen
than advertised. In our data from Tanzania and Uganda, 70% and 84% of farmers, respectively, also
believe that some fertilizer in their local market is counterfeit or adulterated. We use a willingness-
to-pay experiment in Tanzania to show that farmers who are more pessimistic about fertilizer quality
are willing to pay less for local fertilizer and will pay a higher premium for fertilizer that has been
tested in a lab and guaranteed to be perfect quality.3

However, findings that farmers are willing to pay more for fertilizer of verified quality present a
puzzle because most urea fertilizer in this region is good quality. The results of numerous large
recent studies that randomly sampled fertilizer sellers in Tanzania, Uganda, Malawi, Kenya, Cote
d’Ivoire, Ghana, Nigeria, Senegal, and Togo find that fertilizer counterfeiting and adulteration is
extremely rare (Ashour, Billings, et al., 2019; Michelson, Gourlay, et al., 2023; Michelson,
Magomba, & Maertens, 2023; Sanabria et al., 2018a; Sanabria et al., 2018b).4 How do incorrect beliefs
persist in equilibrium?5

We develop a learning model to show that misattribution can lead to the persistence of incorrect
beliefs. Misattribution occurs when the distribution of outcomes from using a good-quality or bad-
quality product are overlapping, and a user attributes an idiosyncratically bad outcome to the bad-
quality product. We simulate the model and show that when misattribution is present, beliefs do not

1We focus on urea fertilizer, the most commonly used nitrogen-based fertilizer among small farmers and the most widely sold in sub-Saharan
Africa (Sanabria et al., 2013). Urea is also the fertilizer that has received the most attention in the academic literature on fertilizer quality
(Ashour et al., 2015; Bold et al., 2017; Michelson et al., 2021). Urea is 46% nitrogen; most small farmer plots are in need of nitrogen, and staple
cereal cultivation in Sub-Saharan Africa is often limited by nitrogen availability. Fertilizer blends (in which granules of single nutrients are
combined to achieve a desired nutrient composition) and compounds (in which granules themselves contain multiple nutrients) are available in
the region and include different compositions. These blends and compounds are often more expensive than urea and more varied in their
composition. Recent studies have found some evidence of missing nitrogen and other nutrients in fertilizer blends and compounds, but these
problems are likely attributable to manufacturing issues rather than adulteration (Sanabria et al., 2013, 2018a, 2018b). We discuss these issues
in more detail in Section 2.
2Suri and Udry (2022) provides a review of the literature.
3Concern about low-quality hybrid seeds has been shown to depress willingness to pay in Kenya (Gharib et al., 2021; Langyintuo et al., 2010).
4Bold et al. (2017) found that all of their samples of fertilizer had significantly lower nitrogen content than advertised, but because other larger
studies have found no evidence of bad-quality fertilizer, the finding in Bold increasingly looks like an outlier in the literature. In short, the Bold
study found that 100% of the 369 samples of urea fertilizer that they tested were missing nitrogen and that they were missing 30% of the
nitrogen on average. Sampling and testing of urea fertilizer conducted by the International Fertilizer Development Center (the IFDC) (Sanabria
et al., 2018b) and tests by the International Food Policy Research Institute (IFPRI) (Ashour, Billings, et al., 2019; Ashour, Gilligan, et al., 2019),
both conducted around the same time as Bold et al., found no evidence of adulteration in Ugandan urea. The IFDC (the global experts on
fertilizer sampling and quality testing) react to the Bold study and discuss the implausibly high rates of missing nitrogen from all tested samples
and raise concerns about their testing methods, writing that Bold et al. “does not identify or quantify the presence of materials that may be used
to dilute nitrogen content in the urea samples. Dilution is the only possible way of reducing nitrogen content in urea. The nitrogen content in
the samples used as evidence could be below 46% as a result of deficiencies in the use of the Kjeldahl method, especially when the method is
applied manually and by personnel with limited experience analyzing fertilizers. A very common mistake is assuming that a lab with experience
analyzing soils will perform well analyzing fertilizers” (Sanabria et al. 2018a). Michelson, Gourlay, et al. (2023); Michelson, Magomba, and
Maertens (2023) also discusses the result and Sanabria et al.’s reaction and reviews details on testing protocols, evidence, and possible
irregularities. We discuss evidence regarding fertilizer quality further in Section 2.
5We build on Michelson et al. (2021), which first documented the phenomenon of incorrect beliefs about urea quality among farmers in
Tanzania. The focus of our paper is why farmers have these beliefs and why they persist. As a part of answering that question, we replicate the
willingness-to-pay results from Michelson et al. but using real-stakes binding Becker-Degroot-Marschak (BDM, (Becker et al., 1964)) auctions.
Our focus however in this paper is understanding the result in Michelson et al. —why so many farmers believe fertilizer is bad when evidence
indicates that urea fertilizer in the region is of reliably good quality.
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converge to the truth, even after 1000 yield observations. Our model predicts that farmer beliefs will
be more incorrect when outcomes are more variable; more lower tail events are likely to lead to more
misattribution. We apply these insights to precipitation and farmer beliefs data in Uganda. We find
that farmers who live in regions with higher historic variation in precipitation indeed have more
incorrect beliefs about fertilizer quality.

The paper begins with a discussion of urea fertilizer in East Africa, describing use in Tanzania
and Uganda, and summarizing accumulating evidence regarding its good quality. We explain how
Tanzanian farmers evaluate fertilizer quality, present farmers’ elicited beliefs about fertilizer qual-
ity, and show that farmers are willing to pay significantly more for fertilizer of verified nitrogen
content. In Section 3 we develop a model of belief updating and learning to explain why farmers
persist in believing that fertilizer is bad quality when evidence finds that it is good. We simulate
the model and present results. We then use data from Uganda measuring farmers’ beliefs to test a
key implication of our model. We conclude with a discussion of the broader implications of our
results.

2 | SETTING AND DESCRIPTIVES

Fertilizers provide essential plant nutrients including nitrogen, phosphorous, and potassium to
developing crops. Although fertilizers were widely adopted during the Green Revolution by farmers
in much of Asia and Latin America, their use remains low in Sub-Saharan Africa. Our focus in the
paper is urea fertilizer, a single-nutrient industrially produced fertilizer that is 46% nitrogen by
weight and among the most common and widely used fertilizers in the world.

2.1 | Fertilizer in East Africa

The use of chemical fertilizers in East Africa remains low (Kohler, 2020). Sheahan and Barrett
(2017) document that only 16.9% and 3.2% of small farm households use fertilizer in Tanzania and
Uganda, respectively. Urea was the second most widely used fertilizer in Uganda, accounting for
about one sixth of the country’s total fertilizer use (about 10,000 of 61,000 total tons). The NPK
blend 17:17:17, which is used in sugar cane cultivation, is the most used fertilizer in Uganda by
quantity, accounting for about half of all Uganda’s fertilizer use. Urea is the top fertilizer used in
Tanzania, accounting for more than 35% of the market by volume annually between 2008 and 2016
(Bumb et al., 2021).

Low use of fertilizers directly contributes to widespread problems of low crop yields and high
rates of poverty and food insecurity (Dzanku et al., 2015; Tittonell & Giller, 2013). For example,
although maize is East Africa’s most important staple cereal crop (World Bank, 2009), critical as a
food and feed source as well as a source of income and employment, yields remain extremely low in
in the region (Diao et al., 2008; Dorosh et al., 2012): yields are approximately two metric tons per
hectare, well below estimated regional yield ceilings of 4–5 metric tons per hectare (Tittonell &
Giller, 2013).6

Fertilizer is sold by weight and is required to be in accordance with national standards related to
nutrient content. For example, urea fertilizer with less than 45% nitrogen is considered out of com-
pliance based on regional regulatory standards in East Africa. Nitrogen can be missing from fertilizer
due to problems in manufacturing or due to adulteration or counterfeiting. Adulteration is when fer-
tilizer is mixed with nonfertilizer material in sufficient quantities to dilute its agronomic
effectiveness—the foreign material could be agronomically inert substances like small pebbles or the
material could be something with potentially deleterious effects for current and future production

6For comparison, maize yields in the United States are around 11.5 metric tons per hectare.
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like salt. Counterfeiting is an extreme form of adulteration: a counterfeit bag of fertilizer is a bag of
completely nonfertilizer material (pebbles, concrete, salt) sold as fertilizer. Michelson et al. (2021)
emphasize that fertilizer quality is multidimensional and that farmers also consider the appearance
of the fertilizer granules as well as the condition of the bag when they evaluate quality. Losses
through nitrogen volatilization from open or damaged bags are trivial; Michelson et al. (2021) find
no relationship between urea exhibiting caking or visually degraded granules and nitrogen content
problems. Manufacturing problems are exceedingly rare in single nutrient fertilizers such as urea. In
addition, adulteration and counterfeiting are similarly rare in urea for two reasons. It is an
unblended fertilizer composed of small prills that are uniform in color and size, and is one of the
least expensive fertilizers sold in markets, so few substances are both plausible adulterants for urea
and cheaper than urea. For a summary of current research on fertilizer quality evidence and evalua-
tion see Michelson, Gourlay, et al. (2023).

Previous studies have established that farmers in Sub-Saharan Africa believe there is bad-quality
urea fertilizer in their local markets. Michelson et al. (2021) find 36% of surveyed farmers (in a sam-
ple of 164 farmers) report that urea adulteration is a problem in the market in Morogoro Region,
Tanzania. Bold et al. (2017)’s sample of Ugandan farmers believed that urea fertilizer available in
their local markets was missing 38% of its nutrients on average.7 Reports from the International Fer-
tilizer Development Center (Sanabria et al., 2013, p. 39) conducted in several countries in East and
West Africa note that farmer beliefs about the prevalence of adulterated urea are widespread but
without scientific support.

Table 1 adapts a table from Michelson, Gourlay, et al. (2023) and Michelson, Magomba, and
Maertens (2023), and summarizes results from recent studies of fertilizer quality in East Africa
establishing that nutrient quality of urea fertilizer for sale in the region is high (Ashour, Billings,
et al., 2019; Ashour, Gilligan, et al., 2019; Mbowa et al., 2015; Michelson et al., 2021; Sanabria
et al., 2013; Sanabria et al., 2018a, 2018b). These are studies characterized by rigorous sampling at
multiple levels in the supply chain and include a large number of fertilizer samples. The table

T A B L E 1 Previous studies of fertilizer quality in East Africa.

Year
sample
collected Country Acquired from Authors/study N

Percent of samples
out of compliance

2014 Uganda Retail sellers Ashour, Billings, et al. (2019) and
Ashour, Gilligan, et al. (2019)

137 0.7%

2013–2014 Uganda Retail sellers Bold et al., 2017 369 100%

2016 Kenya Retail sellers IFDC 31 All in compliance

2017 Uganda Retail sellers IFDC 38 All in compliance

2015–2016 Tanzania Retail sellers Michelson et al. (2021) 300 0.67%

2016 Tanzania Farmers Michelson et al. (2021) 121 5%

2019 Tanzania Retail sellers Michelson et al. (2021) 45 All in compliance

2018 Tanzania Warehouses Michelson et al. (2021) 8 All in compliance

2018 Tanzania Ships at the port in
Dar es Salaam

Michelson et al. (2021) 11 All in compliance

2019 Tanzania Retail sellers this study 25 All in compliance

Note: Table shows a summary of studies that examine the quality of urea fertilizer in East Africa and is adapted from m (Michelson, Gourlay,
et al., 2023; Michelson, Magomba, & Maertens, 2023).

7Farmers are also concerned about the quality of other agricultural inputs. Ashour, Gilligan, et al. (2019) study farmer beliefs about herbicide
quality in Uganda and find that farmers believe that 41% of herbicide is counterfeit in their local market. Gharib et al. (2021)’s analysis of
farmer willingness to pay for hybrid maize seed finds that farmers are concerned about fraud and are willing to pay a premium to purchase
directly from the seed company.
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includes Michelson et al. (2021), which conducted sampling in retail shops in the same region of
Tanzania as the current study.8 Several of these studies were conducted by the International Fer-
tilizer Development Center (IFDC)—a public international organization focused on fertilizer
quality that conducts rigorous assessments using well-documented laboratory techniques. Con-
clusions of the IFDC studies suggest that quality problems are exceedingly rare, especially in urea.
In fact, urea problems are considered so unlikely by IFDC that they rarely sample urea anymore
for testing; Sanabria et al. (2018a) write in their Uganda report in 2018, “the reduction of urea
sampling, in purpose, is justified by the very rare occurrences of nitrogen shortages in this fertil-
izer” (p. 8).

A single study—by Bold et al. (2017)—found extremely high average nitrogen deviations of 30%
in urea, with nitrogen missing in all 369 sampled bags. No other study approaches the prevalence
and magnitude of the Bold et al. (2017) result. Assessments conducted in Uganda over the same time
period by Ashour, Billings, et al. (2019); Ashour, Gilligan, et al. (2019) and Sanabria et al. (2018a)
find no evidence of quality problems despite very similar sampling strategies.9 Ashour, Gilligan,
et al. (2019); Ashour, Billings, et al. (2019), and Bold et al. (2017) sampled from open bags and sam-
pled widely from retailers.10 It is not clear why Bold et al. (2017) find significant and systemic prob-
lems in urea where other studies do not; their results increasingly look like an outlier in the
literature. The Bold et al. (2017) results would imply the presence of significant nonfertilizer fillers in
the Ugandan urea; all tested samples from all 129 randomly chosen retailers in two primary maize-
growing regions of Uganda exhibit considerable deviations. Sanabria et al. (2018a) comment on the
testing results in Bold et al. (2017) and speculate that the issue could be experimental error in
the nitrogen testing given that Bold et al. (2017):

“does not identify or quantify the presence of materials that may be used to dilute nitro-
gen content in the urea samples. Dilution is the only possible way of reducing nitrogen
content in urea. The nitrogen content in the samples used as evidence could be below
46% as a result of deficiencies in the use of the Kjeldahl method, especially when the
method is applied manually and by personnel with limited experience analyzing fertil-
izers. A very common mistake is assuming that a lab with experience analyzing soils
will perform well analyzing fertilizers.”

Bold et al. (2017) do not provide evidence of the presence of fillers, nor do they provide an estimate
of the analytical error in their measures.

Of course, perceptions of fertilizer quality are not only related to the nitrogen
content. Michelson et al. (2021) show that fertilizer’s observable characteristics are also important to
farmers’ purchasing decisions and are often degraded: Powdered granules, caking, and discoloration
are common. Although Michelson et al. (2021) show that these attributes do not relate to measured
nitrogen, they can complicate application. Farmers report that they break up clumped fertilizer
before application, for example. The observed degradation in physical attributes is not found on
average to be sufficient to affect yield impacts. 41% of the 300 agridealer urea samples in Michelson

8We also purchased 25 and 50 kilogram bags of fertilizer for this study and had them tested in the United States.
9Ashour, Billings, et al. (2019); Ashour, Gilligan, et al. (2019) and Bold et al. (2017) conducted sampling just before the Ugandan government
transitioned to providing agricultural extension services through a program called Operation Wealth Creation (OWC), which was launched in
June 2014. Extension had previously been provided through the National Agricultural Advisory Services (NAADS). In contrast to NAADS,
OWC is managed by the army and is primarily focused on input provision to small farmers. Van Campenhout et al. (2018) discuss OWC
timing, implementation, and strategy.
10Although urea fertilizer is generally sold in sealed 50 and 25 kg bags, small farmers tend to purchase fertilizer in 1 or 2 kg bags. These small
quantities are scooped from an open bag at the time of the transaction by agridealers or sold in repacked plastic bags prepared by agridealers in
advance of the transaction. Accordingly, the focus in the literature has been on testing fertilizer scooped from open bags. Michelson et al.
(2021) purchase and test primarily 1 and 2 kg quantities of fertilizer: 88% of their 300 urea samples are small quantity purchases from open
bags, and all 225 fertilizer sellers in their census sold from open bags. Ashour, Billings, et al. (2019) and Ashour, Gilligan, et al. (2019) also
prioritized sampling from open bags in their assessment of fertilizer quality in Uganda. Neither study finds an evidence of quality deterioration
associated with samples taken from open bags.
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et al. (2021) exhibited one or two small clumps. It could be that farmers are making assessments
about quality based on average observable characteristics, further misattributing bad agronomic
quality to bad observable characteristics of the product.

2.2 | How Tanzanian farmers assess fertilizer quality

We held focus groups with farmers in the Morogoro region of Tanzania to establish how they under-
stand the relationship between fertilizer application and crop yields, how and where they purchase
fertilizer, and how they describe and evaluate urea fertilizer quality. We also interviewed stakeholders
in the fertilizer industry about the prevalence of bad-quality fertilizer.11 Farmers reported that good-
quality fertilizer is beneficial for crop production and that crops with fertilizer perform better than
crops without fertilizer; its application makes crops grow “fast and strong,” with “high and good
yields.” Farmers said that urea fertilizer was the best fertilizer to use; urea would solve the problem
of “paddy turning yellow” or “high amounts of salt in the soil.” Farmers reported hearing about the
benefits of fertilizer from fellow farmers, extension agents, fertilizer sellers, and fertilizer companies.

Focus groups revealed an important insight about farmer beliefs and fertilizer quality: reports of
bad-quality fertilizer most often stem from a farmer using fertilizer and getting “bad results” —yields
that are inconsistent with what they expect. Farmers tended to describe fertilizer as having binary qual-
ity; either the fertilizer is safi kabisa (meaning exactly clean/fresh, excellent, very safe) or terrible.
Farmers told stories about knowing farmers who had bought what they referred to as “fake fertilizer.”
Farmers provided a range of answers with respect to how they evaluate fertilizer quality: the nutrient
content of the fertilizer, the fertilizer’s packaging or storage conditions, or the observed physical char-
acteristics. Among those farmers who reported having purchased bad-quality fertilizer in the past
(36 of our 43 focus group farmers), half reported that they knew the fertilizer was bad quality because
the performance of the crop did not meet their expectations, a third reported it was bad because of the
fertilizer’s observed physical characteristics, and the rest reported that it was a combination of these.

The director of regulatory services at the Tanzanian Fertilizer Regulatory Authority (TFRA) shared a
typical case: Tobacco farmers in Tanzania’s southwest had complained to TFRA in 2018 that the fertilizer
they had purchased and used had been bad quality. Their rationale? There was no change in height of
their plants 2–3 weeks after applying fertilizer, which was inconsistent with their experience applying fer-
tilizer in the past. The TFRA director traveled to the southwest region to meet with the farmers, tested
the fertilizer, and found that it was good quality, with the correct amount of nutrients.12 A report from
the International Fertilizer Development Center in 2018 on fertilizer quality in Uganda documented the
phenomenon of farmers commonly attributing crop growth problems to bad-quality fertilizer:

“Complaints made by farmers that cannot be directly linked to fertilizer as the sole
cause. Crop failure can be attributed to many causes, ranging from poor crop nutrition
due to insufficient use of fertilizers to limited or absent crop protection and other crop
management problems”

(Sanabria et al., 2018a).

11We interviewed the director of regulatory services for the Tanzania Fertilizer Regulatory Authority, a senior agronomist at YARA Tanzania
Limited, one of Tanzania’s largest fertilizer companies, a project manager at the African Fertilizer and Agribusiness Partnership, and an
agricultural reporter at Tanzania’s major English-language newspaper, The Citizen.
12The field director coordinating our focus groups and interviews shared with us another relevant example. Two farmers with fields across the
road from each other applied urea to their maize, but the crops in one field performed significantly better than the other. The farmers
complained to the field director that the fertilizer that the farmer applied on the field that performed poorly was bad quality and caused this
difference. It turns out the farmer with the good crop performance had applied urea fertilizer that included sulfur (ammonium sulfate fertilizer)
as well as nitrogen. The farmers had not been aware or had forgotten that he had applied the fertilizer with sulfur. The two fertilizers are
branded similarly and cost about the same. The addition of the sulfur in an area with widespread sulfur deficiencies in the soil was causing the
farmer’s crops to perform better. Neither fertilizer was bad quality, but the fertilizer that the farmers identified as bad quality was assessed by
the farmers as bad in comparison with the one that was performing better because it was more suitable for the soil (see Harou et al., 2022).
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2.3 | Farmers’ beliefs about fertilizer quality

Our survey data come from two primary sources. The first we collected with 348 farmers in 18 vil-
lages in the Morogoro region of Tanzania in July 2019. The second data set is a representative house-
hold survey of the maize growing regions of Uganda and includes 1388 households in 239 villages.
These Uganda data were collected by the International Food Policy Research Institute (IFPRI) in
July–August 2014 (Ashour et al., 2015).13,14

Table 2 presents farming summary statistics for the Uganda and Tanzania samples. On average,
farmers in Tanzania cultivated 3 acres in the previous long rains growing season, 34% reported ever
having purchased fertilizer, and only 12% reported using fertilizer in the last primary growing sea-
son. On average, Ugandan farmers owned 2.6 acres, and 15% had ever used fertilizer; 11% reported
having used fertilizer in the most recent primary growing season.

The two data sets share a special and distinguishing feature: Both measure farmers’ beliefs about
the prevalence of bad-quality fertilizer in their respective markets. Both surveys use a similar strategy
for eliciting these beliefs. Enumerators asked farmers to imagine that 10 farmers visited their local
fertilizer seller and that each farmer purchased a bag of urea fertilizer. The farmer was then asked
how many of these 10 bags of fertilizer would be good quality or bad quality (counterfeit or
adulterated).15

The farmer’s report of how many bags of 10 are likely to be bad is a measure of the farmer’s
belief about the likelihood of buying bad-quality fertilizer. We focus on 1 kg bags in the elicitation
because this is a dominant unit of purchase among small farmers in the region. The practice of pur-
chasing small quantities from open 25 or 50 kg bags is widespread, and repackaged bags of 1 or 2 kg
were available in nearly all agridealer shops visited by the study team. Farmers in the focus groups
also discussed purchasing fertilizer in these small quantities.16

The Uganda and Tanzania survey data support the finding from the focus groups: Farmers
believe that much of the fertilizer available to them in local markets is bad quality. Before we discuss

T A B L E 2 Farmer summary statistics, Uganda and Tanzania samples.

Ugandan farmer sample Tanzanian farmer sample

Mean/SD Mean/SD

Acres owned/cultivated 2.57 (3.96) 3.02 (2.06)

Ever used/bought mineral fertilizer 0.15 (0.35) 0.34 (0.48)

Used mineral fertilizer year surveyed 0.11 (0.31) 0.12 (0.32)

Observations 1388 349

Note: Summary statistics on acres owned or cultivated, historical fertilizer use, and fertilizer use in the most recent agricultural season for
Uganda and Tanzanian farmers. Ugandan data were collected in 2014; Tanzanian data were collected in 2019.

13The Uganda data are a baseline for a multiyear impact evaluation by IFPRI. Details are available in (Ashour, Billings, et al., 2019; Ashour,
Gilligan, et al., 2019) and (Gilligan & Karachiwalla, 2021). Hoel assisted in designing the baseline and endline surveys but not the analysis of the
evaluation data.
14The full Uganda sample includes 2475 households; however, we restrict the sample to only the 1388 for which we have measurements of their
quantitative beliefs about fertilizer quality.
15Detailed experimental instructions for the Tanzania data collection are shown in Online Appendix C. Analogous instructions for the Uganda
data collection are shown in Online Appendix D.
16Farmers in this area make their assessment at the market level rather than with respect to a specific agridealer in a particular market. The
markets are clusters of small retail shops selling agricultural inputs including seeds and herbicides. However, Michelson et al. (2021) show that
only 41% of shops in the region have a license to sell fertilizer and the sector exhibits considerable churn, with vendors entering and going out
of business with high frequency. Michelson et al. (2021) also use direct questions to assess farmer concern about the quality of fertilizer that
they buy. They find that 24% of farmers report that purchasing good-quality fertilizer is among their top concerns at the start of the growing
season, and that 43% of the farmers they survey believe at least some of the fertilizer for sale in their local market is bad quality. Further, they
show that these quality-sensitive farmers are attentive to the observable physical characteristics of fertilizer; they are willing to pay significantly
less for clumpy or discolored fertilizer though they do revise their WTP in response to information that the fertilizer has been lab tested and
found to be agronomically good.
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the particulars of their beliefs, we present summary statistics in Table 3 describing how farmers in
Tanzania form their beliefs about fertilizer quality. Farmers were asked about which information
sources affected their beliefs and were allowed to report more than one source. In sum, farmers are
using multiple sources of information to form beliefs about fertilizer quality. Most farmers—59%—
say that they form beliefs based on their own opinion, not based on their personal results with fertil-
izer. 21% say they use their own experience to form beliefs, whereas 22% say they use their observa-
tions of others’ results. 20% say they use what other farmers have told them about their experiences,
and 10% say they use information from an extension agent. Only 1% say they form beliefs based on
what they have heard or read in the media.

On average, farmers in our Tanzanian sample report that they believe 66% of the fertilizer in
their local market is good quality. Figure 1a shows the distribution of beliefs with a vertical dashed
line indicating the mean.17 Only 28% of farmers believe that all of the fertilizer in their local market
is good quality. Farmers who had previously used fertilizer were more likely to report that more of
the fertilizer in their local market was good quality, whereas those who had never purchased fertilizer
were more likely to say that more fertilizer in their local market was bad quality. Those who said
they used their own results or information from their extension agent to form their beliefs said that
more fertilizer in the local market was good quality, whereas those who said they formed beliefs
based on what others told them thought more local fertilizer was bad quality.

In Uganda, farmers believe 65% of the fertilizer in their local market is good quality. Figure 1b
shows the distribution of beliefs with a vertical dashed line indicating the mean.18 Only 18% of sur-
veyed farmers believe that all of the fertilizer in their local market is good quality. As in Tanzania,
farmers who had ever used fertilizer were more likely to report that fertilizer in their local market
was good quality. Male farmers, older farmers, and those who owned more land were also more
likely to say that local fertilizer was good quality.

2.4 | Farmers’ willingness to pay for fertilizer

We conducted a binding Becker-Degroot-Marschak (BDM; Becker et al., 1964) auction willingness-
to-pay experiment with our sample of Tanzanian farmers.19 We use the results of our experiment to

T A B L E 3 Sources of farmers’ beliefs about fertilizer quality in Tanzania.

Tanzanian farmer sample

Mean/SD

My own opinion, not based on results with fertilizer 0.59 (0.49)

My own farming results 0.21 (0.41)

Other results I observed 0.22 (0.42)

What other farmers told me 0.20 (0.40)

Extension officers 0.10 (0.30)

The media 0.01 (0.12)

Observations 349

Note: The table shows summary statistics of the information sources farmers in Tanzania report using to form their beliefs about fertilizer
quality.

17Tanzanian farmers who have not used fertilizer before believe that 64% is good, whereas those who have used fertilizer before believe that
72% is good. Figure B.1a in the Online Appendix shows the distribution of beliefs for those who have and have not used fertilizer in Tanzania.
18Ugandan farmers who have not used fertilizer before believe that 64% is good, whereas those who have used fertilizer before believe that 68%
is good. Figure B.1b in the Online Appendix shows the distribution of beliefs for those who have and have not used fertilizer in Uganda.
19Burchardi et al. (2021) tested four variants of the BDM in rural Uganda and found that comprehension was high, and all four yielded similar
measures of willingness to pay.
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test the relationship between farmer willingness to pay for fertilizer and reported beliefs about fertil-
izer quality.

During the BDM auction, enumerators offered farmers a bag of fertilizer purchased in their local
market and a bag of fertilizer purchased in Morogoro town (the nearest large market) that had been
tested in a lab and found to be of perfect quality with 46% nitrogen content.20,21 One fertilizer and
its corresponding bid was randomly chosen to be the binding round.22,23

Results from the BDM auction suggest that our belief elicitation measures concepts are relevant
to farmers’ willingness to pay for fertilizer.

Figure 2 shows the primary result graphically with a binscatter plot of the premium paid for
tested fertilizer versus beliefs about fertilizer quality in the local market.24 Farmers were willing to
pay an average of 1151 Tanzanian shillings for the untested fertilizer from their local market and
1686 Tanzanian shillings for tested fertilizer. Moreover, our results show that farmer willingness to
pay for local fertilizer is strongly correlated with beliefs about local fertilizer quality: Farmers who
believe all fertilizer is good quality were willing to pay 26% more for local fertilizer than those
who believe all fertilizer in the local market is bad quality. Correspondingly, the premium farmers
are willing to pay for tested fertilizer is related to their beliefs about the quality of fertilizer in their
local market. Farmers who believe that all fertilizer in their local market is bad quality are willing to
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F I G U R E 1 Beliefs about fertilizer quality. The first subfigure shows a histogram of Tanzanian farmers’ stated beliefs
about the fraction of fertilizer that is good in their local market, with a dashed line indicating the mean belief. The figure
shows that although 28% of farmers believe all of the fertilizer in their local market is good, on average farmers think that only
66% of fertilizer available to them is good. The second subfigure shows a histogram of Ugandan farmers’ stated beliefs about
the fraction of fertilizer that is good in their local market, with a dashed line indicating the mean belief. The figure shows that
whereas 18% of farmers believe all of the fertilizer in their local market is good, on average farmers think that only 65% of
fertilizer available to them is good.

20Farmers were also offered fertilizer from Morogoro town that had not been tested. Farmers believed Morogoro town fertilizer less likely to be
bad quality than local fertilizer, but still feared that some fertilizer was bad quality. They were willing to pay more for fertilizer from Morogoro
town than their local market but less than for tested fertilizer. We focus on local and tested fertilizer to streamline the presentation.
21Fertilizers were offered in a random order, but farmers knew that they would be bidding on more than one type of fertilizer and that only one
bid would be binding. Complete experimental instructions can be found in Online Appendix C.
22Compliance was high. Of those who won the auction, 97.5% agreed to pay the price drawn from the bag.
2375% of farmers reported that the BDM was “easy to understand,” and enumerators reported that 71% of farmers “fully understood” the task.
24Online Appendix Table B.2 shows the full results of a regression of farmer willingness to pay on an indicator that the fertilizer was tested.
Controls for farmer demographics and farming characteristics were included, including age, gender, whether the farmer was the household
head, whether the farmer had completed primary school, household size, whether the farmer had ever purchased fertilizer, whether they had
purchased fertilizer in the local market center, the amount of land owned, and whether the farmer recently planted maize and paddy. Controls
for whether the respondent completed the beliefs elicitation or willingness-to-pay experiment first, as well as which fertilizer they were offered
first, are also included. Standard errors are clustered at the farmer level.
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pay a 62% premium for tested fertilizer, whereas those who believe that all fertilizer in their local
market is good quality are willing to pay only 38% more for tested fertilizer.

3 | MODELING LEARNING WITH MISATTRIBUTION

We develop a learning model to reconcile two stylized facts: (1) farmers believe much of the fertilizer
available to them is bad quality; (2) the fertilizer in the local area is in fact mostly good quality. In
the main text we present the model intuition and fundamentals; we provide the mathematical details
in Online Appendix A.

Previous models to explain incorrect beliefs generally fall into two categories: models based on
misspecification and models based on rational inattention. Models based on misspecification assume
that agents learn, but that they miss salient features of their experience. Farmers engaged in mis-
specified learning either do not know about the important factors of production, or they misunder-
stand how those factors interact to affect production. Models in this category have been applied to a
range of contexts including firms, consumer behavior, and health (Arrow & Green, 1973; Esponda &
Pouzo, 2021; Sobel, 1984; Spiegler, 2016). Models based on rational inattention assume that agents
do know the important factors of production but have chosen to ignore some of those factors under
the assumption that that factor does not affect production enough to justify the cost of obtaining
information about it (Hanna et al., 2014; Ma�ckowiak et al., 2023; Schwartzstein, 2014; Sims, 2003).
Both models of learning based on misspecificaton and rational inattention assume that the agent
misunderstands some feature of the production function.

Our model takes a different approach. We assume that farmers know everything there is to know
about the production function; that they understand it and observe its inputs perfectly. However,
fundamental features of the production process cause farmers to misinterpret the signals that output
realizations provide about input quality. If farmers attribute good outcomes to good-quality fertilizer
and bad outcomes to bad-quality fertilizer, farmers who use good-quality fertilizer might mistakenly
“misattribute” bad outcomes to have come from using bad-quality fertilizer.25
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F I G U R E 2 Binscatter of premium paid for tested fertilizer by beliefs about fertilizer quality. Figure shows the regression
line and a binscatter plot of the premium farmers in Tanzania are willing to pay for fertilizer that has been tested and assured
to be perfect quality relative to that farmer’s beliefs about the fraction of fertilizer that is good quality in their local market.

2525This is different than a farmer observing yields and forming their belief about fertilizer quality by asking themselves what the proportion of
good-quality fertilizer must have been to maximize the likelihood they observed those yields. In that situation a one-parameter mixture model
would be more appropriate, and the farmer’s beliefs converge to the true proportion of good-quality fertilizer as they observe more yields.
When all fertilizer is good quality, farmers do not think there is any bad-quality fertilizer. In contrast, our model explains how beliefs do not
converge to the truth when there is no bad-quality fertilizer.
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Figure 3 demonstrates the central feature of our model. The orange curve shows a log-normal
distribution of expected maize yields using no fertilizer or bad-quality fertilizer.26 The blue curve
shows the distribution of expected yields using good-quality fertilizer. Suppose the farmer uses fertil-
izer and observes a yield of 2000 kg per hectare. This yield is easy to interpret, because the likelihood
that this yield was drawn from the good-quality fertilizer distribution is much higher than the likeli-
hood it was drawn from the bad-quality fertilizer distribution. Analogously, a yield of 250 kg per
hectare is also easy for the farmer to interpret. The yield is much more likely to be drawn from the
bad-quality fertilizer distribution than the good-quality. However, a yield of 800 kg per hectare is
roughly as likely to have come from the good-quality fertilizer distribution as the bad-quality. It
is not immediately clear what the farmer should conclude from this observation! This is the funda-
mental insight of our model: When the yield distributions are characterized by substantial overlap,

F I G U R E 3 Misattribution. Figure shows the intuition behind misattribution. There are expected distributions of yields
from using good-quality fertilizer and bad-quality fertilizer. When yield realizations are more likely to come from the good
distribution than bad distribution, then the quality of fertilizer is attributed to be good. The reverse is true for attributing low
yield realizations to come from using bad-quality fertilizer. These rules lead to truly good-quality fertilizer being misattributed
as bad quality, which is the shaded blue region of the good-quality fertilizer distribution. Farmers might only infer quality if a
yield is highly likely to come from one distribution over the other; this sense of caution causes a region of overlap in the
distributions with similar likelihoods where the farmer does not try to infer quality from the yield. This is the unshaded region
between the two vertical grey lines.

26We assume that bad-quality fertilizer has little nitrogen but is not deleterious to production. In our survey data from Tanzania, farmers
believed plots with no fertilizer and with bad-quality fertilizer would produce 834 and 778 kilograms of dried, shelled maize per hectare,
respectively; the difference is not statistically significant at the 5% level. Because we model the farmer using fertilizer in every period, we refer to
this distribution as coming from bad-quality fertilizer.
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farmers will find it difficult to deduce whether some yield observations were drawn from the good-
quality or bad-quality fertilizer distribution.

Knowing that misattribution is possible, farmers could choose some range of yields for which
they decide that it is neither possible nor prudent to draw any conclusion at all. We parameterize
this choice with a caution parameter, γ. In the figure, γ relates to the width of the middle range
between the gray vertical lines where the yield curves are so close to one another that no conclusion
is drawn. Beyond some threshold, the farmer concludes that the yield is high enough that the fertil-
izer is more likely good quality than bad quality. Similarly, beneath some threshold the farmer con-
cludes that the yield is low enough that bad-quality fertilizer is more likely than good quality.
However, given substantial overlap between the distributions, misattribution is common. The area
shaded in blue represents the region in which a farmer concludes that the yield they observed is so
low that the fertilizer they used must be bad quality, but in fact the fertilizer they used was good
quality and they got unlucky in application, seed quality, the timing of rainfall, temperature, not
using the correct type of fertilizer, or some other factor that affected production. This is analogous to
a Type I error. The area shaded in orange represents the region in which a farmer concludes that
their yield was so high that the fertilizer they used must be good quality, but in fact the fertilizer they
used was bad quality and they just had a lucky season. This is analogous to a Type II error. Note that
in our context, most or all fertilizer is actually good quality, so farmers applying fertilizer are in fact
only drawing from the blue distribution; positive misattribution—Type II errors—do not occur.

Notice the unavoidable trade-off between accurate inference and any inference at all. Aware that
the yield distributions overlap, the farmer may attempt to reduce misattribution by being more cau-
tious in drawing conclusions from yields. The middle region of the figure from which they draw no
inference then expands. This will reduce their incidence of incorrectly concluding that good-quality
fertilizer was bad quality (i.e., reducing the area shaded in blue in the figure), but it will also neces-
sarily reduce the number of yield draws from which the farmer draws any information at all. This
allows incorrect beliefs to persist, as they are not updated in response to previously informative
yields that are now deemed uninformative.

Farmers can understand the production process perfectly and completely—but still, they face a
trade-off between drawing incorrect conclusions or making no conclusion at all. Our framing has
implications for policy: Programs intended to improve farmer understanding of the production pro-
cess might not affect beliefs. Farmers’ beliefs about fertilizer quality are unlikely to be improved
through their own observations; the only way to circumvent misattribution is through a trusted regu-
latory process to ensure quality or strong signals about quality in markets.

In Online Appendix A we provide the mathematical details of the model. In short, we assume
favorable conditions for learning: Farmers are Bayesian updaters, they have a correct understanding
of the yield distributions using either good-quality or bad-quality fertilizer, and farmers use fertilizer
continuously for 50 periods;27 although we describe a farmer observing only their own single plot,
the model is agnostic to the source of observations so one could imagine the farmer observing multi-
ple plots or basic social learning instead (see Online Appendix A). Even under these favorable
assumptions, our model simulations show that learning about fertilizer quality is persistently
inhibited when misattribution is present.

3.1 | Simulation results

To explore the implications of our model for farmer learning over time, we simulate how a farmer’s
beliefs change when they observe yields over many periods. We then vary how cautious the farmer is

27This assumption is clearly inconsistent with observational data. In our samples, more than two-thirds of farmers report never having
purchased fertilizer. Lack of experience with fertilizer will slow learning. We assume continuous fertilizer use because it provides strong
conditions for learning. Our results show that learning is still extremely difficult, even under these generous assumptions.
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to show that misattribution leads to a trade-off between incorrect learning and any learning at all.
When farmers draw inferences more cautiously, there is less misattribution of bad yields to bad-
quality fertilizer but also less frequent belief updating. In Figure 6 and in Figure B.2 in Online
Appendix B, we present simulations using yield distributions that are more and less favorable to
inference in our model. When the distribution of yields from good-quality fertilizer are significantly
higher than that from bad-quality fertilizer, it becomes easier to infer fertilizer quality from yield
observations (Figure 6); when the yield distributions are more overlapping, inference is more diffi-
cult (Figure B.2). This connection between the relative shape and scale of the distributions of yields
from good- and bad-quality fertilizer and the resulting beliefs about fertilizer quality suggest that the
problem of misattribution is driven by the production technology linking inputs to outputs.

The key insight from the model is that if farmers’ expected yield distributions with good- and
bad-quality fertilizer overlap, learning about true (good) quality is difficult. We assume that farmers
have some distributions in mind, but we do not know what those distributions are. Farmers may
condition their expectations on weather, labor inputs, or other exogenous or endogenous factors of
production. Our simulations use unconditional distributions of yields (which likely have more
variance than conditional distributions) but rely on the optimistic learning assumptions and circum-
stances in the model. Our simulation results therefore are unlikely to be either a best- or a worse-
case scenario for learning but lie somewhere in between.

As the farmer infers good or bad quality from a single informative yield, we think of the inferred
quality as a Bernoulli process; good quality is a success, and bad quality is a failure. This leads us to
use a binomial distribution to model the series of inferred fertilizer qualities. We model the farmer’s
beliefs using a beta distribution, the conjugate prior of the binomial, as is standard when modeling
beliefs formed by observing the outcomes of a series of Bernoulli trials (Gelman et al., 2014). The
beta distribution is characterized by two parameters, α and β, where α�1 indicates the number of
former successes observed and β�1 indicates the number of former failures. The beta distribution
we use for an initial prior is set to α¼ β¼ 1 and is identical to the uniform distribution.28

The simulation requires us to specify several parameter values: the number of time periods over
which the farmer learns,29 the distributions of expected yields using good- and bad-quality fertilizer,
the true distribution from which yields are drawn, and the caution parameter.

The simulation proceeds as follows:

1. Set the parameter values of the yield distribution using good-quality fertilizer, f yjgð Þ, the yield
distribution using bad-quality fertilizer, f yjbð Þ, and the true yield distribution, f yð Þ.

2. Seed the initial prior belief, p0 ¼Beta α0,β0ð Þ¼Beta 1,1ð Þ, the uniform distribution.
3. Set the caution parameter γ that governs the percent of yields deemed informative.
4. For each time period t � 1,Tf g,

a. Draw a yield yt from the true yield distribution.
b. Compare f ytjg

� �
to f ytjb

� �
. If

f yt jgð Þ
f yt jbð Þ > γ, conclude that the fertilizer was good quality; if

f yt jbð Þ
f yt jgð Þ > γ, conclude that the fertilizer was bad quality; otherwise, conclude that the yield was

uninformative.
c. Update the αt and βt parameters of the belief pt : αtþ1 ¼ αt þ1 and βtþ1 ¼ βt if the fertilizer

quality was categorized as good, αtþ1 ¼ αt and βtþ1 ¼ βt þ1 if the fertilizer quality was catego-
rized as bad, and αtþ1 ¼ αt and βtþ1 ¼ βt if yield was categorized as uninformative.

d. Form ptþ1 and repeat at (a).

28The uniform distribution is commonly used as the initial prior when the agent has no clear initial belief. This practice dates back to Bayes and
Laplace (Gelman et al., 2014). We have also run simulations with priors set to distributions centered on 0.1, 0.2, … 0.8, or 0.9 to see how beliefs
evolve when an agent begins with pessimistic or optimistic beliefs. The resulting patterns in posteriors are nearly identical to those shown here
(available on request).
29We simulate the possibility of a single yield observation per period, but because the beta distribution depends on the total number of
successes and failures observed, simulating more observations per period is synonymous with simulating more periods.
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Table 4 presents the values for each parameter of our baseline simulations. For each specification
we set the number of periods to 50; given that Tanzania and Uganda, like many other countries in
the region, have two production seasons per year, 50 periods can be thought of as representing
25 years of growing seasons in East Africa. The initial prior is parameterized to be the uniform dis-
tribution, with α¼ 1 and β¼ 1. The expected distribution of yields using good-quality fertilizer is set
toLognormal 2012, 272

245�2012
� �2� �

. We set the mean of this distribution to the mean yield expected
by the Tanzanian farmers in our data set when using good-quality fertilizer. We set the variance of
the good-quality yield distribution to match the relative variance of realized yields to their mean as
reported in our Ugandan data.30 The expected distribution of yields using bad-quality fertilizer is set
toLognormal 778, 266

257�778
� �2� �

, with the mean yield set to be what Tanzanian farmers expected
when using bad-quality fertilizer and the variance scaled to match realized Ugandan maize yields
from farmers who did not use fertilizer.31 We assume that the true fraction of good-quality fertilizer
is 1, and true yields are drawn fromLognormal 2012, 272

245�2012
� �2� �

because nearly all fertilizer in
the region has been found to be good quality; thus, if beliefs were accurate, the mean of pt would
converge to 1. In Figure 4 we present beliefs with γ set so that 100%, 75%, 50%, 25%, and 10% of
yields are informative; thereafter we present results with γ set so that 75% of yields are deemed infor-
mative given other parameter values. In the following figures, we present the mean of the beta belief
distribution in each period. Each time we run a simulation, the statistics of interest vary due to the
stochasticity in the model, so we run each simulation 1000 times and average over them.

Figure 4 presents the results of our baseline simulation, with beliefs shown on the y-axis and the
number of time periods on the x-axis. The dashed black line shows how beliefs evolve when there is

T A B L E 4 Simulation parameters, values, and sources.

Input Purpose Baseline value Source

T Number of periods 50 25 years of growing seasons

Prior Starting beliefs about rate of good
quality fertilizer

Beta distribution with α¼ β¼ 1 Parameter values for a uniform
distribution; akin to an
uninformative prior

f yjgð Þ Expected yield distribution using
good fertilizer

Lognormal 2012, 272
245�2012
� �2� �

Tanzania yield expectations and
Uganda realized yield
variances

f yjbð Þ Expected yield distribution using bad
fertilizer

Lognormal 778, 266
257�778
� �2� �

Tanzania yield expectations and
Uganda realized yield
variances

f yð Þ Distribution from which yields are
drawn

Lognormal 2012, 272
245�2012
� �2� �

Tanzania yield expectations and
Uganda realized yield
variances

γ Caution parameter: governs
willingness to consider yield
informative about quality

1.42 75% of yields informative

Note: Table shows, for each input in a simulation, its purpose, baseline value, and source for the value.

30We did not ask the Tanzanian farmers in our survey to report their expected variance of yields because we were worried that the data would
not be good quality. We recognize that using variances from one data source and means from another is not ideal. In Online Appendix B, we
show simulations using both means and variances from realized yields in the Uganda data in Figure B.3. The misattribution problem in that
scenario is worse because yields are actually lower on average for the farmers who used fertilizer, shown in the Online Appendix in Figure B.2.
This relationship between fertilizer use and low yields should not be considered causal, however, because fertilizer use is endogenous to
numerous other farmer practices and farm conditions. Additionally, the Uganda data report realized yields, whereas the model focuses on
expected yields that may be different from actual realizations. For these reasons, we present simulations using mean expectations from the
Tanzanian data and variances from the realized yields in Uganda in the main text, while also providing simulations with alternate parameter
choices in the Online Appendix.
31We do not have data on yield realizations using bad-quality fertilizer, but farmers’ expectations from using no fertilizer and bad-quality
fertilizer are statistically indistinguishable, so we assume the variance of yields using no fertilizer are a stand-in for the variance of yields using
bad-quality fertilizer.
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no caution and all yields are deemed informative. The solid blue line shows beliefs when farmers are
cautious about misattribution, and only 75% of yields are deemed informative. The remaining three
lines show how beliefs evolve when the farmer is increasingly cautious; the red line corresponds to
50% of yields deemed informative, the green to 25% of yields deemed informative, and finally the
purple line shows how beliefs evolve when only 10% of yields are deemed informative.

The black dashed line shows that when all yield observations are deemed informative, beliefs
improve initially, but they converge to a level that is far from the true proportion of good-quality fer-
tilizer in the market: 1. This occurs because when the farmer observes a poor yield, they sometimes
attribute it to bad-quality fertilizer rather than an unlucky season. Conditional on an amount of cau-
tion, the farmer’s beliefs about fertilizer quality are isomorphic to the degree of overlap between the
good- and bad-quality fertilizer distributions. As the amount of overlap increases, the farmer’s beliefs
become worse. The solid blue line shows that when the farmer is aware that they may misattribute
an unlucky yield draw to bad-quality fertilizer and exercises caution in interpreting yields so that
only 75% are deemed informative, beliefs do converge to a higher, more accurate level. When the
proportion of yields deemed informative decreases to 50%, 25%, and then 10%, beliefs increase fur-
ther still. However, beliefs remain far from the truth, even after 50 periods.

What if the farmer were even more cautious? Figure B.5 in Online Appendix B hows that addi-
tional caution cannot solve the misattribution problem. The figure presents the mean belief after
50 periods on the y-axis while varying the caution parameter, γ, on the x-axis. The figure starts with
all yields being deemed informative (γ¼ 1) and ends with so much caution that less than 0:001% of

F I G U R E 4 Evolution of beliefs with misattribution. The figure shows simulations of the belief updating model over
50 periods with yield distributions calibrated to what Tanzanian farmers say they expect from using the good-quality and bad-
quality fertilizer. The five lines on the plot show the evolution of beliefs when 100%, 75%, 50%, 25%, and 10% of yields are
deemed informative.

HOEL ET AL. 15



yields are deemed informative (γ¼ 50). Beliefs do improve when farmers are more cautious about
interpreting yield observations, but eventually too much caution causes farmers to discard too many
observations, limiting their ability to learn and keeping final beliefs close their initial prior of 0:5.32

Our choices for the mean yield parameters for the baseline simulations are based on Tanzanian
farmers’ reported yield expectations using good-quality (2012 kg of maize per hectare) and
bad-quality (778 kgs per hectare) fertilizer. However, yields are often considerably more distinct
when fields are tended by professional agronomists. In the grow-out trials cited in Bold et al. (2017)
in Uganda, the difference between yields with good-quality fertilizer (4400 kg per hectare in the
grow-out trial) and no fertilizer (1820 kg per hectare) was substantially larger than our Tanzanian
farmers’ expectations. The yield distributions using this data are shown in Figure 5. Might learning
improve if farmers expected and observed yields more in line with grow-out trials?

Figure 6 shows simulations that are seeded with yield data from the Bold et al. (2017) grow-out
trials rather than farmers’ reported yield expectations. This in essence shows simulations of learning
under the very best possible circumstances, with a wider distance between the good-quality and bad-
quality fertilizer yield distributions. As expected, beliefs are substantially closer to the truth when
farmers observe yields in line with those from grow-out trials, but they do not converge to the belief
that all fertilizer is good quality. This occurs because when the yield distributions using good- and
bad-quality fertilizer overlap at all, there will always be scope for misattribution.

F I G U R E 5 Misattribution with grow-out trial yields. Figure shows the regions of misattribution when the farmer’s
believed yields and true yields come from grow-out trial data. Data comes from Bold et al. (2017) grow-out trials. Yields from
good-quality fertilizer are much higher than bad-quality fertilizer and there is little overlap in the two distributions of yields.

32Figure B.4 in Online Appendix B suggests that beliefs do not converge to the truth in the long run in the presence of misattribution; after
1000 periods of learning, beliefs do not improve much beyond just 50 periods of learning.
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In summary, our belief updating model and its simulations show that when farmers begin with
no clear idea about the true ratio of good- and bad-quality fertilizer in the market and observe yields
consistent with those obtained by professional agronomists in grow-out trials for 50 periods, their
beliefs still do not fully converge to the truth that all of the fertilizer in their local market is good
quality.

3.2 | Testing model implications

The simulations provide a testable hypothesis that we take to our Uganda data: All else equal,
farmers who live in areas with more variable rainfall—and therefore more variable yields—will be
more likely to experience a negative production shock that they misattribute to bad-quality fertilizer.
Results of our model and simulations imply that these farmers will hold beliefs that are more incor-
rect on average.

Implicit in this exercise is the assumption that more variable rainfall is associated with more vari-
able maize yields. Research at the intersection of climate science and agronomy has demonstrated
that weather variability contributes significantly to yield variability (Chen et al., 2013; Ortiz-Bobea
et al., 2021; Osborne & Wheeler, 2013)—with weather variability explaining sizeable but

F I G U R E 6 Evolution of beliefs with misattribution with yields from grow-out trials. The figure presents the results of
simulations of the belief updating model over 50 periods with yield distributions calibrated to the yield distributions from the
Bold et al. (2017) grow-out trials in Uganda. The dashed black line shows how beliefs evolve when there is no caution and all
yields are deemed informative. The solid blue line shows beliefs when farmers are cautious about misattribution and only 75%
of yields are deemed informative.
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heterogeneous shares of variation in yields depending on the region and crop.33 Ray et al. (2015)
focus on variation in maize yields driven by variation in precipitation in parts of Sub-Saharan Africa
and characterizes the relationship between maize yield variability and rainfall variability in the region
(p. 6), “Overall, precipitation variability is more important in sub-Saharan Africa, pointing to the
predominantly rainfed system of maize cultivation.” They note that their finding that precipitation
variability is of particular importance to maize yield variance in the region is consistent with previ-
ous work including Koo and Cox (2014) and Phillips et al. (1998) among others. To the extent that
yield variation is driven by precipitation variability, our model suggests that regions with more vari-
able rainfall will have worse beliefs.

We use the Uganda data set and daily precipitation data from the Climate Hazards Group Infra-
Red Precipitation with Station (CHIRPS) data set (Funk et al., 2015) to test the implications of our
model and simulations. CHIRPS data have a 0.05-degree spatial resolution, providing daily precipita-
tion for 5.5 km2 cells. We gathered precipitation data for the 10 years prior to the survey in 2014.
We calculated precipitation variation as the variance in daily precipitation during the relevant grow-
ing seasons over the 10 years.34 The study region has two agricultural seasons for maize, the first sea-
son “long rains” from February to May and the second season “short rains” from September to
November. Primary crops are usually grown in the first season, and fertilizer use is much higher in
the first season (10.2% in our data in the first season in 2014) than the second season (5.7% in the
second season in 2013). We focus on precipitation variation in the first season, but results are robust
to including both growing seasons. Figure B.6 in Online Appendix B shows the geographic distribu-
tion of households in the Uganda sample.

Table 5 shows the results of a regression of farmers’ mean beliefs about fertilizer quality on the
historical variance in precipitation in the first growing season, as well as demographic and farming

T A B L E 5 Relationship between precipitation variation and beliefs about fertilizer quality in Uganda.

Variables

(1)

Mean belief

Historic variance in precipitation: First season �0.26*** (0.09)

Farmer age 0.00 (0.00)

Farmer male 0.02 (0.02)

Farmer is household head 0.01 (0.02)

Farmer has not completed primary school 0.00 (0.02)

Household size 0.00 (0.00)

Acres owned 0.01*** (0.00)

Ever used fertilizer 0.04** (0.02)

Constant 0.63*** (0.04)

Observations 1346

R-squared 0.03

Note: The table presents the relationship between mean belief about the fraction of fertilizer that is good quality in the local market and historic
rainfall variation in Uganda. The regression includes demographic controls for farmer age, farmer gender, whether the farmer is the household
head, whether the farmer has completed at least primary school education, and household size; farming controls are also included and comprise
whether the farmer has ever used inorganic fertilizer and the number of acres owned.
*** p < 0.01, ** p < 0.05, * p < 0.1.

33Ray et al. (2015) for example find that weather variability explains 30% of the variability in crop yields in their global analysis whereas Vogel
et al. (2019) suggest the figure might be as high as 43%.
34Results are robust to excluding growing seasons whose total precipitation were two standard deviations below mean growing season
precipitation across all farmers and years to account for the possibility that severe, low-tail events might be easily attributable to nonfertilizer
causes and not used when inferring fertilizer quality. Robustness tables are shown in Online Appendix B.
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controls.35 We cluster standard errors at the village level. The estimating equation is shown below as
Equation (1). The results show that beliefs are highly correlated with weather variability.36

Belief iv ¼ β0þβ1RainfallVariationivþβ2Demographicsiþβ3FarmingVarsiþ εiv ð1Þ

These results should not be considered causal given the fact that rainfall variability is likely to
affect other factors that influence farmer beliefs directly or indirectly, such as fertilizer profitability,
market structure, and accessibility. However, the results are consistent with the hypothesis that rain-
fall variability makes misattribution more likely, which makes learning more difficult.

4 | CONCLUSION

Consumers can have trouble learning about a product’s quality or efficacy. In this paper we show
that misattribution can inhibit learning about quality. When the process that converts inputs to out-
puts is noisy, and the distribution of outcomes using a good-quality input overlaps with the
outcomes using a bad-quality input, individuals may mistakenly attribute a bad outcome to the qual-
ity of the input when the bad outcome was actually caused by natural variation or bad luck. We call
this phenomenon misattribution. We incorporate misattribution into a model of learning about
product quality. Our model simulations show that when misattribution is present, beliefs may never
converge to the truth even after observing many new data points. Our model and its conclusions are
relevant to circumstances in which an agent cannot be immediately sure of a product’s quality.

We use the example of a farmer forming beliefs about the quality of fertilizer in their local mar-
ket, and data from a small willingness-to-pay experiment in Tanzania, a large observational data set
in Uganda, and precipitation data from Uganda to motivate the model and test its implications. We
document that farmers report considerable mistrust of fertilizer quality: 70% of farmers in Tanzania
say that at least some of the fertilizer in their local market is counterfeit or adulterated, whereas 84%
of farmers in Uganda have suspicions about quality. Results from the willingness-to-pay experiment
show that farmers who report less optimistic beliefs about fertilizer quality in their local market are
willing to pay less for local fertilizer and a larger premium for tested fertilizer. Farmers are willing to
pay a premium for quality-certified fertilizer presumably because they believe much fertilizer in their
local market is bad quality; this is a puzzle because urea fertilizer in the area has been shown to be
reliably of good quality. Our model predicts that farmers who experience poor yields more often
should have worse beliefs because they are likely to misattribute bad yields to bad-quality fertilizer
more often. We use historic rainfall variability in Uganda to show an important association implied
by the model: farmers who live in regions with greater precipitation variation have more incorrect
beliefs about fertilizer quality than farmers who live in regions with more consistent rainfall.

Goods like fertilizer are often thought of as experience goods, meaning that agents can learn their
effects through repeated use. Our model shows that when learning is inhibited by misattribution, fer-
tilizer (and other similar goods) should instead be treated as a credence good—a good whose quality
cannot be learned through use. Beliefs about fertilizer quality must be influenced by something other

35Demographic controls include farmer age, farmer gender, whether the farmer is the household head, whether the farmer has completed at
least primary school education, and household size. Farming controls include whether the farmer has ever used inorganic fertilizer and the
number of acres owned.
36Table B.3 in Online Appendix B shows results for farmers who have used fertilizer in the past, those who have not, and an interacted model
to show the difference in the effect of rainfall between these groups. The results show that rainfall is more tightly correlated with beliefs about
fertilizer quality for those who have used fertilizer in the past, but the difference in the relationship between those who have and have not used
fertilizer in the past is not statistically significant. We note however that the test of differences between those who have and have not used
fertilizer in the past is underpowered. Rainfall variation is defined at the village level, and we have only 239 villages in our sample. Further, only
15% of farmers in our Uganda sample have ever used fertilizer, and some of those have used fertilizer in only one growing season. We therefore
prefer to focus on the full sample of farmers in Uganda, regardless of previous fertilizer use.
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than use. Other credence goods of this type include agricultural inputs such as seed and herbicides,
but also medication, medical treatments, vaccines, vitamins, car repairs, and education. Our insights
can also apply to environmental policies. For example, suppose a fisherman is told that by adhering
to low quotas for a few years, the fish stock will be rebuilt and they will benefit from larger catches
in the future. However, if an environmental shock interferes with rebuilding, the fisherman may later
trust the policy’s effectiveness less because they misattribute the poor outcome to a bad policy rather
than bad luck.37 In some sense, our results highlight the value of a strong and trusted scientific com-
munity and regulatory system, and illustrate what happens when trust and regulation breaks down.

In high-income countries, the quality of credence goods is often ensured through a strong,
trusted, and transparent regulatory system. Medical regulatory agencies require large, long clinical
trials before authorizing a new drug or vaccine, and adverse events are detected via surveillance sys-
tems. The quality of education, for example, is certified by bodies at the state and national levels.
When government certification is not available, crowdsourced verification tends to emerge through
services such as Google and Yelp reviews. These services sometimes emerge to complement existing
government assessments or to assess dimensions of product quality not covered by official means.
By contrast, in low-income countries and communities, government and social-media-based regula-
tory systems often fail to function well, which is one reason why markets like the one for fertilizer in
East Africa break down. Our work speaks to the breadth of value created by strong and trusted regu-
latory and verification systems.

Our results have three implications for programs designed to increase use of agricultural inputs
and practices. First, our work suggests that programs that provide input subsidies or relax credit con-
straints for fertilizer and similar products may not on their own be enough to encourage long-term
use because those programs fundamentally rest on the idea that trying a good a few times will allow
the user to identify its benefits. A recent short-term study of a fertilizer and improved maize seed
subsidy program in Mozambique showed that targeted farmers increased their usage of fertilizer and
improved their beliefs about the efficacy of the input package in the year following the subsidy, but
the effects showed some indication of waning in the second year after the subsidy (Carter
et al., 2021). This is consistent with our model, especially if the year in which the input package was
subsidized happened to be a good growing year. After an initial observation of high yields, farmers
are likely to attribute the high yields to high quality and/or high efficacy inputs. Subsequent years
are independent draws from the yield distribution, so they may naturally be lower than the year in
which the subsidy was delivered; in that case, beliefs about the quality or efficacy of inputs will wane
in time. Because of misattribution, fertilizer and other agricultural inputs are not experience goods,
so a few uses may not be enough to convince a user of their value.

Second, our results suggest an agricultural extension approach might be designed to highlight
that the production process is stochastic—that soil, genetic varietals, environmental factors, and
application technique all contribute to crop yields in addition to fertilizer (or seed) quality—and that
one must be deliberate to distinguish them and to not misattribute. Extension agents might work to
convince farmers that a single bad outcome may be indicative of bad luck rather than a bad-quality
input. For example, they could implement realistic trial plots showing performance of new products
under varying local growing conditions. This would effectively increase the caution parameter of our
model, γ, which we showed does reduce the incidence of misattribution. However, our model and its
simulations show limited scope for increased caution to improve beliefs because when cautious
agents decide many observations are uninformative about product quality, they have no information
to use to update their prior beliefs. If those cautious agents began with incorrect and pessimistic
beliefs, those beliefs will persist.

Finally, an agricultural program that may have more success is a quality assurance plan that reg-
ulates and certifies product quality. Our willingness-to-pay experiment is akin to a certification pro-
gram, and we found that farmers were willing to pay on average 46% more for fertilizer we tested

37We thank Kira Lancker for this example.
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and guaranteed to be good quality than for fertilizer from their local market of unverified nutrient
content. Michelson, Gourlay, et al. (2023) and Michelson, Magomba, and Maertens (2023)
implemented a low-cost and low-touch information campaign in markets in Tanzania, posting the
results of urea fertilizer testing and sharing them with farmers in village meetings. They find strong
improvements in farmers’ beliefs about fertilizer quality and also that farmers purchased and used
fertilizer more often.

Even so, it is important to consider the costs and total effect of quality certification programs on
input use. Certification programs add costs that are likely to be passed on as increased prices for
farmers. Moreover, verification will only work if farmers trust the verification and accurately update
their beliefs. Information does not always lead individuals to update priors toward the truth (a point
borne out in our theory and simulations).38 A policy that increased costs without necessarily reduc-
ing or resolving uncertainty about product quality could further impede fertilizer use. Also, although
the program in Uganda seems to have had lasting effects, the risk remains that the effectiveness of
the verification program may fade over time. Because misattribution remains an issue, any certifica-
tion system will remain vulnerable to a loss of trust.

Of course, not all farmers have incorrect beliefs about fertilizer quality. Because our work sug-
gests that beliefs about credence goods will not fully update with use, it is important to understand
how consumers form beliefs about new products’ quality in the first place. A better understanding of
the heterogeneity across farmers and the spatial patterns in beliefs within and across villages could
provide insight into how to introduce new credence goods to the market.
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