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A B S T R A C T   

The Purdue Improved Crop Storage (PICS) bag is often associated with preventing grain damage from insect 
infestation, reducing aflatoxin accumulation in stored grain, and avoiding exposure to hazardous storage 
chemicals. However, limited knowledge is available on the information channels driving the adoption of the 
technology. Using data from 429 households, this study examines the impacts of social learning and extension 
services on the speed of adoption of PICS bags in Tanzania. We utilized the doubly robust multivalued inverse 
probability weighted regression (MIPWRA) model to estimate the impact and the Laplace regression model to 
evaluate the heterogeneous effects of the two information channels. The impact results indicate that social 
learning and extension services reduce the time to adopt PICS bags by 51 % and 49 %, respectively. Moreover, 
the speed at which farmers adopted the technology was faster when using the two information channels jointly 
(61 %) than individually. The Laplace regression model results show that the marginal impacts of the two 
channels are higher for the households in the upper quantiles of the distribution, compared to the lower quantiles 
representing the early adopters. Designing policies that account for different adopter groups (innovators, early 
adopters, early majority, late majority, and laggards) is therefore essential.   

1. Introduction 

In Eastern and Southern Africa, it is estimated that postharvest grain 
losses (hereafter referred to as PHLs) amount to about US$1.6 billion per 
year, equivalent to 13.5 % of the total value of grain production pre-
dicted to be worth $11 billion (World Bank, 2011). Although these losses 
can occur at different stages of the post-production chain, most occur 
during storage, mainly due to pest (insects/rodents) damage, spillage, 
spoilage, and contaminations (Affognon et al., 2015; Abass et al., 2014). 
Pest infestations and poor quality of storage facilities are responsible for 
most of the total postharvest losses in Tanzania (World Bank, 2011). 
These losses reduce the quantities available for sale and future con-
sumption, coupled with income loss through price discounts for 
damaged crop produce for most smallholder farmers (Kadjo et al., 
2016). Qualitative postharvest losses can also lead to a loss in market 

prospects and nutritional value, leading to severe health risks if associ-
ated with the consumption of aflatoxin-contaminated grain (World 
Bank, 2011). 

Most cereals, pulses, and oilseeds, such as maize, beans, and 
groundnuts, which form the base for food, income, and nutrition for 
most households in Tanzania, are highly vulnerable to aflatoxin 
contamination and insect damage. The postharvest loss is estimated at 
30–40 % for cereals and even higher for perishable crops (URT/MOA, 
2019). Notwithstanding the significant variations in the estimates, 
postharvest losses are estimated at over 20 % for the major cereals and 
pulses (Abass et al., 2014; Mutungi and Affognon, 2013; Abass et al., 
2018). Farmers lose 11.7 % of their maize during harvesting activities, 
with about two-thirds occurring during storage (Chegere, 2018) 

The primary loss agent for stored maize is the infestation by insects’ 
such as the larger grain borer (LGB) and the maize weevils (Vowotor 
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et al., 2005), while the significant pests for pulses such as beans are 
bruchids (Mutungi et al., 2020). PHLs should not only be viewed as the 
loss of solid matter and quality that pose food insecurity and food safety 
risks but also as the loss of all the resources (land, labor, capital) used in 
grain production (Sheahan and Barrett, 2017). Traditional storage 
structures commonly used by farmers (e.g., polypropylene bags, gra-
naries made of plant materials, and mud) are not very effective in pre-
venting insect infestations (Chigoverah and Mvumi, 2016; Abass et al., 
2014; Omotilewa et al., 2019). Some farmers use grain protectants, 
including traditional admixtures (ash, soil, inert dust, plant oils, and 
other botanicals) and synthetic insecticides. Still, these suffer from 
limited efficacy, poor standardization and labeling, expiration, and 
adulteration, which may make them ineffective and dangerous to the 
health of consumers and the environment (World Bank, 2011). 

Given the food security, food safety, economic and ecological im-
plications of PHL reduction, it is critical to employ appropriate tech-
nologies at different stages of the post-production chain. Scaling the 
adoption of improved postharvest storage technologies (IPHTs) is one of 
the priority investment areas for commodity value chain development in 
Tanzania’s Agricultural Sector Development Program (ASDP-II) (2016/ 
2017–2025/2026). To this end, the Ministry of Agriculture (MOA) has 
recently adopted a 10-year National Postharvest Management Strategy 
(NPHMS) (2019–2029). The strategy entails promoting the availability, 
accessibility, affordability, and adoption of IPHTs. 

Adopting IPHTs offers a potential solution to some of these problems. 
Recent studies show that airtight containers such as metal silos and PICS 
bags significantly reduce grain damage caused by insect infestation.1 A 
study by Njoroge et al. (2014) showed that maize grain damage stored in 
airtight bags was lower (3.4 %) than in polypropylene bags (74 %) in the 
presence of LGB infestation. Similarly, the adoption of metal silos almost 
wholly eliminated the losses caused by insect pests, making it possible 
for farmers to save an average of 150–200 kg of maize grain annually in 
Kenya (Gitonga et al., 2013). Apart from preventing grain damage from 
insect infestation, hermetic bags reduce aflatoxin accumulation in stored 
grain (Ng’ang’a et al., 2016) and avoid exposure to hazardous synthetic 
insecticides. Among IPHTs, PICS bags, have received significant popu-
larity among smallholder farmers in Tanzania. The increasing popularity 
of PICS bags can be ascribed to their efficacy in preventing grain damage 
from insect infestation, reducing aflatoxin accumulation in stored grain, 
and avoiding exposure to hazardous storage chemicals. Despite their 
positive effects, there is limited empirical evidence on the information 
channels driving its adoption in Tanzania. The empirical literature on 
agricultural technology adoption continues to ignore its dynamics 
(Montes de Oca Munguia et al., 2021). Considering adoption as a one-off 
static decision, many studies (e.g., Baoua et al., 2014; Chigoverah and 
Mvumi, 2016; Sudini et al., 2015) assessed the effectiveness of airtight 
storage containers in reducing PHLs based on ex-ante data and on- 
station experiments. However, technology adoption is not a one-off 
static decision but a dynamic process that entails information gath-
ering and learning (Jabbar, 1998). Farmers move through several stages, 
from learning to adoption to continuous or discontinuous use over time 
(Rogers, 2003). The few existing ex-post studies (Gitonga et al., 2013; 
Tesfaye and Tirivayi, 2018) on IPHTs have assessed the extensive 
margin and did not consider the dynamic nature of technology adoption 
at the intensive margin. As such, rigorous studies on the speed of IPHT 
adoption remain rare in Tanzania. 

Understanding the diffusion of modern technology depends on un-
derstanding the dynamic and cross-sectional patterns of technology 
adoption (Maertens and Barrett, 2013). This article contributes to filling 
this research gap by examining the determinants of the time to adopt 
PICS bags in Tanzania. Since PICS bags are relatively new and the 

uncertainties, risks, and information market imperfections accompa-
nying such a technology are not well known, we explicitly study the 
individual roles and combination of learning from friends and relatives 
(social learning) and extension agents in speeding the adoption of PICS 
bags. 

It is widely recognized that farmers are informed about the presence 
and efficient use of any novel agricultural technology through social 
interface with other farmers and extension workers (Genius et al., 2013). 
The positive role of social learning in the adoption and diffusion of new 
agricultural technologies is well documented in the literature. For 
instance, learning from neighbors increased the farmers’ adoption of 
improved seeds and fertilizer in Ethiopia (Krishnan and Patnam, 2013). 
Likewise, Genius et al. (2013) found that social learning strongly de-
termines irrigation technology adoption and diffusion. Learning through 
extension services also enables both the adoption and adaptation of 
technology to local conditions by deciphering information from new 
research to farmers and helps to explain to research workers the diffi-
culties and constraints farmers face (Anderson and Feder, 2007). 

Against this milieu, this paper examines the impact of social learning 
and extension services on the speed of adoption of PICS bags in 
Tanzania. We use the time-to-event data for the outcome variable and 
apply the MIPWRA model in a survival treatment effects framework to 
achieve this objective. To our knowledge, only a few studies has used the 
MIPWRA model to analyze the speed of agricultural technology adop-
tion in a multivalued setting. This study builds upon Manda et al. 
(2020), who used the inverse probability weighted regression (IPWRA) 
model, but not in a multivalued setting, to estimate the impact of 
cooperative membership on improved maize variety adoption in 
Zambia. Other studies (e.g., Beyene and Kassie, 2015; Dadi et al., 2004a; 
Nazli and Smale, 2016) have used models based on the difficult-to- 
interpret hazard rates to model the diffusion of agricultural 
technologies. 

The results from MIPWRA give the mean effects, which hide the 
distributional impact of learning from the two information channels 
across all categories of adopters (from innovators, early adopters, to 
laggards). For this reason, we further estimate the heterogeneous effects 
of social learning and extension services across the entire time to 
adoption distribution conditional on other covariates using the Laplace 
regression model. These results contribute to policy-making efficacy 
because they need policymakers to avoid a ‘one-size fits all’ approach 
across the different adopter groups (innovators, early adopters, early 
majority, late majority and laggards). Most previous studies use the 
univariate nonparametric Kaplan-Meier estimates to assess a treatment’s 
distributional effects and do not consider the effects of other covariates 
(e.g., Dadi et al., 2004a; Nazli and Smale, 2016). The other common 
methods of estimating quantile treatment effects (e.g., Frölich and 
Melly, 2013) do not consider our outcome variable’s censored nature. 
The Laplace regression model (Bottai and Zhang, 2010) estimates the 
treatment effects across the percentiles of the time to adoption distri-
bution. Unlike the other methods, this model accounts for the censored 
outcome variables and does not rely on the proportional hazard 
assumption like the cox proportional hazard model. 

The rest of the article is organized as follows: The next section de-
scribes the empirical framework, while Section 3 presents the data and 
descriptive statistics. Section 4 presents the results and discussion, and 
the last section draws conclusions and policy recommendations. 

2. Empirical Framework 

In the agricultural adoption literature, Rogers’ Innovation Diffusion 
Theory (IDT) has been the dominant theory guiding how and why in-
dividuals adopt or reject modern technologies. Given that communica-
tion is at the core of IDT (Rogers, 2003), we use Rogers’ IDT as a guiding 
framework to explain how communication channels influence the 
adoption of IPHTs. In our study, there are two distinct classes of 
communication channels - extension services and social learning. 

1 Channa et al. (2022) define the PICS bag as a three-layer hermetic bag that 
consists of an outside layer of woven polypropylene and two inner layers of 
polyethylene. 
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Extension services represent an organized, formal, and top-down process 
of communicating information by extension agents to farmers regarding 
IPHTs. With extension services, farmers are expected to adopt the IPHTs 
once the extension agents advised them on the technical and financial 
performance of the innovation. 

In contrast, social learning represents an informal process whereby 
farmers in each social group or neighborhood, or markets communicate 
with one another and learn about IPHTs. With social learning, farmers 
are expected to adopt the IPHTs once they are convinced of the per-
formance of the innovation among early adopters. 

Communication through extension services occurs between in-
dividuals of diverse cultural and socioeconomic backgrounds (extension 
agent and farmer) while that through social learning occurs between 
members of similar beliefs, education, socioeconomic status (farmer to 
farmer). The homophily effect enables fellow farmers to communicate 
and visit with each other more frequently than extension agents do with 
farmers. Since they come from the same background and status, they 
may consider the information exchange about the innovation more 
credible to change their strong attitudes toward the new innovations. 
They may then take a risk in investing in the adoption of the innovation. 
As such, it can be argued that social learning can lead to quicker 
adoption. On the other hand, the farmers using extension services may 
take the extension advice of the extension agents (who are considered 
knowledgeable about innovations) regarding the performance of the 
innovation more seriously than their fellow farmers’ testimony of the 
performance of the innovation. In this case, it can be argued that 
extension services can lead to quicker adoption. Considering these two 
arguments, we can hypothesize that communication channels are sys-
tematically associated with the time to adoption of IPHTs. In other 
words, a farmer may be less or more resistant to adopt PICS bag 
depending on the communication channel – social learning (a fellow 
farmer) vis-à-vis extension service (an extension agent) 

Depending on their attitudes toward innovation, Rogers (2003) 
identified five groups of adopters - innovators, early adopters, early 
majority, late majority, and laggards. For example, the late majority 
adopters, who are skeptical of change, will only adopt an innovation 
after they confirm that it has been adopted by the majority. Similarly, 
laggards, who are traditionally conservative, only adopt an innovation 
after much resistance or even end up not adopting the innovation. This 
suggests the need to consider the heterogeneity among households and 
all parts of the time to adopt the distribution of PICS bags. 

Our choice of Rogers’ IDT as a guiding framework is to identify the 
variables to be included in the time to adoption model. IDT suggests that 
the success of an innovation is determined by the characteristics of the 
adopters. 

2.1. Impact of social learning and extension services on time to the 
adoption of PICS bags 

Agricultural technology choice is a dynamic process that involves a 
series of judgments based on previous selections and the current or ex-
pected economic environment such that simple dichotomous decision 
models are incapable of capturing the dynamic nature of this process (An 
and Butler, 2012). Duration models, based on hazard ratios as the ef-
fects, have primarily been used to model such as a dynamic process to 
understand the factors that explain the length of a spell (e.g., Dadi et al., 
2004b; Abdulai and Huffman, 2005; Beyene and Kassie, 2015; Canales 
et al., 2020). In the present study, a spell starts when a farmer becomes 
aware of the PICS bags for the first time and ends when the farmer 
adopts the bags. In the subsequent section, we use “time to adoption” or 
“speed of adoption” to depict the length of the spell. 

Popular as they may be, hazard ratios or rates are only suitable for 
population effects when they are constant, which happens when the 
treatment enters linearly, and the outcome distribution has a 
proportional-hazards form (Stensrud et al., 2019). Results based on 
hazard ratios are also challenging to interpret causality even if the 

proportional hazard assumption is satisfied (Stensrud et al., 2019). In 
addition, even though most studies report the average hazard ratio, it 
may change over time, so its interpretation based on the average may be 
misleading (Miguel, 2010). To avoid these problems, we use the survival 
treatment effects, i.e., the likelihood-adjusted censoring (LAC) MIPWRA 
(hereafter referred to as LAC-MIPWRA), in which the effect of interest is 
the average treatment effect on the treated (ATT). This measure is easier 
to interpret because the results are in the same time units as the outcome 
instead of the relative conditional probabilities in the case of hazard 
ratios. Second, no linearity in treatment nor proportional-hazards form 
is required to estimate and interpret the ATT effectively. 

In addition to the reasons mentioned above, our specific choice of the 
MIPWRA model is also based on the following considerations. First, the 
selection into the social learning and extension services is non-random. 
That is, households that used social learning and extension services and 
those that did not may differ systematically. For example, farmers who 
seek out and receive extension services might be more skilled and 
motivated than farmers who do not seek such services (Maertens et al., 
2021). Therefore, estimating the impact of extension services and social 
learning without accounting for systematic variation may result in 
biased estimates. Second, the treatment variable takes on four levels, i. 
e., no social learning and extension services, social learning only, 
extension services only, and a combination of social learning and 
extension services. Propensity score-based approaches are the most 
popular methods used to deal with the problem of non-random assign-
ment, albeit mainly applied to binary treatment variables. Only recently 
have more authors started using propensity score-based methods 
applied to multivalued treatment models (Cattaneo, 2010; Kotu et al., 
2017; Manda et al., 2021; Smale et al., 2018). 

Before estimating the impacts using survival or hazard-based models, 
it is a common practice to analyze the distribution of outcome variables, 
independent of the explanatory factors. To achieve this, we estimate the 
nonparametric Kaplan–Meier survival estimator (Kaplan and Meier, 
1958). The estimator makes no assumptions about the form of the sur-
vival function and since the covariates are not modeled, the comparsion 
of the survival experience is done at the qualitative level across the 
values of the covariates (Cleves et al., 2008). 

To estimate the impact of social learning and extension services 
using the MIPWRA model, we follow three steps: First, we estimate the 
parameters of the propensity score model, and then we calculate the 
inverse probability weights (IPW) for each level of treatment. Specif-
ically, we use the multinomial logit (MNL) model to estimate the pro-
pensity score model. The propensity score, in this case, is defined as the 
probability of using social learning and extension services given 
observed characteristics (xi) and can be denoted as: 

p(xi) = Pr(Ti = 0…3|xi) (1)  

where Ti indicates whether or not a household i had access to social 
learning and extension services, social learning only, extension services 
only, and a combination of social learning and extension services, i.e., T 
= 0…3. 

We use the maximum likelihood weighted regression (regression 
adjustment model) in the second step for each treatment level to obtain 
the household’s treatment-specific predicted mean outcomes.2 The 
estimated IPW are used to weight the maximum likelihood estimator, 
and a term in the likelihood function adjusts for right-censored survival 
times. In the last step, we compute the means of the treatment-specific 
predicted mean outcomes of the time to adoption. The differences in 
these outcomes provide the average treatment effects (ATEs): 

2 As with other previous studies, we make the assumption that the outcome 
model follows a Weibull distribution. We make the same assumption for all the 
models presented in this study except for the Laplace regression model 
described in the subsequent sections. 
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ATETi = E
(
yTi − y0

)
(2)  

where yT denotes the potential outcome (time to the adoption of PICs 
bags) for a household that had used either social learning, extension 
services, or a combination of the two; and y0 denotes the outcome for the 
control category, i.e., no social learning and extension services. 

Restricting the computations of the means to the sub-sample of 
households who have used social learning and extension services, we 
obtain the average treatment effect on the treated (ATT). The ATT can be 
defined as: 

ATT
T̂i , T→

= E
{
(yT̂i

− y0i)|T = T→
}

(3) 

The ATT requires three different treatment levels: t̂ defines the 
treatment level of the treated potential outcome; 0 is the treatment level 
of the potential control outcome, and T = T→ restricts the expectation to 
include only those individuals who receive treatment level T→ . 

Since we use cross-sectional data to estimate the ATE and ATT, 
identifying the treatment effects relies mainly on three assumptions, i.e., 
conditional independence (CI), enough overlap, and correct adjustment 
for censoring. The first two assumptions are common to all methods that 
use propensity scores, while the third is specific to censored or time-to- 
event data. The fundamental idea behind the CI assumption is that 
confounding, if extant, is entirely accounted for by observed covariates 
(i.e., covariates included (x) in Eq. (1)). The overlap assumption ensures 
that each household could receive any treatment level.3 The third 
assumption can be thought of as having two parts. The first part is the 
expected survival assumption which states that the censoring times are 
stochastically independent of the potential outcomes, and the treatment- 
assignment process is conditional on the variables included in the model 
(Kalbfleisch and Prentice, 2011). The second part is that the technique 
used to adjust censoring must be correct. This study uses the LAC- 
MIPWRA to adjust for right-censored times to adoption.4 To the extent 
that the MIPWRA uses the LAC to account for censoring, we assume that 
the outcome model has been correctly specified. 

To assess the robustness of the LAC-MIPWRA model results, we also 
estimate the results using the ordinary least-squares (OLS) regression 
model and the two most popular methods used in modeling time to event 
data —the Cox proportional hazards and the survival time regression 
models. 

2.2. Laplace regression model 

A linear regression model typically creates a linear relationship be-
tween a set of predictor variables and the conditional mean of an 
outcome variable. However, modeling only the mean may obscure 
essential aspects of the association between the outcome and its pre-
dictors, especially if the outcome distribution is skewed, as with time-to- 
event data (Beyerlein, 2014). Similarly, as mentioned above, the Cox 
hazard proportional model is the most popular method of analyzing 
survival analysis data. However, it is based on the proportional hazard 
assumption and models the hazard rate instead of the survival time, 
making it difficult to interpret (Wang and Wang, 2009). 

Quantile regression methods capture heterogeneity across the sam-
ple in variance and the structural model and relax the proportionality 
constraint on the hazard (Portnoy, 2003; Wang and Wang, 2009). 
Considering that the time to adoption is censored, we use the Laplace 
regression model (Bottai and Zhang, 2010) to model the censoring. 

Following Bottai and Zhang (2010) and Bottai and Orsini (2013), let Di 
be the time to adoption defined above and xi vector of observed cova-
riates defined in Eq. (1). Di is censored, and we observe yi = min(Di, Ci), 
where Ci is a censoring variable. It is assumed that Ci is independent of 
Di, conditional on the covariates. 

Di = x́iβ(p)+ μi (5)  

where p ∈ (0, 1) is a fixed and given probability and μi is an independent 
and identically distributed residual whose p -quantile equals zero, i.e., P 
(μi ≤0|xi) = p and follows a standard Laplace distribution. It is important 
to note that Eq. (5) is the same as assuming that x́iβ(p) is the p-quantile of 
the conditional distribution of Di given xi, which can be expressed as P 
(Di ≤ x́iβ(p)|xi) = p. 

The vast literature informed the variables we included in the equa-
tions outlined above on the adoption and diffusion of agricultural 
technologies. Previous studies have shown that household characteris-
tics such as sex, marital status, education, and household size are 
important determinants of the rate and speed of adoption of new agri-
cultural technologies (e.g., Beyene and Kassie, 2015; Dadi et al., 2004a; 
Nazli and Smale, 2016). The sex of the household head is one of the 
factors influencing the adoption of technologies, with a common finding 
being that women tend to adopt improved technologies at a lower rate 
than men because they generally face constraints in terms of access to 
resources and time (Pender and Gebremedhin, 2007). Previous studies 
(e.g., Yigezu et al., 2018; Abdulai and Huffman, 2005; Khataza et al., 
2018) have shown that education plays a vital role in speeding the 
adoption of improved agricultural technologies as farmers can easily 
decipher the information relating to the technology and understand 
among other things its benefits. Household size is usually used to proxy 
labour endowment, especially in developing countries, such that the 
larger the family, the more labour is available for agricultural produc-
tion. The common finding in studies investigating the adoption of 
agricultural technologies is that household size is associated with an 
increase in the adoption rate of such technologies (Kassie et al., 2008; Di 
Falco and Veronesi, 2013). 

The size of the farm and livestock ownership are essential indicators 
of household wealth and are expected to reduce the time to adopt 
improved technologies (e.g., Manda et al., 2020; Abdulai and Huffman, 
2005). The adoption of agricultural technologies is usually associated 
with increased costs. Since most of the farmers in developing countries 
are credit constrained, this limits the adoption of most agricultural 
technologies. Relaxing such constraints have been shown to increase 
adoption (Adegbola and Gardebroek, 2007). In the same vein, having a 
mobile money (M-pesa) and savings account may also indicate access to 
financial services and resources essential for the adoption of new tech-
nologies (Gitonga et al., 2013). The years that a household has lived in a 
village are usually used as a proxy for social capital and networks, and it 
has been shown to increase the adoption of new technologies (e.g., 
Beyene and Kassie, 2015; Kassie et al., 2013). 

Access to input and output markets is associated with transaction 
costs as they can increase time and costs associated with transportation 
and can adversely affect the adoption of technologies (Teklewold et al., 
2013). In this study, we proxy transaction costs with the distance to the 
village, PICS bags, and district markets. 

3. Data and descriptive statistics 

3.1. Data 

The data comes from a survey conducted using a multistage stratified 
sampling procedure. The survey was conducted in August and 
September 2020 in four purposively selected districts—Babati, Kilolo, 

3 In the ensuing sections, we test the overlap assumption using density dis-
tributions to assess whether balancing was achieved using the MIPWRA model  

4 We had some situations where we had left-censored observations i.e., cases 
where farmers adopted the same year they heard about that technology. 
Following Canales et al. (2020) we added 0.5 to these observations considering 
that farmers’ time to adoption was not necessarily zero. 
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Kongwa, and Mbozi for two reasons: predominantly maize and beans 
growing, and the Africa Research in Sustainable Intensification (RISING) 
East and Southern Africa project has promoted significant postharvest 
interventions.5 Next, using probability proportional to size sampling 
(PPS), ten wards were selected from which 14 villages were chosen 
randomly. A sampling frame was developed based on the household list 
with the help of the extension agents from the selected villages. Well- 
trained enumerators interviewed 579 randomly selected households 
using CAPI-based survey software called surveybe. All participants 
received a clear explanation of the survey objectives, after which only 
those who gave verbal consent to participate in the study were inter-
viewed. In this study, we use a sub-sample of 429 households for which 
we collected data on postharvest technologies. 

Detailed information was collected on demographic and socioeco-
nomic characteristics, e.g., household head’s age, sex, and education; 
livestock ownership, farm size, crop production awareness, and adop-
tion of PICS bags. 

3.2. Descriptive statistics 

Table 1 shows the descriptive statistics of the treatment variables 
defined Section 2. On average, 13 % of the households did not access 
information on IPHTs from friends/relatives or extension agents 
(Table 1). Results further indicate that more farmers obtained infor-
mation on IPHTs from extension agents (27 %) than from social net-
works (19 %). Overall, 40 % of the households accessed postharvest- 
related information from social networks and extension agents. 

Section 2 defined the time to adoption as the difference between the 
year farmers became aware of PICS bags (Fig. 1 a) and the year of the 
first adoption (Fig. 1 b). In the technology adoption–diffusion process, 
individuals pass through different phases; awareness, persuasion, deci-
sion (adoption or rejection), implementation, and confirmation (Rogers, 
1995). Information is sought at all these stages to reduce risk and un-
certainty about the usefulness of the technology. Fig. 1a and Table A1 in 
the appendix show that few farmers were aware of PICS bags between 
2000 and 2013. However, we see a significant increase in technology 
awareness between 2014 and 2020. For instance, 25 % and 38 % of the 
farmers became aware of PICS bags in 2017 and 2018, respectively. 
Coincidentally, most of the farmers first adopted PICS bags during this 
period. This may reflect the awareness campaigns undertaken by several 
non-governmental organizations (NGOs) to increase the use of airtight 
containers to reduce postharvest grain losses. 

We present the description of variables and summary statistics of the 
variables considered in the study disaggregated by the treatment vari-
ables in Table 2. On average, the time to adopt PICS bags is 2.2 years for 
farmers who did not learn from friends/relatives or extension agents and 
1.5 years for households with access to both. Overall, the time to 
adoption is 1.7, which is relatively small compared to crop varieties (e. 
g., Nazli and Smale, 2016; Manda et al., 2020) and conservation agri-
culture (CA) technologies (Khataza et al., 2018) partly because PICS 

bags maybe not be as knowledge intensive as CA.6 

On average, about 84 % of the sampled household heads are male. 
Most of the sample households (83 %) are married and living with their 
spouses. Households own about 1.9 ha of land, with farmers jointly 
learning from social networks and extension owning the most significant 
land. The percentage of households with access to credit is 16 %, while 
those with mobile money (M-pesa) and savings accounts were 88 % and 
23 %, respectively. It is apparent from the results in Table 2 that 
households who had an opportunity to learn more about PICS bags 
through social networks and extension agents were more aware of af-
latoxins than those who did not at all or knew from only one of the two 
information channels. We capture the transaction costs regarding 
acquiring information about PICS bags using the distance to the PICS 
bags market, input, and output markets (district and village markets), 
and distance to the extension agent’s office. It takes on average about 
217 min to walk to the district market and only 27 min to the village 
market. The distance to the extension agent’s office is a proxy for the 
cost of obtaining information from the agents such that the further away 
the office is, the more difficult and costily for the farmers to obtain in-
formation regarding PICS bags. 

Fig. 2 further presents the distribution of the time to adoption by the 
treatment variables. Like a strip or box plot, the violin plot shows the 
median as a short horizontal line with a dot, the interquartile range 
(first-to-third) as a narrow-shaded box, and the lower-to-upper adjacent 
value range as a vertical line. There seems to be significant heteroge-
neity in the time to adoption distribution, with clustering in the upper 
and lower tails of the distributions. To explore this heterogeneity, in the 
subsequent sections, we use the censored quantile regression model 
described in Section 2 to estimate the effects of the treatment variable on 
different levels of the time to adoption distribution conditional on the 
household and farm characteristics. 

4. Empirical results and discussion 

4.1. Nonparametric analysis-Kaplan–Meier curve 

We first explore the distribution of the time to the adoption of PICS 
bags and the relationship with learning through social networks and 
extension agents. Fig. 3 shows the Kaplan–Meier survival estimates for 
the adoption spell. Most households adopted PICS bags in the first five 
years of hearing or becoming aware of the technology. In other words, 
the probability that a household will adopt, given that they have not 
adopted, increases gradually, as shown by the decline in the survival 
rate. 

Fig. 4 shows the Kaplan–Meier survival estimates for our treatment 
variables and time to adoption. The nonparametric Kaplan–Meier curve 
presented in Fig. 4 does not account for other factors affecting adoption 
time or social and extension learning. The estimates show that farmers 
who jointly learned from social networks and extension were more likely 
to adopt PICS earlier than those from either of the two information 
channels in isolation. Similarly, farmers were more likely to adopt PICS 
faster if they had access to either social learning or extension agents than 
those who did not have access to any of the two. The Log-rank test for the 
equality of the survival function also affirms this result since we reject 
the null hypothesis that the distribution of the estimates in Fig. 4 is the 
same (χ2 = 33.08; P = 0.000). It is apparent that there is a potential 
relationship between the treatment variables and the time to adoption; 
however, we did not account for other confounding variables that are 
likely to affect the treatment and outcome variables. We address this 
issue next using the LAC-MIPWRA and the parametric survival models. 

Table 1 
Social learning and extension services.  

Category Abbreviation Frequency (N) Percent 

No social learning and extension S0 E0  55  13.23 
Social learning only S1 E0  84  19.49 
Extension services only S0 E1  117  27.15 
Social learning and extension services S1 E1  173  40.14 
Total   429   

5 See https://africa-rising.net/east-and-southern-africa/ for details about the 
project. 

6 The average time to adoption for crop varieties ranged from 6 to 8 years and 
that CA from 4 to 6 years based on the cited studies. 
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4.2. Multivalued survival treatment effects 

4.2.1. Determinants of the time to the adoption of PICS bags 
Table 3 presents the second stage parameter estimates from the LAC- 

MIPWRA model described in Section 3. The first stage results from 
estimating the multinomial logit model (Eq. (1)) are shown in Table A2 
in the appendix. As mentioned in Section 3, the LAC-MIPWRA model 
results are valid if drawn from observationally similar groups according 
to the reweighted propensity scores. Results in Fig. A1 show that our 
four groups’ overlap assumption is satisfied after the propensity score 
reweighting, suggesting that the specification in Section 3 is valid for 
deriving the impact estimates. 

As the study’s main objective is to assess the explanatory and 
treatment variables’ impact on the time to adoption, we do not interpret 
the first-stage results. We report and discuss the results separately for no 
extension or social learning, social learning, extension and social 
learning. 

4.2.1.1. No extension or social learning. Results in Table 3 indicate that 
married household heads who did not have access to information on 
PICS bags from social networks and extension agents were more likely to 
adopt PICS bags earlier than those who were not married. The time to 
adoption also decreases with the size of the household, suggesting the 
importance of labor in adopting IPHTs. The household size is usually a 
proxy for family labor endowments, especially in developing countries. 
As expected, farmers who are aware of aflatoxins adopted PICS earlier 
by 0.5 years. PICS bags create an airtight seal that lowers insect storage 
loss and counteracts aflatoxin contamination in stored grain (Channa 
et al., 2019). Therefore, it is envisaged that farmers aware of aflatoxins 
are more likely to adopt PICS bags. Results also indicate that households 
with friends or relatives in leadership positions adopt PICS bags faster 
than those without leadership positions. This variable is a proxy for 
political connections that impact networking and play a vital role in 
farmers adopting improved agricultural technologies by facilitating 
better access to inputs and credit supplied by public institutions (Kassie 
et al., 2013). 

4.2.1.2. Social learning. Consistent with other studies (e.g., Abdulai and 
Huffman, 2005; Euler et al., 2016; Nazli and Smale, 2016), education 
reduces the time to adopt for households who obtained information on 
PICS bags from social networks, pointing to the complementarity of the 

two. Livestock ownership generally reduces the time to adoption and 
this result align with those of Manda et al. (2020) and Dadi et al. (2004b) 
regarding the importance of livestock in technology adoption. Consis-
tent with similar studies (e.g., Gitonga et al., 2013), having a bank ac-
count, a proxy for access to financial services and credit, increases the 
rate of adoption. Contrary to our expectations, the speed of adoption was 
lower for households who were aware of aflatoxins. 

Overall, the variables capturing the transaction costs, i.e., distance to 
the village, and PICS bags markets, correlate with the adoption speed. 
The positive coefficients for distances to the market (i.e., district, village, 
and PICS markets) imply that farmers far away from the market are less 
likely to adopt PICS bags. The result is expected because of the costs 
associated with traveling to distant markets, which might prevent 
farmers from accessing information about airtight storage technologies 
such as PICS bags. These results are broadly consistent with Tesfaye and 
Tirivayi (2018). Finally, considering the geographical heterogeneity, the 
results show that the time to adoption is shorter for Babati households 
than those in Mbozi district. Relative to other districts, households in 
Mbozi took more time to adopt PICS bags (on average, 1.9 years). This 
reflects the differences in climatic conditions, institutional support ser-
vices, and other factors that might affect the adoption/dissemination of 
IPHTs such as PICS bags. 

4.2.1.3. Extension services. As mentioned above, the size of the house-
hold is an important factor in reducing the time to the adoption of PICS 
bags and so is livestock ownership. Relative to the single woven bags 
commonly used by farmers to store their harvest, PICS bags are more 
expensive (Channa et al., 2019); hence, access to credit becomes vital to 
ease farmers’ liquidity constraints. Like other studies (e.g., Abdulai and 
Huffman, 2005; Alcon et al., 2011; Dadi et al., 2004b), Table 3 shows 
that the time to adopt PICS bags is reduced with getting credit. Trans-
action costs were also important in increasing the time to adoption for 
the households as evidenced by the positive relationship with the dis-
tances to village and district markets. 

4.2.1.4. Extension and social learning. Results in Table 3 indicate that 
being a male household head reduces adoption time for households who 
jointly learned from social networks and extension. Unlike households 
who had no access to either social learning or extension, the speed of 
adoption increased for households heads who were married and had 
access to the two communication channels. As expected, land ownership 

Fig. 1. First year farmer became aware of PICS bags (a) and first year farmer adopted PICS bags (b).  
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minimizes the time to adoption, consistent with most of the studies on 
agricultural technology adoption (e.g., Euler et al., 2016). Similar to the 
households that accessed only extension services, credit was an 

Table 2 
Descriptive statistics.  

Variable Variable description S0 E0 S1 E0 S0 E1 S1 E1 All 

Mean (N 
= 57) 

SD Mean (N 
= 84) 

SD Mean (N 
= 117) 

SD Mean (N 
= 173) 

SD Mean (N 
= 429) 

SD 

Dependent variable 
Time to 

adoption 
Time to the adoption of PICS 
bags (years)  

2.228  1.443  2.06  1.616  1.594  1.352  1.457  1.483  1.713  1.496  

Independent variables 
Sex Sex of the household head (1 

= Male)  
0.842  0.368  0.869  0.339  0.786  0.412  0.867  0.341  0.842  0.365 

Marital status Married and living with 
spouse (1 = Yes, 0 =
otherwise)  

0.825  0.384  0.798  0.404  0.803  0.399  0.85  0.358  0.824  0.382 

Household 
size 

Household size in adult 
equivalent (number)  

4.694  2.41  4.797  2.076  4.282  1.934  4.937  2.212  4.7  2.151 

Education Education level of household 
head (years of formal)  

6.877  3.295  6.524  2.98  6.733  4.609  7  2.222  6.818  3.295 

Livestock ownership of livestock in 
Tropical Livestock Units 
(TLU)  

2.017  2.502  2.57  5.095  2.18  2.988  5.027  3.039  3.377  19.481 

Land Total land owned in hectares  1.975  1.905  1.735  1.448  1.781  2.188  2.059  2.246  1.909  2.051 
Years in 

village 
Number of years household 
head has lived in the village  

33.842  18.642  33.94  15.399  33.513  16.502  33.306  17.46  33.557  16.927 

Credit Access to credit (1 = Yes, 0 =
otherwise)  

0.088  0.285  0.19  0.395  0.077  0.268  0.231  0.423  0.162  0.369 

M-Pesa 
account 

Household has mobile money 
account (1 = Yes, 0 =
otherwise)  

0.807  0.398  0.869  0.339  0.846  0.362  0.925  0.264  0.877  0.329 

Savings 
account 

Household has savings 
account (1 = Yes, 0 =
otherwise)  

0.211  0.411  0.143  0.352  0.299  0.46  0.231  0.423  0.23  0.421 

Aware of 
aflatoxin 

Household aware of aflatoxin 
(1 = Yes, 0 = otherwise)  

0.07  0.258  0.298  0.46  0.12  0.326  0.393  0.49  0.258  0.438 

Leadership Household has friends/ 
relatives in leadership 
positions (1 = Yes, 0 =
otherwise)  

0.368  0.487  0.464  0.502  0.393  0.491  0.491  0.501  0.443  0.497 

PICS bag 
market 

Distance to PICS bag market 
in walking minutes  

150.491  115.37  120.179  133.846  131.983  125.09  134.451  125.033  133.121  125.457 

District 
market 

Distance to district market in 
walking minutes  

216.842  135.21  187.56  137.791  185.239  106.51  209.075  289.845  199.439  207.05 

Village 
market 

Distance to village market in 
walking minutes  

27.193  26.297  26.012  30.023  28.274  38.103  34.532  40.175  30.202  36.256 

Extension 
office 

Distance to extension office 
in walking minutes  

45.281  60.207  45.845  49.712  37.513  35.19  42.081  53.032  41.998  49.172 

Number of 
observations   

57   84   117   173   431   

Fig. 2. Violin plots for the distribution of the time to adoption by no social 
learning and extension services, social learning, extension services, and social 
learning and extension services. 

Fig. 3. The time to adoption of PICS bags.  
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important determinant of the time to adoption for households who had 
access to extension and social learning. Results further show that in-
crease in the distance to the PICS bag markets reduces the speed of 
adoption as explained above. Lastly households in Kongwa district 
adopted PICS bags earlier than those in Mbozi district. 

4.2.2. Impact of social learning and extension services 
Table 4 shows the effect on the subpopulations of households who 

learned from social networks and extension agents in isolation and 
jointly, i.e., the ATT.7 The ATE results are presented in Table A3 in the 
appendix. The ATT results indicate that the average adoption time 
would be 4.3 years if no household accessed social learning and exten-
sion services. However, if the households learned only from social net-
works, the average time to adoption would decrease by 2.2 years, a 51 % 
reduction compared with the potential outcome of no social and 
extension learning. These results are broadly consistent with those of 
Genius et al. (2013) and Khataza et al. (2018). 

Similarly, if households only learned from extension agents, the 
average time to adoption would decrease by 2.1 years, an estimated 49 
% reduction relative to the case of no social and extension learning. The 
ATT estimates also indicate that the collective knowledge from social 
networks and extension agents is associated with the most significant 
decline in the years to adoption. On average, joint learning from social 
networks and extension agents would reduce the average time to 
adoption by 2.6 years, a 61 % reduction in the years to adoption relative 
to the potential outcome of no social learning and extension services. 
These results are consistent with Genius et al. (2013), who contend that 
the presence of the other enhances the effectiveness of each type of in-
formation channel. Further, they explain that extension services will be 
more effective than social networks for speeding up the adoption process 
in areas with a critical mass of adopters. 

4.3. OLS, Cox Proportional hazard, and survival time models 

We also estimated the results using OLS, Cox Proportional Hazard, 
and survival time models to provide a robustness check for the LAC- 
MIPWRA results (Table 5). For brevity, we concentrate on the results 
from the treatment variables only. The OLS estimates show that the time 
to adoption reduces by 0.68 and 0.72 years with extension learning only 
and joint learning from social networks, respectively. 

Table 5 presents the coefficient and hazard ratio estimates. We use 
the hazard ratio to interpret our results since the Cox Proportional 
Hazard and survival time models are based on the hazard ratio. A hazard 
ratio greater (less) than one indicates that the variable reduces 

Fig. 4. The time to adoption of PICS by no social learning and extension ser-
vices, social learning, extension services and social learning and exten-
sion services. 

Table 3 
Determinants of the time to adoption of PICS bags.  

Variable Time to adoption (years) 

(S0 E0) (S1 E0) (S0 E1) (S1 E1) 

Sex 1.131 − 0.060 0.088 − 0.448**  
(0.745) (0.158) (0.421) (0.223) 

Marital status − 0.884** − 0.107 − 0.364 0.560**  
(0.426) (0.214) (0.288) (0.261) 

Household size − 0.250*** 0.058 − 0.071* 0.016  
(0.073) (0.050) (0.042) (0.027) 

Education − 0.012 − 0.044** 0.022 − 0.030  
(0.048) (0.020) (0.021) (0.031) 

Livestock − 0.035 − 0.010** − 0.090** 0.002*  
(0.061) (0.004) (0.036) (0.001) 

Land 0.033 0.006 − 0.025 − 0.077***  
(0.085) (0.045) (0.023) (0.028) 

Years in village − 0.005 0.001 − 0.002 0.005  
(0.005) (0.002) (0.008) (0.006) 

Credit − 0.413 − 0.286 − 0.789*** − 0.634***  
(0.709) (0.178) (0.146) (0.079) 

M-Pesa account − 0.328 0.045 − 0.190 0.010  
(0.287) (0.192) (0.223) (0.279) 

Savings account − 0.258 − 0.224*** − 0.179 0.101  
(0.396) (0.085) (0.316) (0.216) 

Aware of aflatoxin − 0.511*** 0.581*** − 0.026 − 0.170  
(0.174) (0.104) (0.181) (0.156) 

Leaders − 0.991*** 0.004 0.158 0.223  
(0.228) (0.177) (0.267) (0.155) 

Ln District market − 0.131 − 0.167* 0.228** 0.015  
(0.412) (0.102) (0.103) (0.060) 

Ln Village market − 0.402 0.167* 0.155* − 0.075  
(0.329) (0.102) (0.084) (0.059) 

Ln PICS bag market 0.182 0.083* − 0.113 0.211***  
(0.204) (0.048) (0.102) (0.045) 

Babati district 0.981 − 0.411** 0.061 − 0.324  
(1.309) (0.204) (0.281) (0.345) 

Kilolo district − 0.709 0.067 0.358 − 0.287  
(1.336) (0.131) (0.317) (0.194) 

Kongwa district 0.783 0.067 0.584 − 1.018***  
(0.717) (0.080) (0.363) (0.227) 

Constant 4.319 0.864 0.392 0.043  
(3.081) (0.751) (1.184) (0.395) 

Observations 429 429 429 429 

Note: Cluster robust standard errors at the ward level are reported in 
parenthesis. 

* p < 0.10. 
** p < 0.05. 
*** p < 0.01. 

Table 4 
Impact of social and extension learning on time to adoption of PICS bags.  

Treatment Potential outcome mean (without 
social learning and extension 
services) 

ATT Percent 
reduction (%) 

S0 E0 4.325*** 
(0.541)   

S1 E0  − 2.188*** 
(0.575)  

51 

S0 E1  − 2.126*** 
(0.473)  

49 

S1 E1  − 2.626*** 
(0.685)  

61 

Note: Cluster robust standard errors at the ward level are reported in 
parenthesis. 

*** p < 0.01. 

7 In survival analysis language, this is also known as the effect in a well- 
defined subpopulation that is at-risk. 
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(increases) the time to adoption. Results from the two models suggest 
that the time to adoption by households who learned from social net-
works and extension agents was more likely to reduce by 80 % and 103 
%, respectively, compared to those who did not know about PICS bags 
from this information channels. This speed of adoption is much higher 
than that if the household were to learn from only the extension agents 
(56 % and 88 %). The impacts of the treatment variables and the other 
explanatory variables are similar to the LAC-MIPWRA results regarding 
the direction of the effects with minimal differences in the magnitudes. 

We also estimated parsimonious models of the models, i.e., without 
other explanatory variables presented in Table 5 to assess how sensitive 
our results are to other factors. Results presented in Table A4 are rela-
tively similar to those in Table 5, which implies that selection bias may 
not be a very big problem in study. 

4.4. Laplace regression quantile survival effects 

The violin plots presented in Fig. 2 suggest that the effects of learning 
from social networks and extension agents on time to adoption are likely 
to be heterogeneous. Unlike the Kaplan–Meier curves (Fig. 3 and Fig. 4), 
which give estimates at the univariate level, Table 6 reports the esti-
mated quantile effects of social and extension learning on the 10th–90th 
quantiles or percentiles of the outcome variable conditional on the 
characteristics of the households. The first (10th) quantile includes 
households with the fastest speed of adoption, while the opposite is true 
for the farmers in the 90th quantile. The results have the expected signs 
and show that social and extension learning impacts are not homoge-
nous but vary significantly across the distribution of the adoption spell. 
We also reject the null hypothesis that the treatment effects are equal 
across the time to adoption percentiles. The results displayed in Table 6 
are consistent with those in Tables 3 and 4 as they indicate that the 
combination of social and extension learning results in the most signif-
icant reduction in the time to adoption than if farmers learned from 
social networks or extension agents in isolation, regardless of the 
quantile in consideration. 

Moreover, the results show that the impact of social learning and 
extension services is more pronounced in the upper sections than in the 
lower area of the distribution. For instance, learning from social net-
works reduces the time to adoption by 0.6 years in the 80th quantile 
compared with those in the 60th quantile (0.45 years). Similarly, 
learning jointly from social networks and extension agents reduces the 
speed of adoption by 0.37 and 1.23 years in the 10th and 90th quantiles, 
respectively. 

5. Summary and concluding remarks 

Most cereals, pulses, and oilseeds, such as maize, beans, and 
groundnuts, which form the foundation for food, income, and nutrition 
for most households in Tanzania, are highly susceptible to postharvest 
losses due to insect damage and aflatoxin contamination. Previous 
studies show that adopting improved postharvest technologies such as 
PICS bags can reduce these problems. However, in most of these studies, 
much attention has been given to evaluating the effectiveness of the 
PICS bags based on on-farm trials and does not consider the speed of 
adoption. Furthermore, there is a dearth of evidence on the role of social 
networks and access to extension access on the time it takes for farmers 

Table 5 
Estimation results for OLS, Cox Proportional Hazard, and survival time models.  

Variable OLS COX PH Survival time 

Coefficient Coefficient Hazard 
ratio 

Coefficient Hazard 
ratio 

S1 E0 − 0.119 
(0.150) 

0.213** 
(0.095) 

1.238 
(0.169) 

0.188 
(0.134) 

1.207 
(0.231) 

S0 E1 − 0.680** 
(0.274) 

0.445*** 
(0.167) 

1.560*** 
(0.220) 

0.629*** 
(0.239) 

1.876*** 
(0.351) 

S1 E1 − 0.729* 
(0.364) 

0.588*** 
(0.188) 

1.801*** 
(0.250) 

0.708** 
(0.300) 

2.029*** 
(0.394) 

Sex 0.246** 
(0.099) 

− 0.252** 
(0.102) 

0.777 
(0.141) 

− 0.323** 
(0.135) 

0.724 
(0.177) 

Marital 
status 

− 0.149 
(0.167) 

0.186 
(0.155) 

1.204 
(0.225) 

0.233 
(0.183) 

1.262 
(0.316) 

Household 
size 

− 0.028 
(0.030) 

0.014 
(0.022) 

1.014 
(0.023) 

0.027 
(0.033) 

1.028 
(0.032) 

Education − 0.009 
(0.013) 

0.002 
(0.007) 

1.002 
(0.014) 

0.001 
(0.012) 

1.001 
(0.019) 

Livestock 0.003*** 
(0.001) 

− 0.002*** 
(0.000) 

0.998*** 
(0.000) 

− 0.002*** 
(0.001) 

0.998*** 
(0.001) 

Land − 0.048 
(0.029) 

0.048*** 
(0.018) 

1.049** 
(0.021) 

0.063*** 
(0.022) 

1.065** 
(0.027) 

Years in 
village 

0.004 
(0.004) 

− 0.002 
(0.002) 

0.998 
(0.003) 

− 0.006 
(0.004) 

0.994 
(0.004) 

Credit − 0.626*** 
(0.123) 

0.497*** 
(0.061) 

1.644*** 
(0.166) 

0.792*** 
(0.087) 

2.207*** 
(0.296) 

M-Pesa 
account 

0.058 
(0.094) 

0.170* 
(0.098) 

1.185 
(0.167) 

0.113 
(0.108) 

1.120 
(0.202) 

Savings 
account 

− 0.152 
(0.197) 

0.221** 
(0.090) 

1.248** 
(0.134) 

0.192 
(0.187) 

1.212 
(0.211) 

Aware of 
aflatoxin 

0.168 
(0.212) 

0.033 
(0.111) 

1.033 
(0.113) 

0.008 
(0.165) 

1.008 
(0.167) 

Leadership 0.101 
(0.093) 

0.017 
(0.067) 

1.017 
(0.089) 

− 0.028 
(0.079) 

0.973 
(0.123) 

Ln District 
market 

0.054 
(0.060) 

− 0.040 
(0.038) 

0.961 
(0.058) 

− 0.053 
(0.060) 

0.949 
(0.083) 

Ln Village 
market 

0.091 
(0.133) 

− 0.038 
(0.061) 

0.962 
(0.046) 

− 0.023 
(0.091) 

0.977 
(0.071) 

Ln PICS bag 
market 

0.056 
(0.063) 

− 0.037 
(0.038) 

0.963 
(0.034) 

− 0.073 
(0.058) 

0.929 
(0.046) 

Ln Extension 
office 

− 0.061 
(0.065) 

0.039 
(0.033) 

1.039 
(0.052) 

0.042 
(0.059) 

1.042 
(0.071) 

Babati 
district 

− 0.434*** 
(0.092) 

0.183** 
(0.072) 

1.200 
(0.163) 

0.402*** 
(0.105) 

1.495** 
(0.298) 

Kilolo district − 0.363** 
(0.157) 

0.008 
(0.135) 

1.008 
(0.108) 

0.166 
(0.189) 

1.181 
(0.183) 

Kongwa 
district 

− 0.394** 
(0.130) 

− 0.180** 
(0.080) 

0.835 
(0.129) 

0.105 
(0.110) 

1.111 
(0.234) 

Constant 1.908** 
(0.601)  

1.238 
(0.169) 

− 1.289 
(0.843) 

1.207 
(0.231) 

Observations 429  429 429 429 

Note: Cluster robust standard errors at the ward level are reported in 
parenthesis. 

* p < 0.10. 
** p < 0.05. 
*** p < 0.01. 

Table 6 
Estimation results for the Laplace regression model.  

Quantile S1 E0 S0 E1 S1 E1 

Q10 0.090 
(0.141) 

− 0.366*** 
(0.140) 

− 0.365*** 
(0.125) 

Q20 − 0.016 
(0.210) 

− 0.513** 
(0.215) 

− 0.515** 
(0.208) 

Q30 − 0.094 
(0.268) 

− 0.860*** 
(0.206) 

− 1.025*** 
(0.211) 

Q40 − 0.114 
-(0.182) 

− 0.990*** 
(0.214) 

− 1.130*** 
(0.21) 

Q50 − 0.205 
-(0.189) 

− 0.708*** 
(0.243) 

− 1.061*** 
(0.247) 

Q60 − 0.458* 
(0.248) 

− 0.716*** 
(0.270) 

− 0.881*** 
(0.269) 

Q70 − 0.486 
(0.343) 

− 1.021*** 
(0.358) 

− 1.110*** 
(0.346) 

Q80 − 0.602* 
(0.357) 

− 1.032*** 
(0.391) 

− 1.218*** 
(0.346) 

Q90 − 0.446 
(0.411) 

− 0.915* 
(0.517) 

− 1.229*** 
(0.443) 

Test for differences in the effects χ2(27) =125.81*** 

Note: Bootstrapped standard errors in parentheses. 
* p < 0.10. 
** p < 0.05. 
*** p < 0.01. 
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to adopt PICS bags in Tanzania. This paper contributes to the empirical 
literature by examining the interdependent impacts of learning from 
friends/relatives and extension agents on the speed of PICS bags adop-
tion in Tanzania. We apply the doubly robust multivalued inverse 
probability weighted regression (MIPWRA) model in a survival treat-
ment effects framework to estimate the impact and the Laplace regres-
sion model to evaluate the heterogeneous effects of the two information 
transmission channels. 

Overall, results indicate that learning from friends/relatives and 
extension agents reduces the time it takes for farmers to adopt PICS bags. 
On average, social and extension learning reduces the time to adoption 
by 51 % and 49 %, respectively. The results further show that the rate at 
which farmers adopted the technology was faster when they jointly 
learned from the two information channels (61 %) than from the indi-
vidual sources. This indicates that these channels are complements 
rather than substitutes. Furthermore, results from the Laplace regression 
model suggest that the effects are not homogenous but heterogeneous, 
as the marginal impacts of information transmission are more prominent 
for households in the upper quantiles and smaller for those in the lower 
quantiles of the time adoption distribution. 

Overall, two policy issues emerge from our research. First, recog-
nizing the complementarity of learning from friends/relatives and 
extension agents in designing public extension policies is vital to 
increasing the rate at which farmers adopt improved agricultural tech-
nologies. Although agricultural extension is also provided by private 
institutions, in most cases, this is usually offered by public institutions 
that face several challenges, including but not limited to inadequate 
extension staff and transaction costs associated with covering extensive 
distances to train farmers. Social learning could complement public 
extension as farmers can quickly learn from other farmers even if few 
have access to extension; hence events promoting community in-
teractions, such as field days and demonstrations, are essential. 

Second, the significance of access to credit in reducing the time to 
adoption suggests that the provision of loans or subsidies to farmers can 
be one of the policy objectives that can be pursued for farmers to adopt 
PICS bags. With PICS bags being relatively new, there may be some 
uncertainties about their effectiveness; hence the provision of a one-time 
use subsidy to build awareness and reduce risk can help generate 

demand for such a novel technology (Omotilewa et al., 2019). 
Though we have tried to rigorously isolate the impact of social and 

extension learning, a significant limitation of our study is the definition 
of social learning. Future studies should explore using alternative defi-
nitions and construction methods of social learning, such as using 
geographical positioning systems (GPS) to measure the distances be-
tween friends or neighbors who had access to or adopted PICS bags and 
those who did not. Further, the data we used is cross-sectional and the 
methodology does not consider unobserved heterogeneity. Even though 
we conditioned our estimation on a rich set of observed covariates, the 
conditional independence assumption on which our model is based is 
strong and cannot be tested. Therefore, without controlling for the un-
observed characteristics, biased estimates may be obtained. Future 
studies should consider using panel data or frailty models to effectively 
control for these characteristics. 
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Appendix A  

Table A1 
Year of awareness and first adoption of PICS bags (% of farmers).  

Year Awareness First adoption  

2000  0.23   
2003  0.23   
2005   0.45  
2007  0.23   
2010  0.46   
2012  0.23   
2013  0.7  1.36  
2014  1.62  1.81  
2015  9.98  4.98  
2016  10.9  6.79  
2017  23.43  25.79  
2018  38.98  38.46  
2019  12.3  19.91  
2020  0.7  0.45   
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Fig. A1. Balanced plots for the time to adoption by social and extension learning.   

Table A2 
Determinants of social learning and extension services.  

Variable Social learning Extension services Social learning and extension services 

Sex 0.665 − 0.854* − 0.366  
(0.457) (0.466) (0.497) 

Marital status − 0.666 0.366 0.169  
(0.528) (0.400) (0.600) 

Household size 0.082 − 0.086 0.071  
(0.095) (0.128) (0.133) 

Education − 0.058 − 0.016 − 0.013  
(0.059) (0.044) (0.042) 

Livestock 0.018 − 0.003 0.023  
(0.034) (0.066) (0.035) 

Land − 0.046 0.002 0.007  
(0.108) (0.161) (0.078) 

Years in village − 0.002 0.005 0.003  
(0.008) (0.009) (0.012) 

Credit 0.711* − 0.560 0.855*  
(0.390) (0.504) (0.493) 

M-Pesa account 0.673 0.509 1.377***  
(0.580) (0.403) (0.406) 

Savings account − 0.601 0.413 − 0.174  
(0.509) (0.311) (0.511) 

Aware of aflatoxin 2.056*** 0.944* 2.489***  
(0.714) (0.561) (0.722) 

Leaders 0.139 0.325 0.367  
(0.320) (0.408) (0.264) 

Ln District market − 0.207 − 0.181 − 0.194  
(0.297) (0.273) (0.199) 

Ln Village market − 0.124 − 0.320** 0.067  
(0.172) (0.129) (0.199) 

Ln PICS bag market − 0.219** 0.074 0.126  
(0.103) (0.134) (0.146) 

Ln Extension office 0.241 0.224 − 0.038  
(0.345) (0.300) (0.250) 

Babati district − 0.645 − 0.631* − 0.233  
(0.418) (0.346) (0.467) 

Kilolo district 0.497 0.238 0.899***  
(0.308) (0.269) (0.267) 

Kongwa district − 0.430** − 2.660*** − 2.233***  
− 0.645 − 0.631* − 0.233 

Constant 1.130 1.901 − 0.646  
(2.500) (1.875) (1.831) 

Observations 429 429 429 

Note: Cluster robust standard errors at ward level are reported in parenthesis. 
* p < 0.10. 
** p < 0.05. 
*** p < 0.01.  
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Table A3 
Impact of social learning and extension services on time to adoption of PICS bags (ATE).  

Treatment Potential outcome (without social learning and extension services) ATE 

S0 E0 4.209*** 
(0.991)  

S1 E0  − 1.930* 
(1.027) 

S0 E1  − 2.101** 
(0.823) 

S1 E1  − 2.564** 
(1.172) 

Note: Cluster robust standard errors reported in parenthesis. 
* p < 0.10. 
** p < 0.05. 
*** p < 0.01.  

Table A4 
Estimation Results for OLS, Cox Proportional Hazard and survival time models (parsimonious models).   

OLS COX PH Survival time 

Coefficient Coefficient Hazard ratio Coefficient Hazard ratio 

Social learning − 0.169 
(0.259) 

0.278** 
(0.132) 

1.321** 
(0.175) 

0.297 
(0.194) 

1.346 
(0.261) 

Extension − 0.634*** 
(0.228) 

0.444*** 
(0.142) 

1.558*** 
(0.222) 

0.524*** 
(0.184) 

1.689*** 
(0.311) 

Social learning and extension − 0.771*** 
(0.221) 

0.693*** 
(0.130) 

1.999*** 
(0.260) 

0.756*** 
(0.183) 

2.129*** 
(0.389) 

Constant 2.228*** 
(0.190)   

− 1.413*** 
(0.153)  

Observations 429 429  429  

Note: Cluster robust standard errors at ward level are reported in parenthesis. 
** p < 0.05. 
*** p < 0.01. 
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