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Abstract: Understanding the genetic diversity and population structure of rice is crucial for breeding
programs, conservation efforts, and the development of sustainable agricultural practices. This study
aimed to assess the genetic diversity and population structure of 94 rice (Oryza sativa L.) genotypes
from the Democratic Republic of Congo using a set of 8389 high-quality DArTseq-based single
nucleotide polymorphism (SNP) markers. The average polymorphic information content (PIC) of
the markers was 0.25. About 42.4% of the SNPs had a PIC value between 0.25 and 0.5, which were
moderately informative. The ADMIXTURE program was used for structure analysis, which revealed
five sub-populations (K = 5), with admixtures. In principal component analysis (PCA), the first three
principal components accounted for 36.3% of the total variation. Analysis of molecular variance
revealed significant variation between sub-populations (36.09%) and within genotypes (34.04%). The
low overall number of migrants (Nm = 0.23) and high fixation index (Fst = 0.52) indicated limited
gene flow and significant differentiation between the sub-populations. Observed heterozygosity
(Ho = 0.08) was lower than expected heterozygosity (He = 0.14) because of the high inbreeding
(Fis = 0.52) nature of rice. A high average Euclidean genetic distance (0.87) revealed the existence of
genetic diversity among the 94 genotypes. The significant genetic diversity among the evaluated rice
genotypes can be further explored to obtain potentially desirable genes for rice improvement.

Keywords: population structure; genetic diversity; rice germplasm; DArTseq; single nucleotide
polymorphism

1. Introduction

Rice (Oryza sativa L.) is an important cereal crop that serves as a staple food for
over 50% of the global population. Rice cultivation, processing, and distribution support
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millions of livelihoods and contribute to national and international trade, making rice a
vital component of economic growth and food security worldwide [1]. Rice provides over
20% of the calories consumed worldwide. In the Democratic Republic of Congo (DRC),
rice is the second most-consumed cereal after maize, providing food and income for many
households [2]. Rice is cultivated in a wide range of agro-climatic conditions worldwide [3].

The cultivated rice, O. sativa, was derived from its wild counterparts, O. nivara or
O. rufipogon, and is classified into two distinct varietal groups, ssp. indica and ssp. japon-
ica [4]. During the process of domestication, selective sweeps led to a significant reduction
in the genetic diversity of O. sativa [5]. Several studies have focused on examining the
genetic structure of rice cultivars at a local scale, typically within a specific country. These
localized investigations offer a comprehensive understanding of rice genetic diversity
within a given region, shedding light on the intricate relationship between genetic diver-
sity and human cultivation practices [6–11]. Furthermore, these studies provide valuable
insights for developing conservation strategies specific to the region. Due to the combined
effects of natural and artificial selection in diverse environments, rice exhibits considerable
morphological, physiological, and genetic diversity, with more than 120,000 distinct rice
varieties identified [4,6].

For centuries, farmers in DRC have practiced traditional methods of rice cultivation by
selecting and preserving seeds from the best-performing plants. Over time, these processes
have resulted in the development of landraces and locally adapted rice varieties with
distinct traits that are well-suited to the region’s diverse agro-ecological conditions [12]. To
address the changing demands for rice, the national rice breeding program has actively
selected and introduced new varieties aimed at enhancing rice productivity while preserv-
ing the genetic diversity and cultural significance of rice in the region. With its potential,
four million hectares of irrigable lowland, DRC could play a significant role in ensuring
food security by contributing to the increase in rice production and availability in the
Sub-Saharan Africa region.

According to various forecasts, the world population is expected to grow significantly
and reach 9.7 billion by 2050 [13]. Among the nine countries that are projected to have
over 50% population growth between now and 2050, the majority are located in tropical
regions [3]. These countries include India, Nigeria, the Democratic Republic of Congo,
Ethiopia, the United Republic of Tanzania, Indonesia, and Egypt [13]. In these countries, rice
is the fastest-growing and preferred food commodity, driven by high population growth,
rapid urbanization, and changes in eating habits [14,15]. However, rice productivity in
the region is low, and crop yields are often impacted by various biotic and abiotic stresses,
including pests, diseases, and adverse environmental factors [2,16].

Utilizing plants’ genetic diversity, breeders develop new and improved crop varieties
with desirable traits, such as nutritional and grain quality, resistance to pests and diseases,
tolerance to flood and drought, and improved yield, in order to tackle worldwide issues
related to food security, sustainability, and adaptability to climate change [17]. Understand-
ing the genetic diversity and population structure of rice germplasm available to breeders is
very critical for rice improvement. According to Khan et al. [18], greater genetic variability
enhances the probability of identifying superior genotypes within a population. As pointed
out by Novoselović et al. [19], a limited genetic base is a significant challenge that renders
plants more susceptible to biotic and abiotic stress conditions.

The morphological markers have been effectively used for diversity studies especially
for traits such as height, yield, maturity, and grain color, as well as resistance to insects
and diseases [20,21]. Nevertheless, the exclusive reliance on morphological markers was
shown to be unreliable because they are limited in number, susceptible to environmental
factors, and influenced by the plant growth stages [22,23]. Therefore, molecular markers
have become an indispensable tool in genetic research [24], particularly in assessing genetic
diversity. Molecular markers allow precise and rapid varietal identification, germplasm
characterization, collection, and management. Earlier molecular markers such as random
amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and ampli-
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fied fragment length polymorphism (AFLP) have been frequently used for fingerprinting
and characterization of varieties and germplasm accessions of different crop species [24].
Despite the potential benefits of these molecular markers in plant breeding, their useful-
ness is limited due to their reliance on prior sequence information, which can be costly
and time-consuming to obtain [24]. Genotyping-by-sequencing (GBS) techniques such
as diversity array technology sequencing (DArTseq) is a low-cost and rapid genotyping
method that enables the screening of hundreds of highly polymorphic markers without
previous sequence information for the detection of loci [23,25]. DArTseq further reduces
genome representation and provides abundant markers [26], thus improving the rate of
genotype calling and the ability to sequence more samples at a lower cost. DArTseq pro-
duces both dominant (SilicoDArT) and co-dominant (SNP) markers that have successfully
been applied for genetic diversity and population structure analysis in several crops such as
cassava [27], taro [28], rice [29], rye [30], sorghum [31], and wheat [19]. The use of DArTseq
markers enables a comprehensive analysis of genetic diversity, complete genome profiling,
and high-density mapping of complex traits, all of which are crucial for marker-based
breeding [24].

This study aimed to evaluate the genetic diversity and population structure of rice
germplasm accessions in the eastern DRC, utilizing DArTseq-derived SNP markers. It
provides a better understanding of the level of genetic variation of rice germplasm resources
for both the future investigations into superior genes and the identification of parental lines
for rice improvement programs.

2. Materials and Methods
2.1. Plant Materials

Ninety-four rice genotypes (Table 1), available at the rice breeding program under
the Institut National pour l’Etude et la Recherche Agronomiques (INERA) in the Eastern
DRC, were utilized in this study. This collection was comprised of genotypes from different
research centers, including AfricaRice (43), International Rice Research Institute (IRRI)-
Burundi (25), IRRI-Kenya (9), INERA (12), and local landraces (5).

2.2. Sample Preparation and DNA Extraction

Twenty seeds from each of the 94 genotypes were pre-germinated through water-
soaking and incubating at 28 ◦C in a growth chamber for 48 h. The sprouted grains were
then sown on seedling nursery trays and raised in a greenhouse at Jomo Kenyatta Uni-
versity of Agriculture and Technology (JKUAT) for two weeks. Leaf samples were sent
to SEQART AFRICA at the International Livestock Research Institute (ILRI), Nairobi, for
genotyping. Total genomic DNA was extracted using the NucleoMag® plant genomic DNA
extraction kit (Macherey-Nagel™, Dueren, Germany). The quality and quantity of DNA
were assessed using 0.8% agarose gel electrophoresis and a NanoDrop 2000 spectropho-
tometer (ThermoFisher Scientific™, Waltham, MA, USA), respectively.

2.3. Genotypic Data

Genotyping was done using DArTseq method, which relies on genome complexity
reduction using enzymes [26,32]. The extracted genomic DNA was digested with two
restriction enzymes (PstI and MseI). The resulting fragments were then ligated to adapters
that contained unique barcodes for each sample [25]. The ligated fragments were then
amplified by PCR to generate a library of DNA fragments for sequencing. The library
fragments were then sequenced using single read sequencing runs of 77 cycles by the
Illumina Hiseq2500. DArTseq markers scoring was achieved using DArTsoft14, an in-house
marker scoring pipeline. The markers of the single nucleotide polymorphisms (SNPs)
were scored.
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2.4. Marker Filtering and Quality Analysis

The generated SNP markers were aligned to the rice reference genome, Oryza sativa
V7.0 [33], to determine their positions along the 12 rice chromosomes. The criteria for
data filtration were as follows: non-informative monomorphic markers were removed,
markers with a call rate >95% and minor allele frequency >5% were retained. The VCFtools
V0.1.13 [34] software was used for marker filtration. To analyze the characteristics and
distribution of the markers along the 12 rice chromosomes, parameters such as polymorphic
information content (PIC), reproducibility, and call rate were determined using the dartR
package in R [35]. Additionally, the same package was utilized to calculate the proportion
of mutation types, including transversion (Tv) and transition (Ts), responsible for the
observed polymorphism.
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Table 1. Rice genotypes used in the study.

Entry No. Genotype Name Source/Program Entry No. Genotype Name Source/Program

1 Komboka IRRI-Burundi 48 D20-ARS-3-2 AfricaRice
2 IR64 IRRI-Burundi 49 IR96279-33-3-1-2 IRRI-Burundi
3 IBEI6 AfricaRice 50 ARS134-B-1-1-5-B AfricaRice
4 GIZA128 IRRI-Burundi 51 Orylux7-1 AfricaRice
5 Nipponbare IRRI-Burundi 52 WAHX14N-926 AfricaRice
6 Jasmine IRRI-Burundi 53 MR254 AfricaRice
7 NL59 AfricaRice 54 Golmy AfricaRice
8 FKR AfricaRice 55 ARS848-15-3-2-4 AfricaRice
9 08FAN10 IRRI-Burundi 56 IR93348:32-B-15-3-B-B-B-1 IRRI-Burundi
10 WAB2066-TGR2 AfricaRice 57 ARS168-3-B-1-B AfricaRice
11 WAB2066-TGR3 AfricaRice 58 IR88638 IRRI-Burundi
12 IR99084-B-B-13 INERA-DRC 59 ARICA12 AfricaRice
13 IR127229 IRRI-Burundi 60 ARICA3 AfricaRice
14 IR106172-78:1-B-B INERA-DRC 61 IR64-sub-1 IRRI-Burundi
15 ARS848-15-3-2-3 AfricaRice 62 HHZSAL6 AfricaRice
16 IR106364-B-B-CNUS INERA-DRC 63 ARS755-3-3-1-B AfricaRice
17 ARS844-24-10-2-B AfricaRice 64 ARS134-B-1-1-5 AfricaRice
18 ARS168-1-B-3-B AfricaRice 65 IR990-48-B-B-12 IRRI-Burundi
19 ARS851-1-3 AfricaRice 66 IR64-biofortified IRRI-Burundi
20 IR87638-10-2-2-4 INERA-DRC 67 IR107015-37 IRRI-Burundi
21 IR98419-B-B-11 INERA-DRC 68 ARS79-5-11-11 AfricaRice
22 IR97071-24-1-1-1 INERA-DRC 69 V18/RRS126-48-1-13-2 AfricaRice
23 ARS803-4-5-4-3 AfricaRice 70 Orylux11 AfricaRice
24 IR93856-23-1-1-1 INERA-DRC 71 ARS134-B-B-B AfricaRice
25 ARS790-5-11-1-1 AfricaRice 72 Magoti Local landrace
26 IR17015-6-5-3-B1 INERA-DRC 73 Runingu Local landrace
27 IR106359-B-18-5 INERA-DRC 74 ARS169-2-B-3-B AfricaRice
28 IR95624-B-138-3 INERA-DRC 75 ARS134-B-1-1-4 AfricaRice
29 IR13A461 IRRI-Burundi 76 IR82574/643-1-2 IRRI-Burundi
30 Mugwiza IRRI-Burundi 77 Orylux5 AfricaRice
31 Vuninzara IRRI-Burundi 78 SAHEL210 AfricaRice
32 IR97045-24-1-1-1 IRRI-Burundi 79 IR841 IRRI-Burundi
33 Kigoma Local landrace 80 ARS39-145/EP-3 AfricaRice
34 Makasane IRRI-Burundi 81 ARS101-4-B-1-1-B AfricaRice
35 Rukaramu Local landrace 82 ARS101-4-B-1-3 AfricaRice
36 Musesekara IRRI-Burundi 83 NERICA-L-19-Sab-1 AfricaRice
37 Yasho-Yasho Local landrace 84 ARS756-1-1-3-B-2-2 AfricaRice
38 Kasozi IRRI-Burundi 85 ARS563-425-1-B-2-3 AfricaRice
39 IR7525 IRRI-Burundi 86 ARICA4 IRRI-Kenya
40 Orylux7 AfricaRice 87 ARICA17 IRRI-Kenya
41 ART29 INERA-DRC 88 Basmati370 IRRI-Kenya
42 Sipi INERA-DRC 89 IRAT109 IRRI-Kenya
43 CRS36 IRRI-Burundi 90 NERICA1 IRRI-Kenya
44 ARICA2 AfricaRice 91 NERICA2 IRRI-Kenya
45 NL19 AfricaRice 92 NERICA10 IRRI-Kenya
46 NL14 AfricaRice 93 NERICA12 IRRI-Kenya
47 NL17 AfricaRice 94 PAN84 IRRI-Kenya

2.5. Population Structure and Genetic Diversity Analysis

Population structure was analyzed to gain insight into the ancestry of the 94 rice geno-
types. The filtered SNP markers were utilized for structure analysis using ADMIXTURE
V1.3.0 [36] which uses a model-based maximum likelihood estimation. The optimal number
of sub-populations was determined by evaluating the cross-validation errors based on K
values (K = 1–10). As recommended by Alexander and Lange [36], the K value associated
with the lowest cross-validation error was considered the ideal number of sub-populations.
The population structure was then visualized using R software, Version 4.2.3. Addition-
ally, principal component analysis (PCA) was conducted using the adegenet package in
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R [37] to investigate genetic relatedness patterns among the sub-populations. The resulting
PCA scores were exported and used to generate a 3D PCA plot using the SRPLOT online
platform (http://www.bioinformatics.com.cn/srplot, accessed on 24 April 2023).

The results obtained from ADMIXTURE were used to calculate genetic diversity
indices, including observed heterozygosity (Ho), expected heterozygosity (He), and in-
breeding coefficient (Fis) for the sub-populations. These calculations were performed
using the adegenet package in R [37]. Analysis of molecular variance (AMOVA), as
described by Nei [38], was used to partition the total variance into among and within
populations variance using the poppr package of R [39]. The gene flow (Nm) level among
the sub-populations was estimated using the formula Nm = (1 − Fst)/4Fst, as suggested by
Wright [40].

To assess the genetic differentiation among the sub-populations identified in the struc-
ture analysis, Nei’s pairwise fixation indices (Fst) [41] were generated using the hierfstat
package in R [42].

2.6. Phylogenetic Analysis

A neighbor-joining (NJ) phylogenetic tree was constructed using the ape package in
R [43] to visualize the genetic differentiation among the sub-populations. The relationships
among individuals were analyzed by generating a pairwise genetic distance matrix using
the Euclidean distance method implemented in R. The resulting phylogenetic tree was
created using the hclust function in R and exported in Newick format using the ape package
for annotation in the interactive tree of life (iTOL) version 6.5.2 (https://itol.embl.de/,
accessed on 19 April 2023) [44].

3. Results
3.1. Characterization of DArTseq-Derived SNP Markers

A total of 31,366 SNP markers were generated from the 94 rice genotypes, out of which
27,831 markers (88.7%) were mapped to the reference genome. After filtering, 8389 infor-
mative SNP markers were retained for structure and diversity analyses. The distribution
of markers on the 12 rice chromosomes, along with their characteristics after filtering, are
presented in Figure 1. The number of SNP markers ranged from 475 (chromosome 10) to
1014 (chromosome 1), with an average of 699 markers per chromosome (Figure 1a).

The 8389 informative SNP markers had an average polymorphic information content
(PIC) value of 0.25, ranging between 0 and 0.5 (Figure 1b). The reproducibility of SNP
markers varied from 87% to 100%, with a mean of 98%. Approximately 88% of SNP markers
exhibited ≥95% reproducibility (Figure 1c). The call rate ranged from 96% to 100%, with
an average of 97% (Figure 1d).

The SNP mutation types are summarized in Table 2, showing the frequency of transi-
tions (Ts; i.e., A/G, T/C substitutions) and transversions (Tv; i.e., A/T, A/C, T/G or C/G
substitutions).

The proportion of polymorphisms due to different transitions ranged from 31.06%
(A/G) to 31.54% (T/C). The proportion of polymorphisms due to transversions ranged
from 7.5% (C/G) to 10.2% (A/T). Overall, among the SNP variations, transitions (62.6%)
were more frequent than transversions (37.4%), with a Ts/Tv ratio of 1.67.

http://www.bioinformatics.com.cn/srplot
https://itol.embl.de/
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the SNP markers.

Table 2. Proportion of SNP transitions and transversions mutation types across the genomes of the
94 rice genotypes.

Transitions (Ts) Transversions (Tv) Ts/Tv

Substitution A/G T/C A/T A/C T/G C/G
Number of alleles 2606 2646 859 829 816 633

Frequency (%) 31.06 31.54 10.2 9.88 9.7 7.5 1.67
Total 5252 (62.6%) 3137 (37.4%)

3.2. Population Structure Analysis

Population structure based on a filtered set of 8389 SNP DArTseq markers gave five
distinct sub-populations across the 94 genotypes. The sub-populations (referred to as Pop1,
Pop2, Pop3, Pop4, and Pop5) (Figure 2) were identified based on the K value corresponding
to the lowest cross-validation error in the ADMIXTURE [36]. Considering K = 5, Pop1
was comprised of four rice genotypes out of which two were local landraces (Magoti,
Runingu), and two (Jasmine and IR127229) were obtained from IRRI-Burundi. Pop2 was
made up of 24 genotypes including 13 from AfricaRice, six from IRRI-Burundi and five
from INERA-DRC. Pop3 was a group of 21 rice genotypes among which 10 were from
AfricaRice, five from IRRI-Burundi, five from INERA-DRC and one from IRRI-Kenya. Pop4
(n = 37) was formed by genotypes from all the five sources though mainly comprised of
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AfricaRice genotypes (19) and IRRI-Burundi genotypes (12). Additionally, three genotypes
were the local landraces, two from INERA-DRC and one from IRRI-Kenya. Pop5 was
composed of eight genotypes out of which seven were IRRI-Kenya genotypes and one
AfricaRice genotype.
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PCA was used to further explore genetic relationships among the 94 rice genotypes
(Figure 3). Based on the SNP markers, the first three axes of the PCA explained 36.3% of the
total genetic variation, resulting in the grouping of the 94 genotypes into three clusters.

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. PCA illustrating relatedness and distribution of the 94 rice genotypes based on 8389 SNP 

markers. Each color corresponds to a specific sub-population from the ADMIXTURE results. 

3.3. Genetic Diversity and Phylogenetic Analysis 

The analysis of molecular variance (AMOVA) conducted on the 94 rice genotypes 

revealed highly significant genetic differences (p < 0.001) between sub-populations and 

within genotypes. However, no significant difference (p > 0.001) was observed between 

genotypes within sub-populations, as shown in Table 3. Among the total genetic varia-

tions observed in the 94 rice genotypes, 36.09% was attributed to genetic differentiation 

between the sub-populations, 34.04% to genetic differentiation within the genotypes, and 

the remaining proportion (29.87%) was due to genetic differences between genotypes 

within the sub-populations. Additionally, the overall fixation index (Fst) and number of 

migrants (Nm) among the sub-populations were 0.52 and 0.23, respectively (Table 3). 

Table 3. Analysis of molecular variance among 94 genotypes based on the SNPs. 

Source DF MS 
Estimated 

Variance 

Proportion of 

Variation (%) 
Fst Nm 

Between sub-populations 4 32,575.18 892.93 36.09 (<0.001) 0.52 0.23 

Between genotypes within 

sub-population 
89 2319.99 738.89 29.87 (>0.001)   

Within genotypes 94 842.20 842.2 34.04 (<0.001)   

Total 187 2224.31 2474.03 100   

DF: degree of freedom; MS: mean of squares; Nm: number of migrants. 

The percentage of polymorphic loci per population (PPL) ranged from 21.28% (Pop1) 

to 85.64% (Pop4), with an average of 54.23% (Table 4). The mean values for the expected 

heterozygosity (He), observed heterozygosity (Ho), unbiased expected heterozygosity (uHe), 

and inbreeding coefficient (Fis) in the overall population were 0.14, 0.08, 0.15, and 0.52, re-

spectively. The gene diversity values, calculated as expected heterozygosity (He), varied 

from 0.08 (Pop 1) to 0.21 (Pop 4). The observed heterozygosity (Ho) ranged from 0.02 (Pop5) 

to 0.13 (Pop4), while the inbreeding coefficient (Fis) varied from 0.31 (Pop2) to 0.75 (Pop5). 

Figure 3. PCA illustrating relatedness and distribution of the 94 rice genotypes based on 8389 SNP
markers. Each color corresponds to a specific sub-population from the ADMIXTURE results.



Agronomy 2023, 13, 1906 9 of 17

The first cluster consisted of two landraces and one genotype from IRRI-Burundi; the
second cluster gathered together most of the genotypes from AfricaRice, IRRI-Burundi
and INERA-DRC, some from IRRI-Kenya and landraces. The third cluster was mainly
composed of genotypes from IRRI-Kenya.

3.3. Genetic Diversity and Phylogenetic Analysis

The analysis of molecular variance (AMOVA) conducted on the 94 rice genotypes
revealed highly significant genetic differences (p < 0.001) between sub-populations and
within genotypes. However, no significant difference (p > 0.001) was observed between
genotypes within sub-populations, as shown in Table 3. Among the total genetic variations
observed in the 94 rice genotypes, 36.09% was attributed to genetic differentiation between
the sub-populations, 34.04% to genetic differentiation within the genotypes, and the re-
maining proportion (29.87%) was due to genetic differences between genotypes within
the sub-populations. Additionally, the overall fixation index (Fst) and number of migrants
(Nm) among the sub-populations were 0.52 and 0.23, respectively (Table 3).

Table 3. Analysis of molecular variance among 94 genotypes based on the SNPs.

Source DF MS Estimated
Variance

Proportion of
Variation (%) Fst Nm

Between sub-populations 4 32,575.18 892.93 36.09 (<0.001) 0.52 0.23
Between genotypes

within sub-population 89 2319.99 738.89 29.87 (>0.001)

Within genotypes 94 842.20 842.2 34.04 (<0.001)
Total 187 2224.31 2474.03 100

DF: degree of freedom; MS: mean of squares; Fst: fixation index; Nm: number of migrants.

The percentage of polymorphic loci per population (PPL) ranged from 21.28% (Pop1)
to 85.64% (Pop4), with an average of 54.23% (Table 4). The mean values for the expected
heterozygosity (He), observed heterozygosity (Ho), unbiased expected heterozygosity
(uHe), and inbreeding coefficient (Fis) in the overall population were 0.14, 0.08, 0.15, and
0.52, respectively. The gene diversity values, calculated as expected heterozygosity (He),
varied from 0.08 (Pop 1) to 0.21 (Pop 4). The observed heterozygosity (Ho) ranged from
0.02 (Pop5) to 0.13 (Pop4), while the inbreeding coefficient (Fis) varied from 0.31 (Pop2) to
0.75 (Pop5).

Table 4. Genetic diversity indices for the five rice sub-populations based on 8389 SNP markers.

Sub-Population No. of Sample PPL He Ho uHe Fis

Pop1 4 21.28 0.08 0.05 0.09 0.52
Pop2 24 69.14 0.15 0.11 0.16 0.31
Pop3 21 65.36 0.18 0.07 0.19 0.62
Pop4 37 85.64 0.21 0.13 0.22 0.38
Pop5 8 29.73 0.09 0.02 0.10 0.75

Average 54.23 0.14 0.08 0.15 0.52
PPL: percentage of polymorphic loci; Ho: observed heterozygosity; He: expected heterozygosity; uHe: unbiased
expected heterozygosity; Fis: inbreeding coefficient.

The population pairwise fixation indices, presented in Table 5, estimate genetic dif-
ferentiation among populations due to genetic structure. Pop5 showed greater genetic
distance from Pop1, Pop2, Pop3, and Pop4 with Fst values of 0.83, 0.78, 0.75, and 0.73, respec-
tively. The minimum genetic distances were observed between Pop4 and Pop3 (Fst = 0.07),
followed by Pop3 and Pop2 (Fst = 0.11), and between Pop4 and Pop2 (Fst = 0.13).
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Table 5. Population’s pairwise genetic differentiation index (Fst).

Pop1 Pop2 Pop3 Pop4 Pop5

Pop1 0
Pop2 0.43 0
Pop3 0.33 0.11 0
Pop4 0.26 0.13 0.07 0
Pop5 0.83 0.78 0.75 0.73 0

The neighbor-joining tree (Figure 4) illustrates genetic relatedness among the five
sub-populations. The analysis resulted in the formation of three distinct groups. The first
group consisted of Pop2, Pop3, and Pop4. The second group comprised only Pop1, while
the third group was composed of Pop5.
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The Euclidean genetic distance among the 94 rice genotypes, based on SNP markers,
ranged from 0.00 to 1.60, with an average of 0.87 (Table S1). The lowest genetic distances
were observed in Pop5 between NERICA2 and NERICA10 (0.13), in Pop1 between Magoti
and Runingu (0.15), Magoti and Jasmine (0.19), and Jasmine and Runingu (0.2). In Pop2,
the lowest genetic distance was observed between ARS755-3-3-1-B and ARS168-1-B-3-B
(0.18). The highest genetic distance was exhibited between NERICA-L-19-sab-1 (from
AfricaRice, Pop2) and NERICA12 (from IRRI-Kenya, Pop5), between NERICA-L-19-sab-1
(from AfricaRice, Pop2) and ARICA4 (from IRRI-Kenya, Pop5), and between WAHX14N-
926 (from AfricaRice, Pop3) and ARICA4 (from IRRI-Kenya, Pop5). The resulting genetic
distance matrix was used to construct a neighbor-joining tree that classified the 94 rice
genotypes into two distinct clusters (Figure 5).
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4. Discussion

We studied the population structure and genetic diversity of rice genotypes main-
tained at the Institut National pour l’Etude et la Recherche Agronomiques (INERA) in the
Democratic Republic of Congo (DRC) using SNP markers derived from DArTseq technol-
ogy. In this study, a total of 8389 SNP markers passed quality control analyses designed
to remove non-informative markers, as well as the markers with a minor allele frequency
of less than 5% and a call rate lower than 95%. This ensured that the selected markers
were suitable for estimating the genetic diversity and structure of the 94 rice genotypes
under investigation. It was observed that the number of SNPs generated using DArTseq
technology in rice was higher compared to previous studies by Adeboye et al. [45] and
Thant et al. [46], although lower than the findings reported by Ndjiondjop et al. [47]. Anal-
ysis of SNP markers distribution across the rice chromosomes revealed an average of 699
SNP markers per chromosome, indicating a wide distribution of markers. The abundance
of polymorphic markers on chromosomes is commonly associated with the level of genetic
diversity [45,48].

The PIC values for a set of genetic markers are a useful tool for evaluating the infor-
mativeness of these markers in population diversity studies [49]. According to Botstein
et al. [49], markers with PIC values greater than 0.5 are highly informative, those with
PIC values between 0.5 and 0.25 are considered moderately informative, while markers
with PIC values less than 0.25 remain to some extent informative. In the current study,
42.4% of SNPs were moderately informative, which demonstrated the usefulness of these
markers for genetic diversity analysis in rice. According to Eltaher et al. [48], due to their
bi-allelic nature, SNP markers have limited informative value, resulting in low to moderate
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PIC values that are restricted to a maximum of 0.5. However, the average SNP PIC value
of 0.25 obtained in this study was slightly higher than that found in previous studies in
rice [9,45,46], cassava [50], and sorghum [51]. Our study reports a higher frequency of
SNP transitions as compared to that of SNP transversions. It is commonly observed that
transitions are more frequent than transversions in true SNPs [52–54]. In fact, the ratio of
transition to transversion frequencies is often used as a measure of evolutionary distance
between species or individuals [52]. Moreover, it happens that in a set of three available
SNPs, two of them are transitions while the third is a transversion [52,55]. Similar findings
have also been reported on rice [45], maize [56,57], and Camelina sativa [55]. According to
Guo et al. [58], transversions would have a larger impact in disrupting transcription factor
binding, leading to significant alterations in gene expression.

Population structure analysis is essential for understanding the genetic diversity, dis-
tribution, and evolutionary dynamics of populations, which have significant implications
for conservation, management, and breeding strategies [59]. In the present study, 94 rice
genotypes were assessed and classified into five sub-populations that displayed significant
divergence among them, with varying degrees of diversity observed within each sub-
population. It was observed that the composition of genotypes within each sub-population
exhibited a dependence on their respective collection sources. The result highlights the
source of the rice genotypes as a major factor influencing their genetic makeup, with Pop1
and Pop5 having a higher percentage of genotypes from specific sources (local landraces
and IRRI-Kenya, respectively). However, Pop2, Pop3, and Pop4, predominantly made up of
AfricaRice, IRRI-Burundi, and INERA-DRC genotypes, exhibited a common genetic back-
ground pointing to the fact that breeding activities have led to genetic similarities among
these groups [60]. Similarities between 22 diverse rice collections from different sources
were also reported by Salem [8]. Principal component analysis (PCA) was used to confirm
the patterns of admixture among populations [61,62]. The analysis of rice genotypes using
the PCA plot revealed that the 94 genotypes could be grouped into three clusters. The
distribution of the genotypes based on PCA was similar to that of the structure analysis
using ADMIXTURE. These findings were consistent with previous reports [30,47]. We
noted that the first cluster comprised three genotypes, of which two were local landraces
and one was from IRRI-Burundi. The second cluster was composed of genotypes from all
five sources, and the third cluster was predominantly formed by IRRI-Kenya genotypes.
This result revealed the presence of common alleles among the genotypes within each
cluster, which could be attributed to breeding activities such as selection for specific traits
and hybridization [60].

AMOVA is a commonly used statistical method for evaluating the extent to which
different levels of population structure contribute to genetic variation patterns [63]. The
results of our study revealed that genetic diversity among the 94 rice genotypes was largely
determined by the differentiation between sub-populations and within genotypes, which
may be due to low genetic exchange and limited gene flow. According to Wright [40], a
number of a migrants (Nm) value lower than 1 indicates limited gene flow among subpop-
ulations. In this study, the observed Nm value was 0.23, which suggests limited genetic
exchange and significant differentiation (Fst = 0.52) observed among sub-populations, con-
sistent with the AMOVA. This revealed that there is a potential for identifying and selecting
diverse genotypes from different sub-populations for breeding programs [64]. The genetic
differences between genotypes within sub-populations contributed the least to the total ge-
netic variation, indicating genetic similarity between the genotypes within sub-populations,
which could be due to breeding practices, such as selection for specific traits or the use of
parent lines with similar genetic backgrounds. This can be useful for establishing breeding
populations with specific traits of interest [65]. Our study findings corroborate those of
previous research on rice genetic diversity and population structure, which also reported
a significant differentiation between sub-populations and within genotypes using SSR
markers [66] among genotypes from AfricaRice, IRRI and Tanzania.
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According to Eltaher et al. [48] and Luo et al. [55], genetic indices serve as indicators
of genetic diversity. In our study, the mean Ho value (<0.1) aligns with previous research
on rice [46] (Ho = 0.03), [30] (H = 0.0975), [45] (Ho < 1), but is slightly lower than findings
by Suvi et al. [66] (Ho = 0.17) using SSR markers. The lower Ho compared to He was
expected due to rice’s self-pollinating nature [67], resulting in a relatively higher degree of
inbreeding within the population, as also supported by Ndjiondjop et al. [47]. Examining
gene diversity based on PPL, Ho, He, and Fis values, the genotypes within sub-populations
(Pop2, Pop3, and Pop4) displayed diversity, suggesting possible occurrences of selection
and hybridization among the accessions within these sub-populations. This genetic ex-
change contributes to increased diversity within the populations [68]. In contrast, Pop5
and Pop1 exhibited lower diversity, likely influenced by factors such as rice’s inherent high
inbreeding nature and specific selective breeding criteria employed by breeders for Pop5,
along with strict selection practices by farmers for Pop1.

The Fst was further used to quantify sub-population differentiation resulting from
genetic structure. According to Wright [69], an Fst value of 0.25 or higher is considered
significant in differentiating sub-populations, while values in the range of 0.15–0.25 indicate
moderate differentiation. In contrast, differentiation is considered insignificant if the Fst
value is 0.05 or less. Significant genetic differentiation was observed between all pairs of sub-
populations, except for sub-populations 3 and 4, 2 and 3, 2 and 4. The lack of differentiation
among sub-populations comprising genotypes from AfricaRice, IRRI-Burundi, and INERA-
DRC may be due to the exchange of genetic materials, the effect of maintenance strategies,
and the selection criteria applied by breeders across the involved institutes [48,55].

In this study, the average Euclidean genetic distance, a measure of genetic variation
between pairs of genotypes, was found to be 0.87. This result is consistent with previous
reports on elite rice genotypes from Chile [70] and Ugandan rice genotypes [30], which
reported genetic distances of 0.87 and 0.86, respectively. The phylogenetic tree illustrates the
distances between genotypes or groups, indicating their degree of relationship, with closely
related groups positioned close to each other [71]. The NJ tree classified the 94 genotypes
into two major groups, revealing a shared gene pool within each cluster. Cluster I comprised
genotypes from AfricaRice, IRRI-Burundi, INERA-DRC, and the local landraces, while
cluster II mainly consisted of IRRI-Kenya genotypes. Low genetic distances observed in
pairs of genotypes such as Magoti and Runingu, Magoti and Jasmine, Jasmine and Runingu,
ARS755-3-3-1-B and ARS168-1-B-3-B, NERICA2 and NERICA10, suggest that these pairs
were potentially collected separately but share a close genetic background. The high genetic
distance observed between genotypes of different sub-populations may be attributed to the
distinct genetic makeup of the IRRI-Kenya rice and local landrace collections, indicating
differences from other sources, which aligns with the AMOVA results.

5. Conclusions

The DArTseq platform was utilized to generate high-density markers across the rice
genome, enabling the assessment of population structure and genetic diversity among 94
rice germplasm accessions in the eastern DRC. A total of 8389 SNP markers, exhibiting
high polymorphism and moderate informativeness, were employed. The structure analysis
revealed that the rice panel consisted of five sub-populations, including admixtures. Phylo-
genetic and principal component analysis further categorized the sub-populations into two
and three clusters, respectively, primarily based on their sources. Notably, significant ge-
netic variation was observed both among populations and within genotypes, useful for rice
improvement. The observed limited diversity among genotypes within populations can be
advantageous for establishing breeding populations focused on specific traits of interest.
Moreover, the introduction of novel alleles from divergent sources and the utilization of
advanced genomic techniques can contribute to the creation of a more diverse population.
This study provides valuable insights into structure and genetic diversity, which can be
harnessed for rice breeding programs, including exploring the genetic basis of desired traits
and the identification of potential parental lines for development of new rice varieties.
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