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Abstract: This paper assesses evidence-based applications of Remote Sensing for Sustainable and
Precision Agriculture in the Northern Savanna Regions of Ghana for three decades (1990–2023).
During this period, there have been several government policy intervention schemes and pragmatic
support actions from development agencies towards improving agriculture in this area with differing
level of success. Over the same period, there have been dramatic advances in remote sensing (RS)
technologies with tailored applications to sustainable agriculture globally. However, the extent to
which intervention schemes have harnessed the incipient potential of RS for achieving sustainable
agriculture in the study area is unknown. To the best of our knowledge, no previous study has
investigated the synergy between agriculture policy interventions and applications of RS towards
optimizing results. Thus, this study used systematic literature review and desk analysis to identify
previous and current projects and studies that have applied RS tools and techniques to all aspects of
agriculture in the study area. Databases searched include Web of Science, Google Scholar, Scopus,
AoJ, and PubMed. To consolidate the gaps identified in the literature, ground-truthing was carried
out. From the 26 focused publications found on the subject, only 13 (54%) were found employing RS
in various aspects of agriculture observations in the study area. Out of the 13, 5 studies focused on
mapping the extents of irrigation areas; 2 mapped the size of crop and pasturelands; 1 focused on
soil water and nutrient retention; 1 study focused on crop health monitoring; and another focused
on weeds/pest infestations and yield estimation in the study area. On the type of data, only 1 (7%)
study used MODIS, 2 (15%) used ASTER image, 1 used Sentinel-2 data, 1 used Planetscope, 1 used
IKONOS, 5 used Landsat images, 1 used Unmanned Aerial Vehicles (UAVs) and another 1 used
RADAR for mapping and monitoring agriculture activities in the study area. There is no evidence of
the use of LiDAR data in the area. These results validate the hypothesis that failing agriculture in the
study area is due to a paucity of high-quality spatial data and monitoring to support informed farm
decision-making.

Keywords: precision agriculture; sustainable farming; UAVs; earth observation; satellite imagery;
northern Ghana

1. Introduction

Globally, there is a steady rising demand for agriculture products and raw materials
beyond the traditional fiber and nutrition industries. This demand comes from feedstock,
energy, industrial products, and pharmaceutical products in response to the needs of
modern life [1,2]. Thus, global giant farming countries such as Turkey, Australia, USA,
and India are modifying their methods of operations and production in order to respond
to this growing global demand for agricultural product supplies [3,4]. Large productions
from these countries are supplied to developing countries in Africa, Southeast Asia, and
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Latin America. This trend in supplies demonstrates that countries in the global south have
deficits of agricultural products for global supplies [5]. These deficits are attributed to lack
of capital for agriculture expansion [6] and the underperformance of the agriculture sector
due to climate change, urbanization, and steady population growth [7–9]. Accordingly,
there is a surge in food security issues in these regions. Yet technological advancement,
such as the use of remote sensing (RS), has enhanced agriculture performance in advanced
countries [10–13]. However, the extent to which RS has been used to support sustainable
agriculture in the Cereal Root—Mixed Farming Systems (CR-MFS) areas in the Northern
Savannahs of Ghana is not known.

Like other West African countries, Ghana’s economy is largely agricultural [14,15].
Ghana’s agriculture industry mainly consists of raising animals, planting trees, fishing,
producing food, and cash crops [7]. Over 30% of Ghana’s GDP comes from this sector and
its associated agro-industry. The sector employs about 33% of the country’s total labor
force and over 76% in rural regions [16]. In the rainforests and Savannah ecological zones,
the primary agricultural activities are food and cash crop cultivation, along with livestock
rearing, whereas the primary agricultural activities in the coastal areas are fishing and
limited food crop farming [17]. Due to the double maxima rainfall experienced in the
rainforest ecological zone, food and cash crops such as maize, cashew, cocoa, plantain,
and timber are grown and harvested twice a year [18]. A protracted drought is also
experienced in the Northern Savannah Regions, with single annual maxima of rainfall [19].
This physiological state limits evergreening, fish farming, cocoa cultivation, and timber
harvesting in the Savannah ecological regions of Ghana. Thus, large-scale food crop
farming is the predominant farming activity in the Northern Savannah Regions due to their
relatively level terrain and rich soils [20]. In history, the region has consistently provided
food, meat, and dairy products to suit Ghana’s increasing meat and grain demand.

Evidently, the Northern Savannah Regions are predominantly rural, with over 60%
of the total population living in rural areas, where the dominant activities are livestock
rearing and food crop growing [20–22]. The dominant food crops grown in this region, with
cognisance to their biophysical characteristics, are cereals and root crops. Farmers in this
region have historically engaged in bush fallowing, single cropping, shifting cultivation,
and crop rotation in response to the biophysical characteristics of the area [20]. However,
due to factors such as rapid urbanization, shifting dietary demands, recent climate change,
and their combined effects on land use, land cover, and land degradation, the availability
of arable land for food crop cultivation in the Northern Savannah Regions has become
limited [8,23]. To adapt to the incipient circumstances and build resilience, farmers in the
area have embraced mixed farming (livestock rearing in addition to food crop farming)
and mixed cropping [24,25]. Yet livestock populations and farm food crop yields are
failing, increasing food security issues in the area. In the past three decades, the Ghanaian
government, in partnership with its development partners, including the European Union
(EU), the Food and Agriculture Organization (FAO), the African Development Bank (AfDB),
and the International Fund for Agricultural Development (IFAD), has implemented various
initiatives aimed at enhancing agricultural performance in the area [23]. “EU Food Security
Response in Northern Ghana”, “Northern Rural Growth Programme”, “Inland Valley Rice
Development Project”, “Small-Scale Irrigation Development Project”, “Planting for food
and jobs”, and “one-village-one-dam” programs are a few examples of such projects.

However, there are significant gaps in knowledge that impact both the establishment
of initiatives and the attainment of goals towards enhancing agricultural performance in
the Northern Savannah Regions. In this regard, statistics help with the development and
implementation of intervention projects and are crucial in setting baselines for informed
policy decision-making. Geospatial technologies, or technical innovations in space and on
land, have revolutionized many aspects of a nation’s economy in the twenty-first century,
including agriculture. Yet, there is limited knowledge on how these technologies, such as
remote sensing (RS), have been used to generate pertinent data for localized improvements
to CR-MFS in Ghana’s Northern Savannah Regions. RS, in particular, is useful in continuous
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monitoring and measurement of the spatial extents of farmland dynamics and associated
drivers for improving resilience, encouraging precision farming, and addressing land
fertility issues in the CR-MFS areas. Thus, the past intervention schemes in the area have
used top-down approaches that frequently ignore baseline observations and consistent
monitoring of biophysical parameters to determine farm needs, the status, and trends
of basic databases such as soil water and nutrient retention, farmland extents, irrigation
potentials, weeds, and pest infestations. This has led to low success stories from intervention
schemes in the area.

Although some of this data and information may already be available, it is usually not
designed to align with targets for sustainable agriculture in the CR-MFS [26]. Although
sustainable CR-MFS is becoming more complex, the levels of requisite data for under-
standing and addressing these complex challenges are inadequate [8,23]. To address these
knowledge gaps and complexities, therefore, this paper assesses the application of RS tools
and techniques in support of sustainable and precision agriculture in CR-MFS areas in the
Northern Savannah Regions of Ghana for the period 1990–2023. Unambiguously, the study
assesses general applications of RS for: (1) examining raw agriculture field baseline data; (2)
mapping irrigation farming extents and performance; (3) cropland and rangeland monitor-
ing and measurement of yields; (4) farmlands degradation detection and monitoring; and
(5) weeds and pests’ management for sustainable and precision agriculture in the study
area. The succeeding sections provide details on the methodology employed, state of the
art, findings and discussions, and conclusions.

2. Materials and Methods
2.1. Study Area

The study was conducted primarily in the Savannah agroecological zone that cuts
across four administrative regions of Ghana (Figure 1), namely the Northern (11 communi-
ties), Upper East (9 communities), Upper West (13 communities), and Savannah Regions
(1 community). These regions fall within latitude 8◦0′0′′ N to 11◦0′00′′ N and longitude
0◦1′00′′ E to latitude 3◦0′00′′ W (Figure 1).

The vegetation in the Savannah parts of Ghana is predominantly semi-arid, character-
ized by Guinea Savannah. However, traits of the Sudan Savannah are observed in areas
around Bawku. The vegetation in the area consists of grassland with clusters of drought-
resistant trees such as baobabs, shea butter, or acacias, which can be used for agroforestry.
Generally, this region is notably drier than the southern parts of Ghana throughout most
of the year. Consequently, the climate in this area is marked by significant inter-annual
and multi-decadal variability, manifesting in alternating long periods of dry and short
wet/rainfall conditions occurring in a year [27]. Thus, the Northern Savannah Regions of
Ghana exhibit an unpredictable rainfall pattern marked by substantial variations in terms
of onset, quantity, and coverage from one season to another [19]. The area experiences
a unimodal rainfall pattern, which occurs between May and October every year, with
records ranging between 500 mm and 1200 mm [28]. The mean monthly temperature
ranges from 27 ◦C to 36 ◦C [19]. CR-MFS is the predominant farming method practiced
in the area [23]. The cereals grown in this area include millet, sorghum, rice, and maize,
while the leguminous crops include cowpea, groundnut, and soybean. The root crops
include cassava, cocoyam, potatoes, and yam. The Northern Savannah regions have a great
potential for farming and are noted as the food basket of the country [8]. The region has a
comparatively low population density in rural areas but gradually denser in urban and
per-urban areas.
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2.2. Literature Review

The study aimed to investigate the application of RS technologies for enhancing sus-
tainable agriculture and resilience building in CR-MFS areas in Ghana’s Northern Savannah
Regions. To this end, a systematic appraisal of scientific and gray literature was carried out.
The literature review comprises a desk analysis of publications and unpublished works.
Various publications from scientific and non-scientific works, both peer-reviewed and
opinion papers, commentaries, and technical reports from different Ghanaian government
agencies, UN agencies, non-governmental organizations (NGOs), and community-based
organizations (COs) that support sustainable agriculture development in the study area
were retrieved and analyzed. The Internet (including Google searches), personal and
research group databases, PubMed, Web of Knowledge, Science Direct, Web of Science,
ResearchGate, and Google Scholar are some of the literature repositories that have been
searched for materials that are relevant to the current study.

The following keywords and search query phrases are used for robust returns in
each database query, both separately and in combinations: “Remote sensing of farmlands
in Northern Ghana”, “Satellite data inventory of agriculture in the northern regions of
Ghana”, “mapping farmlands of northern Ghana”, “mapping irrigation areas of the Up-
per West Region of Ghana”, “mapping irrigation areas of Upper East Region of Ghana”,
“Applications of Remote Sensing on farmland monitoring in Northern Ghana”, “Remote
Sensing for precision agriculture in the Northern Regions of Ghana”, “Remote Sensing
Agriculture in the Northern part of Ghana”, “UAVs for farmland management in Northern
Regions of Ghana”, “Application of Unmanned Aerial Vehicles for farmland monitoring in
Northern Regions of Ghana”, “monitoring crop performance in the Northern Region of
Ghana using satellite imagery”, “monitoring crop performance in the Upper West Region
of Ghana using satellite imagery”, “monitoring crop performance in the Upper East Region
of Ghana using satellite imagery”, “monitoring crop performance in the North-East Region
of Ghana using satellite imagery”, and “monitoring crop performance in the Savannah
Region of Ghana using satellite imagery”.
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It was discovered that multiple publications discuss the use of remote sensing technolo-
gies to generate data on these variables during the search for the most pertinent literature.
All but a few, nevertheless, who have case studies in Ghana’s northern regions were
downgraded in this research. Any study that addressed the spatial analysis of agriculture,
sustainable land management generally, or LULCC and LD in Ghana without addressing
the CR-MFS areas in Ghana’s Northern Savannah Regions was disqualified from considera-
tion. Following works on the use of systematic literature review methods [29,30], only 30 of
the 110 published journal papers, books and book chapters, reports, and communications
that were retrieved from the databases were screened to identify the most pertinent studies
that addressed the objectives of this study.

2.3. Fieldwork

In 4 of the 5 Northern Regions, fieldwork and ground truthing operations were car-
ried out. Field inspections revealed that the farmers’ adopted Land Use and Land Cover
Changes (LULCC) and their impact on cropping performance, vegetation health, water
availability, soil water retention capacity, erosion, and drivers were of special interest. The
CGIAR Mixed Farming Systems Initiative (MFS; https://www.cgiar.org/initiative/mixed-
farming-systems/ (accessed on 2 December 2023)) utilized a baseline survey to choose the
communities that were visited. The 34 communities spread over Ghana’s four northern
regions make up this group (Figure 1). The project contact numbers in each of these com-
munities were supplied by the Institute of International Tropical Agriculture (IITA) office
in Tamale. The visit was communicated to all the contact people. Community members
and contacts were informed about the goals and purpose of the fieldwork in exchange for
their voluntary consent. The community entry protocol and all ethical guidelines were
followed. To achieve the field visit’s goals, a mix of qualitative and quantitative data
collection techniques was employed. These include:

1. Conduct direct observation to note LULC characteristics, environmental conditions,
and agricultural related land use activities.

2. Interviews and surveys with local communities and stakeholders through focus group
discussions and key informant interviews.

3. Data collection tools (ODK (open source) embedded with voice recorders, cam-
eras, and GPS) devices were used to record and document field observations and
geotag locations.

4. Analysis and comparison of field data with existing data recovered from the literature
to assess the methods, key findings, and gap identification.

3. Literature Review on Global Applications of Remote Sensing in
Agricultural Activities

The history of the use of RS in agriculture started with its wider applications for
natural resource inventory and development, largely in North America, Europe, Australia,
and Eastern Asia [29–32]. Since the late 1940s, spaceborne sensors have been used to
provide the spatial resolution required for monitoring natural resources and natural capital
growth in these regions [33,34]. Black and white aerial photography was the primary RS
tool used [31,35]. However, in recent times, there have been rapid advances in sensors and
computers, which have expanded the utility of RS in agriculture monitoring, mapping,
and measurement [36]. These improvements include higher spatial resolution, hyperspec-
tral data, and the recent use of RADAR and LiDAR platforms, allowing more detailed
mapping [37] and monitoring of agriculture activities [30,38]. Hence, new computer appli-
cations and techniques are being developed for enhancing precision, smart, and sustainable
agriculture [39]. These techniques employ features embedded in commercial image process-
ing software, such as ArcGIS, ERDAS IMAGINE, IDIRISI, and ENVI (all versions) as well as
free and open-source programs like QGIS (Version 3.28.12, all versions). They are applied to
discern suitable cultivable lands, identify irrigation sites, assess pasturelands, understand
the interplay between crop growth, health, and water management, track animal move-
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ments, estimate production, and monitor changes in soil-vegetation-atmosphere-transfer
processes over time [40,41]. These tools have been used extensively in Southeast Asia [37],
Australia [39], and North America [42].

Despite its potential, the utilization of optical RS imagery in agriculture, particularly
in tropical regions, presents several challenges. These include the presence of cloud
cover, haze, and crude resolution [30,43]. In many places, where agriculture activities are
undertaken only in the rainy season, cloud-free imagery may not be available over some
months. This necessitated the use of unmanned aerial vehicles (UAVs), hyperspectral RS,
LiDAR, and RADAR, which can retrieve ground data through even thick cloud cover [38,44].
Change detection maps generated with these data help to detect water pollution, drought,
crop health, vegetation losses, and weed infestations for the periods when cloud-free data
could not be found [45,46]. Such pieces of information can be synthesized and used to
appraise the extents and expansions of urban areas and the impacts on agriculture in near
real time. For instance, with RADAR interferometry, multiple radar images taken of the
same area at different times are used for change detection [33,38,47]. With the current
applications of RADAR in agricultural studies, two general approaches are used: InSAR
and Repeat Pass Interferometry. While the former typically uses successive RADAR images
and pass of the targeted farmland or rangeland to increase the information in a scene,
the latter uses RADAR scenes taken over the same area but on different passes of the
satellite [45,48]. Nonetheless, the use of RADAR data requires special skills and training
that are lacking for many who are interested in using RS for agriculture development in
developing countries.

To address these and other related issues, the NASA Land Cover and Land Use Change
(LCLUC) program introduced the South/Southeast Asia Research Initiative (SARI). SARI
aims to promote and build capacity through the use of RS data to assess the amount of
food grown, aboveground biomass availability for fodder and rangeland stocking, and
water availability for irrigation farming in a given year [37,49]. Satellite RS observations,
in particular, provide daily data on relevant parameters, including rainfall, temperature,
vegetation and crop health, and soil moisture conditions. Many large-scale and individual
farmers in developed countries use these data to monitor, understand, and diagnose the
impacts of climate on agriculture [49]. For instance, the Global Agriculture Geo-monitoring
Initiative (GEOGLAM) is an RS-based system developed by USAID and the World Food
Programme for monitoring food production in food-insecure regions across the globe [49].
A combination of RADAR data and social and economic food security indicators is a critical
asset towards achieving this goal [50,51].

Several other multi-sensor RS models with various capacities have been designed
and launched in developed countries for mapping croplands. For instance, Google Earth
Engine now hosts a plethora of cropland data modeling products in support of precision
agriculture. Precision agriculture is an integration of RS, Global Positioning Systems, and
other new technologies for managing agricultural productivity in order to maximize the
cost–benefit ratio of production [52,53]. Precision agriculture emphasizes spatial–temporal
data analysis and management for robust use of farm inputs, leading to improved crop
production and environmental quality [54,55]. It involves advances in RS image processing,
field positioning, and sensor design for applications in pre-growth soil fertility, moisture
analyses, crop growth, crop monitoring, and yield forecasting [43,56]. The modeling
products include the USDA NASS Cropland Data Layer (CDL) and the Global Food
Security-Support Analysis Data (GFSAD) Layer [49,57]. These data modeling tools are
used to analyze LiDAR, RADAR, and moderate-resolution satellite imagery for measuring
cropland extents [58], crop dominance, and water availability [59].

Due to the level of detail and accuracy required in effective precision agriculture,
unmanned aerial vehicle (UAV)-based RS have now been used in combination with space-
based sensors [60]. In recent times, UAVs have been widely applied in agricultural fields
in developed countries to conduct near-real-time soil, forage, crop and pest monitoring,
and management. Examples can be found in the works of Bwambale et al. [61], Lamb
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and Brown [62], and Maes and Steppe [63]. UAVs have been especially identified with the
ability to generate timely and accurate weed maps [62,64,65]. An important advantage of
UAVs in agriculture is their ability to provide crop-specific data, yield estimates, and soil
moisture assessments. For example, Feng et al. [66] used a UAV system to monitor a cotton
field at both the flowering growth stage and the pre-harvest stage. This study concludes
that UAVs provide robust estimates of cotton yield. Maimaitijiang et al. [67] used a UAV to
estimate soybean grain yield at a test site in Columbia, Missouri, USA. The results indicate
that UAVs can provide a relatively accurate estimation of crop yield and valuable crop field
management with high spatial precision. Furthermore, Yang et al. [68] and Reza et al. [69]
used UAVs for rice yield estimation by segmenting grain areas. Their findings are that
UAV image-based grain segmentation provides highly accurate and convenient rice yield
estimates. Revenga et al. [64] used UAVs to predict above-ground biomass for croplands at
a sub-meter resolution.

Applications of Remote Sensing (RS) for Sustainable and Precision Agriculture in Ghana

Empirical analysis of the concept “Sustainable Agriculture” finds that a proper un-
derstanding of the concept is context-based, including science and politics [70,71]. For the
scientific purpose of this study, refer to the definitions of Feenstra et al. [72], Mason [73],
and Reganold et al. [74]. Thus, sustainable agriculture is the continuous production of
food crops, the rearing of animals, and the practice of agro-forestry with the efficient use
of non-renewable and on-farm resources without compromising environmental quality
(biodiversity loss, land degradation, compaction, salinization, and depletion and pollution
of water resources) while enhancing the quality of life for farmers and society as a whole. It
also comprises efficient farm management procedure practices, also referred to as precision
agriculture [75–78]. Thus, in their work: “Examining the potential of open source remote
sensing for building effective decision support systems for precision agriculture in resource-
poor settings”, Kpienbaareh et al. [79] propose that the best way, inter alia, to achieve
the objective of sustainable and precision agriculture on cost reduction, improving scarce
resource allocation, and increasing farm yields is to adopt the use of RS. This is particularly
useful as a decision support system (DSS) for both large-scale and smallholder farmers and
commercial and cash-crop farmers in resource-poor regions such as the CR-MFS areas of
the Northern Savannah Regions of Ghana [79].

However, using open-source RS data to map smallholder farms in resource-poor areas
presents results that are coarser in resolution with compromised accuracy and precision.
Such data often fail to capture fragmented small-holder farms in highly heterogeneous
landscapes, such as the Northern Savannah Regions of Ghana. To overcome such limitations
in their study, Xiong et al. [80] used a combination of Sentinel-2 and Landsat-8 data on
Google Earth Engine to map smallholder cropland extents in Africa, including the Northern
Savannah Regions of Ghana. The study estimated a total of 313 million hectares (Mha) as
the net cropland area of Africa for the nominal year 2015 [80]. Xiong et al. [81] combined
very high-resolution satellite imagery (VHRI) and Indigenous Knowledge (IK) to derive
near-accurate and precise cropland extents across Africa for the 2014 base year. The study
estimated 296 Mha net cropland areas (260 Mha cultivated and 36 Mha fallows), including
both rainfed and irrigated. The use of fractional cover approaches in mapping the cropland
area in the heterogeneous landscapes of West Africa from multi-temporal Landsat and
MODIS data have also been tested by Forkuor et al. [82]. Haile et al. [83] used RS-derived
land cover data for the years 1994 and 2014 and cross-sectional survey data in 2014 to
examine the location association between LULCC and agricultural productivity in the
CR–MFS areas in the Northern Savannah Regions of Ghana. The study found that while
urbanization and extensification of agriculture have led to biodiversity and ecosystem
losses, there was a significant improvement in crop yield and harvest value [83].

Furthermore, Landsat data, in combination with social surveys, have been used by
Braimoh [84] to investigate the influence of urbanization, technology, and macroeconomics
on the growth of cropland in Ghana during economic changes. The study finds that the
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dynamics observed in demographics and macroeconomics have transformed subsistence
farming into commercial farming in most Ghanaian farming communities, leading to
agricultural extensification [84]. Braimoh and Vlek [85] investigated the effects of land
cover changes on soil quality parameters in the Savannah Region of Ghana using Landsat-
derived land cover maps for 1984, 1992, and 1999. The study finds that continuous cropping
on the same piece of land leads to deterioration in soil quality over a period of time [85].
Pinnington et al.’s [86] study finds that satellite-derived estimates of shallow soil moisture
can be used to calibrate a land surface model at regional scales in Ghana. Using the RS
rainfall dataset, Pinnington et al.’s [86] study recovered improved estimates of soil texture
in the Northern Regions of Ghana after data assimilation. Amanor and Pabi [87] propose
the combination of RS and qualitative datasets to assess changes in land use and land cover
and the impacts of agricultural modernization and mechanization on the economy and local
farming systems in the Bono and Ahafo Regions of Ghana. Therefore, Houssou et al. [24]
used Landsat-derived land-cover maps in combination with qualitative data to detect the
conversion of arable lands to agricultural uses in four villages in the Guinea Savannah and
Transition zones. The study finds a gradual adaptation to agricultural intensification in
four villages through increasing adoption and use of precision farming technologies [24].

Developing spatial models for precision farming is desirable for efficient decision-
making in areas that are resource-poor and vulnerable to the impacts of climate variability
such as flooding [88]. Thus, Gumma et al. [89] developed spatial models for the selection
of the most suitable areas for rice cultivation in flood-prone areas in Ghana. The model
results show that only 3–4% of the total inland valley wetland areas in Ghana were “highly
suitable” and 39–47% were “suitable” for rice cultivation [89]. The study also finds that
less than 15% of the total inland valley wetland areas, which are estimated to be about
20–28% of the total land area of Ghana, are currently under cultivation. Considering the
potency of such rich land units in terms of soil depth, soil fertility, and water availability,
in most places, these agroecosystems are an opportunity for the construction of water
reservoirs for irrigation farming practices. However, to ensure effective water management
for irrigation farming, the actual carrying capacities of these reservoirs should be known.
Thus, Annor et al. [44] used RADAR images with field measurements of 21 small reservoirs
to provide an all-year-round monitoring of small reservoir volumes in the Upper East
Region of Ghana. Gumma et al. [90] used Landsat ETM+ data and time-series MODIS data
to map irrigated agricultural areas, as well as other LULC classes, for Ghana. Compared
to the irrigated areas reported by the Ghana Irrigation Development Authority, this study
revealed a greater surface area of smallholder reservoirs and irrigated lands (32,421 ha).

Nevertheless, Ghansah et al. [91] executed a binary random forest classification on
Sentinel-2 images for five consecutive dry seasons (2015 and 2020) to provide information
on the spatial-temporal variations of small water reservoirs for dry season farming in
the Upper East Region of Ghana. The analysis revealed about 384 small reservoirs in the
study area [91]. Kpienbaareh et al. [79] used Sentinel-2A satellite data to monitor crop
health to inform farm management and decision-making at the Tono Irrigation Scheme.
This irrigation scheme has been established by the Government of Ghana to promote
dry-season food crop production by small-scale farmers in the Upper East Region. Asaana
and Sadick [92] used Aster Satellite images and GIS overlays to evaluate the irrigation
performance of the Tono irrigation system based on the following selected indicators:
overall consumed ratio, relative water supply, relative evapotranspiration, depleted fraction,
and crop water deficit. The study finds that seasonal average values of the irrigation
performance indicators have poor water delivery systems. To forestall similar challenges
in the Upper West Region, Diabene et al. [93] used RS-derived land use and land cover
and slope data as key parameters to identify potential areas of small reservoirs for the
implementation of the agricultural water management intervention of the government of
Ghana. Similarly, Akpoti et al. [94] used land cover data to assess the irrigation potential
of Ghana’s cocoa-growing areas. The study finds a total area of 22,126 km2 for cocoa
plantations and 125.2 km2 for smallholder reservoirs within cocoa-growing regions.
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Rather than the general perception that agriculture is a rural livelihood activity, and for
the poor, marginalized, recent migrants, or women, there are widespread, large-scale, and
diverse agriculture activities in urban areas in developing countries. These are mainly for
the elite, rich, and non-migrants and supplement urban staple food larders. For instance,
Mackay [95] used Landsat imagery to study the forms of urban agriculture within the
Techiman Municipality and Tamale Metropolis. The study finds that the two cities have
sustained organized irrigated vegetable market gardens, home gardening, and staple foods.
These findings are similar to Ghana’s larger cities of Accra and Kumasi. Thus, Appeaning
Addo [96] used Landsat ETM data to develop an integrated monitoring technique for urban
farmlands in Accra. While there is a general perception that urbanization is an affront to
agricultural land availability and productivity, Abass et al. [97] deployed Landsat TM 1986
imagery, ETM+ 2004 imagery, and Landsat 8 OLI/TIRS imagery in 2016 to examine the
effects of peri-urbanization on arable land in the Kumasi Metropolis of Ghana. The results
show a strong positive correlation between urban expansion, the size of arable land, and
crop output in the Metropolis in the last 30 years.

Furthermore, Boateng and Mensah [98] used Landsat TM 2002 and ETM+ 2015 images
to assess the LULC dynamics of Tarkwa-Nsuaem Municipality of Ghana and their impacts
on urban agriculture. The study finds a loss of crop and pasturelands to the built environ-
ment. Abubakari et al. [99] also used Landsat TM 200 imagery, ETM+ 2010 imagery, and
Landsat 8 OLI/TIRS imagery for 2020 to assess the effects of urbanization on arable lands
in the Sagnarigu Municipality near Tamale in Ghana. The study finds that the built-up
area in the municipality increased from 13.0 km2 in 2000 to 97.5 km2 in 2020. Conversely,
using Sentinel-2-derived NDVI patterns of selected cocoa farms for November and De-
cember 2018 and January 2019, Anyimah et al.’s [100] study finds a predominance of very
healthy and healthy cocoa plantations against perceived stressed cocoa farms in Offinso
North District and Offinso Municipality. Chemura et al. [101] combined Landsat data
and regression techniques to determine the age of oil palm plantations in the Ejisu-Juaben
Municipality of Ghana. Yiran et al. [102] used Landsat images between 2000 and 2020 to
assess sustainable agriculture in Ghana, using mango farming in the Shai Osu-Doku and
Yilo-Krobo Districts of Greater Accra and Eastern Regions, respectively, as a case study. The
study finds that agroforestry development contributes to carbon sequestration, air filtering,
and soil conservation.

4. Results

Details of the literature studied within the research area are shown in Table 1. The array
of research demonstrates the long history of RS technology applications in conjunction
with agricultural practices worldwide, which include the work However, it is only recently
that these technologies have been directed again toward the monitoring of agricultural
activities in Ghana [89]. The Ghana Environmental Resources Mapping Project was the
first to classify most of the country’s northern regions into twelve classifications based on
land cover [103–105]. Although the data have proved helpful since the project’s inception,
agricultural areas are not the focus. The Northern Regions’ LULC has been mapped by
later research in a variety of locations, including agricultural fields [103,106,107].
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Table 1. Application of remote sensing in support of sustainable agriculture in the Northern Savannah Regions of Ghana.

Ref No. Objectives and Methods Findings Study Area

[79] Objective: to demonstrate the potential of open source remote sensing
(OSRS) for monitoring crop health and development to build an effective
decision support system (DSS) for precision agriculture in resource-poor
settings.
Methods: focused on the Tono Irrigation Scheme, utilizes freely available
satellite data (Sentinel-2A).

Using open source remote sensing presents a feasible and practical
approach towards building cost-effective and efficient DSSs for farmers in
resource-poor settings.

Upper East Region

[83] Objective: uses information from cross-sectional surveys and remote
sensing to examine the connection between changes in land use and cover
and agricultural productivity in Northern Ghana.
Landsat 5 and Landsat 8 satellite pictures, which cover the whole
Northern Ghana region, were used to create the land cover classification
for the years 1994 and 2014.

According to this study, land areas that have been converted from natural
cover to productive use had greater harvest values (1021 Ghanaian Cedi)
and maize yields (0.17 tons per hectare) than land areas that have been
converted from bare soil to productive cover.
Compared to 1994’s barren soils, areas planted with savannah or shrubs
were more productive in 2014.

Northern Region

[84] Objective: The impact of macroeconomic changes on land-use change in
Ghana throughout economic reforms was the main subject of this study.
Methods: combines sociological surveys and data from remote sensing to
determine how market, technological, and demographic factors affect the
expansion of farmland during Ghana’s economic changes.
pictures from Landsat TM from 1984, 1992, and 1999 were used.

Macroeconomic shifts caused farming to become more commercially
oriented as domestic production replaced imports as the primary source
of food. Following structural adjustment, cropland change is explained by
demographic factors. There are six different types of land cover: water,
built-up surfaces, grassland, farmland, open woodland, and closed
woodland.

Northern Region

[85] Objective: In a northern Ghanaian location, the effects of changing land
cover on soil quality measures were investigated.
Landsat Thematic Mapper (TM) maps covering the years 1984, 1992, and
1999 were employed in the study.
A digital elevation model built using the study area’s contour lines at a
50-foot vertical interval provided the slope and elevation data for the
sampling spots.

Between the properties of soils with natural vegetation and soils under
cultivation as of 1992, there were no appreciable differences. On the other
hand, soils that were permanently farmed (1984–1999) had substantially
worse physical and chemical characteristics.

Northern Ghana
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Table 1. Cont.

Ref No. Objectives and Methods Findings Study Area

[88] The objective:
to address the increasing climate variability and the challenge of accessing
water, which pose major impediments to rainfed agricultural productivity
in the region.
Methods: use of ASR-based techniques using remote sensing and
GIS-based MCDA.
Utilizes remote sensing and GIS techniques to evaluate various criteria,
including geological indicators, subsurface criteria, and land use, to
determine suitable areas for ASR technology.

Specifically, challenges related to accessing irrigation water and flooding
of farmlands could be effectively addressed by implementing adaptive
water management (AWM) technologies throughout the region,
significant to improving agricultural sustainability and resilience.

Northern Savannah
Regions of Ghana

[89] Objective: to create spatial models and show how to utilize them to
determine which inland valley (IV) wetland rice-growing locations are
most suitable.
Method: use Landsat imagery.

Given that just a small portion (<15% overall) of Ghana’s total IV wetland
areas—roughly 20–28% of the country’s total geographic area—are now
used for agriculture, despite the fact that these land units are extremely
rich in terms of soil fertility, depth, and availability of water.

Entire Country + Northern
Region

[44] Objective: to address the challenge of mapping small reservoirs in the
Upper East Region of Ghana, which is a critical issue for water resource
management and agricultural development in the region.
Methods: the use of radar imagery (ENVISAT ASAR) to identify and map
small reservoirs.

The study highlights the potential of radar imagery for the identification
and mapping of small reservoirs in a semi-arid environment, which can
help improve water resource management and agricultural development
in the region.

Upper East Region

[90] Objective: to use remote sensing to map irrigated agricultural regions and
describe procedures and guidelines.
Techniques: Time-series moderate resolution imaging spectroradiometer
(MODIS) data and Landsat enhanced thematic mapper (ETM+) data were
used.

The LULC class’s NDVI pattern’s temporal fluctuations were utilized to
distinguish between areas that were and were not irrigated.
Because irrigated areas have a guaranteed water supply, long-duration
irrigated crops showed more consistency in the temporal fluctuations in
the NDVI pattern than short-duration rainfed crops. The Irrigation
Development Authority (GIDA) of Ghana reported irrigated areas that
were 20–57% lower than the 32,421 ha irrigated area that was estimated
via remote sensing.

Northern Region



Agriculture 2024, 14, 546 12 of 22

Table 1. Cont.

Ref No. Objectives and Methods Findings Study Area

[91] Objective: to assess the spatial-temporal variations of the surface areas of
small reservoirs in the Upper East Region of Ghana.
Methods: use Sentinel-2 satellite imagery.

identified changes in the surface areas of the reservoirs over time. Upper East

[92] Objective: to evaluate the irrigation performance of the system based on
some selected indicators.
Methods: using Aster Satellite image, respectively.

The seasonal average values of the irrigation performance indicators
showed that the water delivery system at the Tono irrigation project,
based on the selected command areas, is poor. Potential
evapotranspiration and actual evapotranspiration were estimated.

Upper East

[93] Objective: to identify and map suitable areas for the implementation of
interventions that can help improve water availability for agricultural
activities in the region.
Methods: Landat TM and ETM data used.

The results indicate high potential areas of 57.25% and 85.40% for small
reservoirs and stone bunds, respectively.

Upper West

[108] Objective: to generate high-resolution, annual maps of field boundaries
for smallholder-dominated croplands in Ghana.
Methods: used PlanetWatch data.
Converting Planet’s daily imagery of the region into two cloud-free
composites of the primary growing season and the dry season helps
improve classification accuracy by providing seasonal contrast.

The study demonstrated a transferable approach for creating scalable
maps of crop field boundaries in smallholder-dominated countries,
mitigating errors, and increasing analytical capabilities with machine
learning.
The resulting maps provide an updated and more granular view of the
distribution and extent of croplands in Ghana, complementing existing
national and regional land cover maps derived from moderate-resolution
imagery.

Upper East Region

[109] Objective: to identify the potential market acceptance success factors for
drone-applied pesticide.
Methods: Drones and survey tools.

Farmers became aware of and perceived a high benefit from the use of
drone technology to control FAW when compared to the knapsack
method.

Northern Region



Agriculture 2024, 14, 546 13 of 22

However, these studies do not aim to categorize croplands, pasturelands, or irrigation
systems locally. Therefore, there is much more to learn about the use of LULC mapping for
CR-MFS monitoring in Ghana’s Northern Savannah Regions.

Figure 2 presents a summary of the applications of RS in support of sustainable
agriculture in the Northern Savannah Regions of Ghana.
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From the results, it is clear that agricultural mapping using satellite and other RS
data remains a challenge in Africa, and in Ghana in particular. Reasons attributed to this
phenomenon are the prevalence of a heterogeneous and fragmental landscape, complex
crop cycles, and limited access to local knowledge and image processing skills [81]. Conse-
quently, there is no current, consistent, region-wide scheme for routine cropland mapping
of the CR–MFS areas of the Northern Savannah Regions of Ghana. As demonstrated in
Figure 2, the few studies focused either on the Upper East or Upper West Regions with
limited scope and coarse resolution data. Thus, a tailored training and technology transfer
program, aimed at accelerating farmers’ capacity, acceptance, and implementation of these
precision agriculture technologies is recommended. In particular, Agric-extension officers
in these areas should initially be targeted for an effective technology transfer. Extension
officers should be able to capture and apply RS data for food and water security analysis
in order to better guide farmers to make informed decisions. Precise and accurate local
cropland extent maps, indicating cropland and non-cropland areas, are starting points.
However, precise and accurate cropland extent maps at high spatial resolution are difficult
to produce without the relevant training. Despite the potential inherent in RS-based moni-
toring systems, basic training of scheme managers and extension officers is required for
robust output interpretation and analysis. This is especially crucial in accounting for small
yet contiguous patches of irrigated areas from dug-wells and dug-outs.

Figure 3 shows the distribution of various sensor applications in the study area. Only
1 journal paper, representing 7% of the total of 12 reviewed, used MODIS, and only 2
journal papers (15%) used ASTER images for mapping agriculture activities in the study
area. In addition, only 1 paper (8%) used Sentinel-2 data for cropland extents and irrigation
mapping. The remaining studies mapped agricultural activities in the study area using
Landsat images (38%). Out of the studies that were discovered on the use of Landsat, only
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2% used Landsat 8 ORS-OLI images for LULC mapping in the study area. The enhanced
capabilities of Landsat 8 have not been utilized for livestock and agricultural monitoring in
the CR-MFS regions of Ghana’s Northern Savannah Regions.
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Even though sentinel data is equally available and free, agriculture management in the
study area has not made use of these data’s enhanced spatial resolution. Concurrently, an
abundance of sentinel satellite data encompassing the entirety of northern Ghana has been
collected since 2013. Sentinel 2 data over the Northern Regions of Ghana is revisited every
ten days, enabling near-real-time monitoring of farm animal management, pasture growth,
crop performance, and water availability. Consequently, it was discovered that 8% of journal
papers integrated macroeconomic information—such as policy and fiscal incentives—with
LULC mapping to comprehend the causal relationship between agricultural expansion,
yield, and environmental implications.

With reference to the published literature, RADAR and LiDAR have been used in
other countries to monitor agricultural phenology, invasive species, soil moisture, field
subsidence, and flooding. Examples include the works of Liu et al. [38], Steele-Dunne
et al. [45], and Sivasankar et al. [48]. While Figure 3 shows that in CR-MFS areas of
Ghana, the use of LiDAR data for farm monitoring and management is lacking, RADAR
is only used in one (1) instance. Meanwhile, RADAR and LiDAR data are useful in
mapping and monitoring species invasion, cattle movement, soil moisture, and land
subsidence [48]. These are the dominant challenges of sustainable agriculture in the study
area. Although there are few useful applications for RADAR and LiDAR data, the study
area lacks the level of accuracy needed for precision agriculture, rangeland planning and
stocking, soil moisture, and nutrient depletion monitoring [55]. As per the 17 Agenda 2030
Sustainable Development targets (SDGs) of the UN, these are necessary to achieve targets 2
(Zero Hunger), 6 (Sustainable Management of Water and Sanitation), and 12 (Sustainable
Consumption and Production). Compared to optical imaging, RADAR imagery lacks rich
information, which can cause misclassification and the absence of significant agricultural
details. This is the primary challenge with RADAR imagery. Nonetheless, reliable data
can be obtained by combining RADAR, optical imagery, and digital elevation models
(DEM) [18].

The majority of agricultural economies in the Global North have realized how useful
unmanned aerial vehicles (UAVs) are for gathering data on farmland, including missing
or strayed livestock, flooding, weed and pest invasion, crop health, water and soil con-
tamination, invasive species, herd trajectory monitoring, and the application of fertilizer,
weedicide, and insecticide across large farmlands [60,63,109,110]. However, only a single
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report has been found on the applications of UAVs to irrigation scheme monitoring in the
study area (Figure 3). UAVs offer near-real and high-resolution views of farmlands, pasture
vigor, irrigation plans, and smallholder reservoirs and are critical for efficient agricultural
and animal management, particularly as most peasant farms are smaller than 10 acres in
Ghana’s northern regions. Thus, there is a lack of usage of UAVs for precision farming,
crop management, and animal management, which precludes attempts at addressing food
security issues and Goal 2 of the UN SDGs. In this region, large-scale farmers still spray
fields by hand, look for stray animals, and apply fertilizer. Thus, it is still difficult to imple-
ment sustainable land management techniques. The use of UAVs in precision farming and
sustainable land management is imminent and inevitable, even though they are complex
technologies that are out of reach for impoverished farmers due to the expense and training
involved in acquiring and using them [60,63]. This is presently absent in the study area.

Where UAVs are inaccessible for robust farmland data capture, analysis, and man-
agement, very high-resolution satellite data may suffice [111,112]. Therefore, it is feasible
to distinguish minute differences in crop performance, soil moisture content, and native
and invasive grass species thanks to extremely high-resolution data. In this study, about
8% of the studies used Planetscope, a 3m resolution satellite image. The study mapped
the characteristics of Africa’s smallholder-dominated croplands, including the sizes and
numbers of fields, and provided critical data on food security and a range of other socioe-
conomic and environmental concerns. Also, 8% of the studies reviewed used RADAR, and
15% used ASTER, respectively. Only one technical report accounted for the socio-economic
impact and acceptance study of drone-applied pesticide on maize in Ghana. The study,
however, did not capture images with the drone for mapping or monitoring purposes
but for pesticide application, which is part of precision farming. Planetscope data are
commercial, and only few a funded projects encourage the use of these data. However,
because of restricted funding for funded initiatives, CR-MFS areas in Ghana’s Northern
Regions do not have access to very high-resolution satellite images for managing and
making decisions in farming, as well as the effects on the environment.

Field Observations and Key Findings

Robust primary data collection was achieved using focus group discussions (FGD)
and ground truthing. Specifically, FGD in conjunction with participatory rural evaluation
approaches, aids scientists in producing pertinent primary data [113,114]. Some of the
findings from the literature were confirmed by field observations. These results were
cross-validated by community members (Figure 4).
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Figure 4. Emergence of a Natural Dam at Karaga in the Northern Region.

On farmlands, new grass species known as “Burkina” (Figure 5) have been observed
by farmers. In most farming communities, the “Burkina” grasses are thought to be the
cause of the depletion of water retention capacity and soil nutrients.
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The usage of fertilizers on farmlands and weedicides like “condemn” are thought to be
the causes of the “Burkina”. Throughout the previous five years, the research region would
have been able to map and observe the emergence of “Burkina” if high-resolution RS data
had been applied. There were variations in the spectral fingerprints when compared to
cropland cover data from the same area during a three-decade timeframe. There have been
significant changes in agricultural extents and smallholder water reservoir availability when
comparing photos of farmland cover from five years ago with more recent image analysis. It
is a typical case that calls for continuous and frequent farmland surveillance in the research
region. In other places, gullies and gutters turned into sizable sections of streams in just
three (3) seasons. Therefore, in order to demonstrate a relationship between farmlands,
pasturelands, and urbanization, a baseline spatial analysis of developments in the majority
of communities is required. As a result, the field observations also demonstrated the
necessity of doing frequent fieldwork to close knowledge gaps on the dynamics of resilience
and sustainable land management in the region. For example, streams and drains have
arisen on farmlands in Dangi, Sissala East District, Upper West Region, preventing access
to farmlands. Certain farmlands become impassable during the height of the rainy season.
According to reports, these advances escaped early detection and appeared in Dangi within
the previous two years.

5. Conclusions

This paper uses a systematic literature review and field observations to explore the
applications of RS data in enhancing sustainable and precision agriculture in CR–MFS
areas in the Northern Savannah Regions of Ghana. The literature review explored both
published and grey literature on the application of RS for mapping the extents of cropland,
pastureland, smallholder water, and irrigation area mapping over a thirty (30) year period
(1992–2022). Field observations were conducted to validate the findings from the literature
survey. In spite of the advantages of RS in enhancing precision agriculture in many places,
its adoption and use in many developing countries, such as Ghana, is slow and dearth
in many instances. Our fieldwork investigations show that both peasant and commercial
farmers in the CR-MFS areas in the Northern Savannah Regions of Ghana have yet to
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adopt RS for precision farming. Thus, most farmers in the study area do not have the
technology to benefit from all the advantages it comes with, including management plans.
To begin with, assisting farmers with RS technologies on monitoring to prevent yield losses
from weeds, insects, and diseases may provide the most economic and environmental
benefits. Also, access to timely, cost-effective RS data and integrating these with decision-
derived value-added products, decision support systems, or other expert systems in a
user-friendly fashion are needed in the study area. However, the costs of high-resolution
satellite data acquisition need to be subsidized. To subsidize, such a cost would necessitate
the deployment of UAVs to assist farmers with precision agriculture.

New developments in UAVs and sensors facilitate cost-effective data collection at very
high spatial and spectral resolutions. The use of UAVs in precision farming and sustainable
land management is currently lacking in the area. However, although satellites are capable
of mapping large areas at an instance, UAVs are most suitable at the farm-by-farm level
rather than regional-scale level mapping. The loss of certain native species of grass, the
emergence of new species, waterlogging, and the appearance of natural dams and streams
in some areas were validated during field observations. With the application of very high-
resolution RS data, early warning signs could have been detected and mitigation measures
taken. In the study area, only one study used RS data to report on farmland performance
and soil moisture indices. It is critical for comprehending the possible causes of nutritional
depletion that are not typically discussed in the literature. Currently, it is unknown whether
CR–MFS have negative impacts on soil water retention and invasive species occurrences. If
there are any such negative impacts, they have not been detected.

6. Recommendation

By incorporating UAVs into research and management strategies, stakeholders can
delve deeper into understanding the complexities of crop performance, soil moisture
variations, and the nuanced distinctions between native and invasive species of grasses.
Furthermore, recognizing the significance of UAVs in monitoring land degradation and
related phenomena necessitates a call for increased funding and investment in this domain.
Investment will not only accelerate technological advancements in UAV capabilities but
will also facilitate the widespread integration of UAVs into monitoring programs, ensuring
sustainable and informed decision-making in agricultural practices. This effort will not only
advance scientific understanding but also pave the way towards enhancing sustainable
and precise agriculture, informed farmer decisions, and sustainable land use practices in
the study area. Noteworthy, however, is the fact that UAVs are only capable of mapping at
the smaller unit farm-by-farm level and not at the regional land use classification level.
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112. Teke, M.; Deveci, H.S.; Haliloğlu, O.; Gürbüz, S.Z.; Sakarya, U. A short survey of hyperspectral remote sensing applications in
agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul,
Turkey, 12–14 June 2013; pp. 171–176. [CrossRef]

113. de Vos, A.; Preiser, R.; Masterson, V.A. Participatory data collection. In The Routledge Handbook of Research Methods for Social-
Ecological Systems; Taylor & Francis: Abingdon, UK, 2021; p. 119.

114. Nyerges, T.; Jankowski, P.; Drew, C. Data-gathering strategies for social-behavioural research about participatory geographical
information system use. Int. J. Geogr. Inf. Sci. 2002, 16, 1–22. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/RAST.2013.6581194
https://doi.org/10.1080/13658810110075987

	Introduction 
	Materials and Methods 
	Study Area 
	Literature Review 
	Fieldwork 

	Literature Review on Global Applications of Remote Sensing in Agricultural Activities 
	Results 
	Conclusions 
	Recommendation 
	References

