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ABSTRACT 20 

Striga hermonthica (Del.) Benth., a parasitic weed, causes substantial yield losses in maize 21 

production in sub-Saharan Africa (SSA). Breeding for Striga resistance in maize is constrained by 22 

limited genetic diversity for Striga resistance within the elite germplasm and phenotyping capacity 23 

under artificial Striga infestation. Genomics-enabled approaches have the potential to accelerate 24 

identification of Striga resistant lines for hybrid development. The objectives of this study were to 25 

evaluate the accuracy of genomic selection for traits associated with Striga resistance and grain 26 

yield (GY) and to predict genetic values of tested and untested doubled haploid (DH) maize lines. 27 

We genotyped 606 DH lines with 8,439 rAmpSeq markers. A training set of 116 DH lines crossed 28 

to two testers was phenotyped under artificial Striga infestation at three locations in Kenya.  29 

Heritability for Striga resistance parameters ranged from 0.38‒0.65 while that for GY was 0.54. 30 

The prediction accuracies for Striga resistance-associated traits across locations, as determined by 31 

cross validation (CV) were 0.24 to 0.53 for CV0 and from 0.20 to 0.37 for CV2. For GY, the 32 

prediction accuracies were 0.59 and 0.56 for CV0 and CV2, respectively. The results revealed 300 33 
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DH lines with desirable genomic estimated breeding values (GEBVs) for reduced number of 1 

emerged Striga plants (STR) at 8, 10, and 12 weeks after planting. The GEBVs of DH lines for 2 

Striga resistance associated traits in the training and testing sets were similar in magnitude. These 3 

results highlight the potential application of genomic selection in breeding for Striga resistance in 4 

maize. The integration of genomic-assisted strategies and DH technology for line development 5 

coupled with forward breeding for major adaptive traits will enhance genetic gains in breeding for 6 

Striga resistance in maize. 7 

Keywords: Striga; maize breeding; genomic prediction; doubled haploid; sparse phenotyping  8 

Abbreviations: AUSNPC, area under Striga number progress curve; BLUE, best linear unbiased 9 
estimate; BLUP, best linear unbiased prediction; CV, cross validation; DH, doubled haploid; 10 
GEBV, genomic estimated breeding value; GRM, genomic relationship matrix; GP, genomic 11 
prediction; GY, grain yield; KALRO, Kenya Agricultural and Livestock Research Organization; 12 
SDR, Striga damage rating; STR8WAP, emerged Striga plants at 8 weeks after planting; 13 
STR10WAP, emerged Striga plants at 10 weeks after planting; STR12WAP, emerged Striga 14 
plants at 12 weeks after planting; TRN, training set; TST, testing set.  15 
 16 

Introduction 17 

Striga hermonthica (Del.) Benth. is a parasitic weed that affects maize (Zea mays L.) production 18 

in sub-Saharan Africa (SSA).  Striga spp. has a wide geographical distribution and affects up to 19 

60% of the arable land in SSA (Ejeta and Gressel, 2007; Mbuvi et al. 2017). Striga adversely 20 

affects maize production in SSA causing yield losses ranging from 20–100% (Ransom et al. 1990; 21 

Berner et al. 1996; Khan et al. 2006; Ejeta, 2007). Striga depends entirely on its host for growth 22 

and survival. Under favorable growing conditions, Striga seeds break dormancy in response to 23 

germination stimulants (Strigolactones) produced by the host. A germinated Striga plant then 24 

establishes vascular connections with the host’s roots via the haustoria through which it draws 25 

nutrients and water resulting in stunted growth, chlorosis, impaired photosynthesis, reduced maize 26 

biomass, and yield loss (Gurney et al. 1995; Spallek et al. 2013).  27 

Several control strategies have been proposed to reduce the burden of Striga for farmers in SSA. 28 

These include crop rotation (Oswald and Ramson, 2001), intercropping (Khan et al. 2002), push-29 

pull technology (Khan et al. 2008), host plant resistance (Menkir et al. 2007; Rich and Ejeta, 2008), 30 

herbicide resistant maize (Makumbi et al. 2015) and integrated pest management (Khan et al. 31 

2016; Kanampiu et al. 2018). Host plant resistance is one of the most promising approaches for 32 
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Striga control in SSA as the technology is embedded in the seed.  Host plant resistance, coupled 1 

with other control approaches, is considered an important Striga control strategy for smallholder 2 

farmers due to its ease of deployment and adoption (Mwangangi et al. 2021). 3 

Breeding for Striga resistance is hampered by the limited sources of resistance within elite maize 4 

germplasm, complex genetics of resistance, complicated host-parasite relationship (Amusan et al. 5 

2008), and limited phenotyping capacity. Phenotyping for Striga resistance or tolerance requires 6 

uniform artificial Striga infestation that exposes maize seedlings to a large number of Striga seeds 7 

to prevent escape (Kim, 1996; Kling et al. 1999). Although the artificial Striga infestation 8 

technique has been successful, breeders are limited by lack of large experimental fields that can 9 

solely be dedicated for artificial screening. This can slow progress in identifying resistant inbred 10 

lines and hybrids as a limited number of genotypes can be screened at a time. Despite these 11 

challenges significant progress has been made in developing and deploying Striga resistant maize 12 

varieties in West Africa by the International Institute of Tropical Agriculture (IITA, 13 

https://www.iita.org) and its partners over the years (Kim et al. 1994; Badu-Apraku et al. 2007; 14 

Menkir and Kling, 2007; Menkir et al. 2012; Menkir and Meseka, 2019). A study by Menkir et al. 15 

(2007) showed that the key traits for Striga resistance breeding namely grain yield, Striga damage 16 

rating, and Striga counts are conditioned by many genes with small effects. Recurrent selection 17 

studies have shown improvements in Striga resistance related traits in maize in West Africa 18 

(Menkir and Kling, 2007; Badu-Apraku et al. 2009; Badu-Apraku., 2010). Recent studies reported 19 

genetic gains of 93.7 kg ha-1 yr-1 (Menkir and Meseka, 2019) and 101 kg ha-1 yr-1 (Badu-Apraku 20 

et al. 2020a) for grain yield under Striga infestation. These gains were attributed to significant 21 

gains in the reduced number of emerged Striga plants and less Striga damage. Menkir and Meseka 22 

(2019) reported gains of ‒6.7% and ‒5.5% year -1 for number of emerged Striga plants at 8 and 10 23 

weeks after planting, respectively. The reported genetic gains are attributed to the use of effective 24 

screening protocols (Kim, 1994; Kim and Adetimirin, 2001), and better understanding of the 25 

genetics of Striga resistance (Kim, 1994; Yallou et al. 2009; Badu-Apraku et al. 2013).  26 

The genetic gains reported in breeding for Striga resistance at IITA have been achieved through 27 

development of inbred lines using conventional pedigree breeding method and backcrossing. In 28 

addition, recurrent selection has been used to accumulate desirable alleles for traits associated with 29 

resistance to Striga (Badu-Apraku et al. 2007; Menkir and Kling, 2007). Developing near-30 

homozygous inbred lines in 6–8 generations through the pedigree method could slow the rate of 31 
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genetic gain in breeding for resistance to Striga in maize. The use of the doubled haploid (DH) 1 

technology in maize through which completely homozygous lines can be developed within 13‒14 2 

months could significantly reduce the breeding cycle time, and accelerate population and variety 3 

development (Bernardo, 2009; Chaikam et al. 2019). Application of DH technology for line 4 

development for SSA has been implemented at a large scale at CIMMYT since 2012 (Prasanna et 5 

al. 2012; Chaikam et al. 2019).  6 

The application of marker assisted selection along with conventional breeding and DH technology 7 

can speed up the identification of Striga resistant germplasm. Several quantitative trait loci (QTLs) 8 

related to Striga resistance have been reported (Badu-Apraku et al. 2020b, c; 2023). Genome-wide 9 

association studies (GWAS) have identified significant single nucleotide polymorphisms (SNPs) 10 

associated with number of emerged Striga plants and Striga damage rating in tropical maize 11 

(Adewale et al. 2020; Stanley et al. 2021; Gowda et al. 2021; Okunlola et al. 2023). Accelerated 12 

line and variety development can also be achieved through the incorporation of genomic selection 13 

(GS) in a breeding program. The use of DH lines in combination with genomic prediction/selection 14 

methods can accelerate genetic improvement in crop plants (Heffner et al. 2010; Song et al. 2017; 15 

Cerrudo et al. 2018). 16 

Genomic selection is an approach for improving complex quantitative traits. Genomic selection 17 

(Meuwissen et al. 2001) and genomic prediction of complex traits (de los Campos et al. 2009; 18 

Crossa et al. 2010; Pérez-Rodríguez et al. 2012) target breeding value estimates which include the 19 

parental average and a deviation resulting from Mendelian sampling (Heffner et al. 2009; Crossa 20 

et al. 2017). Genomic prediction has been used to estimate additive as well as non-additive effects 21 

of lines (Crossa et al. 2017; Bonnett et al. 2022).  Estimation of additive gene effects allows for 22 

selection in early generations such as F2 (Crossa et al. (2017). Genomic prediction accounts for 23 

Mendelian segregation and considers the realized covariances based on dense molecular markers 24 

that span the genome (Pérez-Rodríguez et al. 2012). With both marker and phenotypic data, the 25 

genetic values of genotypes evaluated in single and across environments is estimated using 26 

genomic prediction through genotype by environment (G × E) interaction analyses. Research on 27 

crop and animal breeding has shown that prediction accuracy in selection for complex traits using 28 

pedigree information can significantly be improved through genomic selection with different 29 

models (Crossa et al. 2022).   30 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae186/7731522 by International Institue of Tropical Agriculture (IITA) user on 09 Septem

ber 2024



5 

Multiple genomic prediction models including parametric and non-parametric statistical and 1 

computational models that account for both genetic and non-genetic effects have been developed 2 

to estimate genomic breeding values (GEBVs) (Crossa et al. 2017). Additionally, linear and non-3 

linear kernels that are based on genomic relationship matrices have been reported to be better than 4 

the conventional methods (Crossa et al. 2022). Non-linear genomic kernels such as the reaction 5 

norm model can account for epistatic effects between markers and incorporate large-scale 6 

environmental data (enviromics) and G × E analyses for improved prediction accuracy (Jarquín et 7 

al. 2014). The prediction accuracy of the model is assessed through cross validation after which 8 

an appropriate model is used to predict the performance of untested genotypes by estimating their 9 

genomic breeding values. The candidate lines are therefore selected based on GEBVs generated 10 

from the marker and phenotype information of the training population (Crossa et al. 2017). Only 11 

genotypes with the best GEBVs are selected and advanced depending on the trait. Genomic 12 

selection can thus accelerate breeding by reducing the duration of line and variety development, 13 

while also reducing phenotyping costs in crops like maize (Crossa et al. 2013; Edriss et al. 2017; 14 

Beyene et al. 2021; Butoto et al. 2022), and in other crops (Pérez-Rodríguez et al. 2012; Iwata et 15 

al. 2015; Velazco et al. 2019). 16 

The use of genomic selection in breeding programs focusing on improving Striga resistance for 17 

increased genetic gains in grain yield under artificial Striga infestation could provide an option to 18 

overcome the challenge of limited and costly phenotyping. The International Maize and Wheat 19 

Improvement Center (CIMMYT, https://www.cimmyt.org) has developed several DH lines using 20 

Striga resistant maize germplasm from IITA.  This germplasm could provide insights on the 21 

application of genomic selection for the incorporation of Striga resistance in mid-altitude maize 22 

germplasm in Eastern and Southern Africa where Striga hermonthica still presents a major 23 

challenge. The objectives of this study were to (i) assess the efficiency of genomic prediction for 24 

Striga resistance associated traits and grain yield using the reaction norm model, and (ii) predict 25 

the genetic values of field tested and untested DH lines.   26 

Materials and methods 27 

Genetic material 28 

This study utilized 606 DH lines developed by CIMMYT at the Maize DH Facility in Kiboko, 29 

Kenya (Supplementary Table 1). The DH lines were developed from induction of F2 and BC1F2 30 
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populations formed by crossing Striga resistant donor lines from IITA with elite mid-altitude 1 

tropical maize lines developed by CIMMYT. The Striga resistance donor lines from IITA include 2 

TZSTR182, TZSTR184, TZISTR1156, TZISTR1158 and TZSTR167.  Line TZSTR167 was 3 

derived from a yellow composite (TZLCOMP1.Y), whereas lines TZSTR182, TZSTR184, 4 

TZISTR1156 and TZSTR1158 were derived from bi-parental crosses of white inbred lines derived 5 

from a Striga resistant synthetic (ACRSYN-W) and a composite (TZLCOMPIC4). The elite 6 

CIMMYT lines (CML521, CML522, and CML543) used for crossing had varying levels of 7 

drought tolerance and/or herbicide (imazaypr) resistance. Some F1 crosses were advanced to F2 8 

while others were planted alongside either the IITA donor lines or the adapted CIMMYT lines and 9 

crossed to form BC1F1. The BC1F1 were selfed to form BC1F2 populations which were then 10 

submitted for DH induction.  There were 171 and 435 DH lines developed from F2 and BC1F2 11 

populations, respectively. Of the 606 DH lines, 116 lines derived using CML522 (a drought 12 

tolerant and herbicide resistant line) as a parent were selected to serve as the training population 13 

(TRN) and crossed to two inbred line testers from IITA to form 232 testcross hybrids.  14 

Experimental design, test locations and artificial Striga infestation  15 

The 232 testcross (TC) hybrids were part of 351 TC hybrids that were developed from new DH 16 

lines and were tested in two trials.  Trial 1 had 180 entries while Trial 2 had 171 entries. Each trial 17 

included 116 TC hybrids from the TRN set.  Only 232 TC hybrids were used for this study as only 18 

116 lines had both genotypic and phenotypic data. Trial 1 included two internal genetic gain checks 19 

and six commercial checks while Trial 2 had two internal genetic gain checks and seven 20 

commercial checks. The experimental design was 4 × 47 and 4 × 45 alpha-lattice with two 21 

replications for Trials 1 and 2, respectively. Each experimental unit consisted of one 4 m row 22 

spaced 0.75 m apart and 0.20 m space between plants, giving a plant population density of 23 

approximately 66,666 plants ha-1 at all locations.  The hybrids were evaluated in field trials under 24 

artificial Striga infestation at the Kenya Agricultural and Livestock Research Organization 25 

(KALRO) research stations at Kibos (0⁰2’S, 34⁰48E, 1193 masl) and Alupe (0⁰30’N, 34⁰7E, 1250 26 

masl), and at Siaya ATC (03⁰10’N, 34⁰17E, 1288 masl) in 2020. The soil types are classified as 27 

Eutric Cambisol, Orthic Ferralsol, and Plinthic Ferralsol at Kibos, Alupe, and Siaya ATC, 28 

respectively. All locations have a bimodal rainfall distribution (March‒July and September‒29 

November), with most of the rain falling between March–July. The fields used for artificial Striga 30 
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infestation at the research stations had been previously used for imazapyr herbicide studies 1 

(Kanampiu et al. 2002, 2018; Makumbi et al. 2015), whose residual toxicity (Alister and Kogan, 2 

2005) kills Striga seed in the soil.  3 

To obtain uniform exposure to Striga for each genotype, artificial Striga infestation was used. 4 

Striga seed was collected from infested maize fields in the Striga infested belt of western Kenya 5 

(Gethi et al. 2005). Striga inoculum was prepared by thoroughly mixing 10g of Striga seeds, with 6 

5 kg of sand. The Striga seed-sand inoculum (20 g) was applied to each planting hole at a depth 7 

of 7 to 10 cm using a calibrated spoon that delivered up to ~3,000 Striga seeds to ensure uniform 8 

Striga infestation in the trials (Makumbi et al. 2015). The Striga seed–sand inoculum was placed 9 

directly at the bottom of the planting hole for uniform exposure of the maize plants to Striga from 10 

the onset of germination. Di-ammonium phosphate (DAP, 18:46:0) fertilizer was applied at half 11 

the recommended rate (30 kg ha-1) at planting to enhance plant establishment but avoid suppressing 12 

Striga germination. Half dose (30 kg ha-1) of calcium ammonium nitrate (CAN, 26%) fertilizer 13 

was used for topdressing at 4 weeks after planting. Standard agronomic and cultural practices were 14 

performed as recommended for each location. Hand weeding was carried out to eliminate all weeds 15 

except Striga plants.  16 

Data collection 17 

Data were recorded on the number of emerged Striga plants (STR), Striga damage rating (SDR) 18 

and ear weight. The number of emerged Striga plants per plot was recorded within 15 cm of either 19 

side of the row at 8, 10 and 12 weeks after planting (WAP). The SDR was recorded at 10 (SDR1) 20 

and 12WAP (SDR2) using a 1‒9 rating scale where 1 refers to a healthy plant with no visible 21 

symptoms of Striga damage (resistant) and 9 is highly susceptible to Striga with totally scorched 22 

leaves, absent ears, and untimely death of the host plant (Kim, 1991; Kim et al. 2002). The area 23 

under Striga number progress curve (AUSNPC) was computed from the three STR plant counts 24 

(8, 10, and 10 WAP) following the formula for calculating the area under disease progress curve 25 

(AUDPC) (Shaner and Finney, 1977) as: 26 

AUSNPC = ∑ (
𝑦

𝑖
+𝑦

𝑖−1

2
) (𝑡𝑖 − 𝑡𝑖−1)𝑛

𝑖=1 , 27 

where 𝑦𝑖 is the number of Striga plants at the 𝑖𝑡ℎ observation, 𝑡𝑖  is the time point in days after 28 

planting at the ith observation and 𝑛 is the total number of observations.  29 
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Finally, grain yield expressed in tons per hectare (t ha-1) was computed based on ear weight per 1 

plot, assuming 80% shelling percentage and adjusted to 12.5% grain moisture content.  2 

Genotypic data  3 

Leaf samples of the 606 DH inbred lines were collected three weeks after planting and shipped to 4 

Intertek laboratories in Sweden for DNA extraction. The DNA samples were then forwarded to 5 

the Institute for Genomic Diversity, Cornell University (Ithaca, NY, USA) for genotyping with 6 

repetitive amplicon sequences (rAmpSeq markers). A genome indexing approach was used for 7 

designing primers using the conserved regions of the genome. The repeat amplicons were then 8 

multiplexed for genotyping as described by Buckler et al. (2016). The rAmpSeq protocol is a 9 

simple cost-effective sequencing technology which uses targeted amplicon sequencing approach 10 

and gene specific primers to amplify targeted regions of interest. The DNA library was 11 

constructed, mapped to B73 maize reference genome (version 3) and each unique sequence tag 12 

was regarded as a dominant marker. The dominant markers were saved in present‒absent variant 13 

(PAV) format where one (1) and zero (0) denoted present or absent, respectively. For the 606 DH 14 

lines, a total of 8,439 sequence tags were called. The marker quality control (QC) process which 15 

involved the exclusion of monomorphic and uninformative markers, markers with minor allele 16 

frequencies (MAF) <0.05 and those whose variances were equal to zero was carried out in R 17 

Software (R Core Team, 2022). After QC, 5,380 high quality rAmpSeq markers were selected for 18 

use in genomic prediction.  19 

Statistical analyses 20 

Analysis of variance 21 

Striga count data were tested for normality using the Shapiro-Wilk test before conducting analysis 22 

of variance. Analysis of individual trials was carried out using META-R (Alvarado et al. 2020). 23 

The best linear unbiased estimates (BLUEs) and the best linear unbiased predictions (BLUPs) were 24 

computed by a linear mixed model in which genotype effect was considered as fixed and random, 25 

respectively. The BLUEs were used for the genomic prediction model as input data while the 26 

random models were used to evaluate quality of individual trials. All other effects in the model 27 

were considered random. The linear mixed model used for single site analysis is as follows:  28 

𝑦𝑖𝑗𝑘 = µ + 𝐺𝑖 + 𝑅𝑗 + 𝐵𝑘(𝑅𝑗) + ɛ𝑖𝑗𝑘 , 29 
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where 𝑦 𝑖𝑗𝑘 is the response variable; µ is an intercept; 𝐺𝑖 is the effect of the ith genotype; 𝑅𝑗is the 1 

effect of jth replicate; 𝐵𝑘(𝑅𝑗) is the effect of the kth block within the jth replicate; while ɛ𝑖𝑗𝑘  is the 2 

experimental error associated with the ith genotype, jth replicate and kth block. We assumed 3 

ɛ~𝑁𝐼𝐼𝐷(0, 𝜎𝜀
2), where NIID is normal independent and identically distributed random variables, 4 

𝜎𝜀
2 is the associated variance parameter.   5 

After individual analysis, data was analyzed combined across locations with a linear mixed model 6 

using ASReml-R version 4.2 (Butler et al. 2009).  From this point, moving forward, the 7 

environment is synonymous with location. The linear mixed model fitted for the combined analysis 8 

was: 9 

𝑦𝑖𝑗𝑘𝑙 = µ + 𝐺𝑖 + 𝐸𝑗 + 𝑅𝑘(𝐸𝑗) + 𝐵𝑙(𝐸𝑅)𝑗𝑘 + 𝐺𝐸𝑖𝑗 + ɛ𝑖𝑗𝑘𝑙 , 10 

where 𝑦𝑖𝑗𝑘𝑙  is the response variable; µ is an intercept; 𝐺𝑖is the effect of the ith genotype; 𝐸𝑗is the 11 

effect of the jth environment; 𝑅𝑘(𝐸𝑗 )is the effect of the kth replicate in the jth environment; 12 

𝐵𝑙(𝐸𝑅)𝑗𝑘 is the effect of the lth block within the kth replicate at the jth environment; 𝐺𝐸𝑖𝑗 is the 13 

effect of the interaction between the ith genotype and the jth environment; while ɛ𝑖𝑗𝑘𝑙  is the 14 

experimental error associated with the ith genotype, jth environment, kth replicate and lth block 15 

where the error term is assumed to be normally, identical, and independently distributed (NIID) 16 

with mean zero and homoscedastic variance  𝜎𝜀
2. All effects except μ and Ej were considered 17 

random effects. 18 

Broad sense heritability was estimated for individual and combined environments according to 19 

Hallauer et al. (2010). At individual environments, heritability was computed as: 20 

𝐻𝑎
2 =

𝜎𝐺
2

[𝜎𝐺
2 +

𝜎ɛ
2

𝑅
]
, 21 

where 𝐻𝑎
2 is the broad sense heritability for individual environments, 𝜎𝐺

2 is the genotypic variance, 22 

𝜎ɛ
2 is the variance associated to the error and R is the number of replications. The heritability across 23 

environments was computed as: 24 

𝐻𝑏
2 =

𝜎𝐺
2

[𝜎𝐺
2+

𝜎𝐺𝐸
2

𝐸
+

𝜎ɛ
2

𝐸×𝑅
]

, 25 
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where 𝐻𝑏
2 is the broad sense heritability for combined environments, 𝜎𝐺

2 is the genotypic variance, 1 

𝜎𝐺𝐸
2  is the variance of the interaction between the genotype and the environment, 𝐸 is the number 2 

of environments and 𝑅 is the number of replicates, and the 𝜎ɛ
2 is the residual variance. BLUPs 3 

obtained from the combined phenotypic analysis were used to calculate Pearson’s correlation 4 

coefficients among the different traits. 5 

Genomic prediction 6 

We computed a genomic relationship matrix (GRM) according to Lopez-Cruz et al. (2015) for use 7 

in subsequent analysis. The GRM was computed as; 𝑮 = 𝑴/𝑝, where 𝑴 is the matrix of markers 8 

centered and standardized by column (mean zero and variance one by marker) and 𝑝 is the number 9 

of markers. The objective of genomic prediction was to estimate the number of emerged Striga 10 

plants, Striga damage rating, AUSNPC and grain yield for lines not evaluated in the field. Given 11 

that some of the genotyped lines were evaluated at three locations (Kibos, Alupe, and Siaya), we 12 

employed the reaction norm model proposed by Jarquín et al. (2014) to predict GEBVs considering 13 

the environments, markers and the interaction between genotypes and environments. The BLUEs 14 

obtained from phenotypic analysis were used for genomic prediction. The equation for the reaction 15 

norm model is: 16 

𝒚 = 𝒁𝐸 𝜷𝐸 + 𝒁𝑔 𝒈 + 𝒖 + 𝒆, 17 

where  𝒚 is the BLUEs of the response vector (number of emerged Striga plants, Striga damage 18 

rating, AUSNPC or grain yield), 𝒁𝐸 is a design matrix for environments (locations), 𝜷𝐸 is the 19 

vector effect of the environments, 𝜷𝐸  ~ 𝑀𝑁(𝟎,𝜎𝐸
2𝑰), where 𝑀𝑁 is multivariate normal 20 

distribution, 𝟎 is a vector or zeros, 𝜎𝐸
2 is the variance parameter associated with environments and 21 

𝑰 is the identity matrix; 𝒁𝑔  is a matrix that connects phenotypes with genotypes, and 𝒈 is the vector 22 

of random effects of genotypes. We assumed 𝒈~𝑀𝑁(𝟎,𝜎𝑔
2𝑮) with 𝜎𝑔

2 the variance associated to 23 

the genotypes, 𝑮 is a genomic relationship matrix (López-Cruz et al. 2015); 𝒖 represents the 24 

interaction, we assumed 𝒖~𝑀𝑁(𝟎,𝜎𝑔×𝐸
2 𝒁𝑔𝑮𝒁𝑔

𝑡 #𝒁𝐸𝒁𝐸
𝑡 ), with 𝜎𝑔×𝐸

2  the variance parameter 25 

associated to the interaction and # representing the element-wise product of two matrices. Finally, 26 

𝒆 represents the error, we assumed 𝒆~𝑀𝑁(𝟎,𝜎𝑒
2𝑰), with 𝜎𝑒

2the variance associated to the error. 27 

Furthermore, we also assumed that 𝜷𝐸 , 𝒈,𝒖 and 𝒆 are distributed independently. In this study, no 28 

environmental variables were considered and therefore the environmental effect corresponds to a 29 
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11 

dummy location effect. The training set (TRN) consisted of phenotypic data of 116 DH lines 1 

evaluated in 232 testcrosses at Kibos, Alupe, and Siaya under artificial Striga infestation while the 2 

testing set (TST) consisted of the 490 DH lines not evaluated in the field.  3 

Cross-validation 4 

Two cross validations schemes were used to determine the prediction accuracy of the reaction 5 

norm model. Using the reaction norm model (Jarquín et al. 2014), two main prediction scenarios 6 

were considered: cross validation 1 (CV1) and cross validation 2 (CV2) (Burgueño et al. 2012). 7 

The CV1 was used to predict the performance of new lines that have not been field screened under 8 

artificial Striga infestation while CV2 sought to predict the genetic value of the lines in locations 9 

in which they have not been tested but were tested in other environments. For the computation of 10 

both CV1 and CV2 correlation values, 20% of the lines were considered as the testing set while 11 

the remaining 80% were used to train the model in 50-fold cross validations.  The training data set 12 

was used to train the model while testing set was used to estimate the model prediction accuracy 13 

measured by the Pearson’s correlation coefficient between observed and predicted values. For each 14 

of the 50 random partitions, prediction accuracy was computed within and across environments 15 

(locations) for all traits. The reaction norm model was fitted using the BGLR package in R (Pérez-16 

Rodríguez and de los Campos, 2014). Inferences were based on 30,000 iterations with a thin of 17 

10, obtained after discarding the first 15,000 iterations that were taken as burn-in. 18 

To evaluate the prediction accuracy in each environment, a third form of cross validation (CV0) 19 

involving use of phenotypic data from two environments to estimate the prediction accuracy of the 20 

model in estimating the performance of lines in the third environment was carried out. The 21 

prediction accuracy for each environment was estimated when the phenotypic data in that specific 22 

environment was treated as missing values (the testing set) using BGLR (Pérez-Rodríguez and de 23 

los Campos, 2014).  24 

Results 25 

Analysis of variance and testcross performance 26 

In this study, we used 606 new DH lines of which 116 were crossed to two testers to generate 232 27 

testcross hybrids that were phenotyped under artificial Striga infested conditions at three locations 28 

in Kenya. Analysis of variance at individual locations showed significant variation among hybrids 29 
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12 

for all traits measured (Table 1). The magnitude of genetic variance for number of emerged Striga 1 

plants at 10 WAP (STR10WAP) and 12 WAP (STR12WAP) was 8.2 and 16.5 times greater than 2 

that for emerged Striga plants at 8 WAP (STR8WAP), respectively. Broad-sense heritability was 3 

low to moderate for Striga resistance parameters (0.23‒0.54) and moderate for grain yield (0.31–4 

0.53). Broad-sense heritability for the Striga resistance parameters was lower at Siaya compared 5 

to the other two locations. The mean number of emerged Striga plants at 8WAP was the lowest at 6 

Alupe (7), but the same location recorded the highest mean number of emerged Striga plants at 7 

10WAP and 12WAP (Fig.1). The Striga damage rating (SDR), at 10WAP, 12WAP, and the 8 

average SDR were highest at Siaya and lowest at Alupe (Fig. 1). The AUSNPC was lowest at 9 

Kibos and Siaya (190 m2). Mean grain yield was highest at Alupe (5.3 t ha-1) and lowest at Siaya 10 

(3.3 t ha-1).  11 

Combined analysis of variance under artificial Striga infestation revealed highly significant (P < 12 

0.001) variation among hybrids for all traits (Table 2). The G × E interaction was significant for 13 

all traits.  The 𝜎̂𝐺
2 was 3 and 5 times larger than 𝜎̂𝐺𝐸

2  for STR10WAP and STR12WAP, respectively. 14 

Broad-sense heritability was moderate to high for all Striga resistance parameters (0.38‒0.65) and 15 

grain yield (0.54). The number of emerged Striga plants ranged from 4 to 126 with a mean of 8, 16 

27 and 39 at 8, 10 and 12 WAP, respectively.  The AUSNPC ranged from 59.5 to 331 m2 with a 17 

mean of 102.2 m2 while grain yield across locations ranged from 3.1 to 6.1 t ha-1 with an average 18 

of 4.5 t ha-1.  Significant positive correlation between the three Striga resistance parameters were 19 

revealed (Fig. 2). The correlations between the number of emerged Striga plants at 8, 10 and 20 

12WAP and AUSNPC were high (r = 0.73‒0.98). Striga damage rating showed significant 21 

negative correlation with grain yield (r = -0.73 – -0.79).  22 

Prediction accuracy  23 

The 606 DH lines were genotyped with 8,439 markers of which 5,380 high quality rAmpSeq 24 

markers were used for the analysis.  Three cross validation (CV) schemes were used to assess the 25 

prediction accuracy of the reaction norm model. The CV0 and CV2 were used to determine the 26 

prediction accuracy of the model when estimating the performance of previously phenotyped lines 27 

in new environments while CV1 was applied when assessing the accuracy of the model when 28 

estimating the performance of newly developed lines that have not been tested before.  The results 29 

indicate moderate prediction accuracies for most traits at Kibos and Alupe (Table 3). For individual 30 
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locations, Alupe showed better prediction accuracies for most traits across the three CV schemes 1 

while Siaya had the lowest prediction accuracies for the Striga resistance parameters but the 2 

highest for grain yield with CV0 (0.59) and CV2 (0.52). The prediction accuracies for grain yield 3 

were similar for CV0 and CV2 at individual locations.  For across location analysis, the predictive 4 

accuracy of the model was better for CV0 compared to both CV2 and CV1 for most traits except 5 

number of emerged Striga plants at 10 and 12WAP (Table 3). Overall, the prediction accuracy of 6 

CV0 (0.24–0.59) and CV2 (0.20–0.56) was higher than that of CV1 (0.05–0.29). Grain yield 7 

generally showed better prediction accuracies (CV0 and CV2) across the trial locations compared 8 

to the Striga resistance parameters.  9 

Genomic estimated breeding values 10 

The genomic estimated breeding values (GEBVs) of the lines in the testing set (TST) were 11 

computed from both marker and phenotypic data (BLUEs) of the training set (TRN) using the 12 

reaction norm model. The mean GEBVs of Striga resistance parameters and grain yield for both 13 

the TRN and TST sets across the three trial locations are presented in Fig. 3, and their distribution 14 

in Supplemental Fig. 1. The results indicated that there was a close relationship between the 15 

GEBVs in TRN and TST sets (Fig. 4). The mean GEBVs were either equal in the TRN and the 16 

TST sets for STR8WAP and STR10WAP or slightly higher in the TST compared to the TRN for 17 

the other traits except grain yield for which the mean of the TST (4.0 t ha-1) was lower than that of 18 

the TRN (4.26 t ha-1). The mean GEBV of emerged Striga plants ranged from 7.5 for STR8WAP 19 

to 35.6 for STR12WAP in the TRN and 7.5 for STR8WAP to 36.4 for STR12WAP in the TST 20 

sets (Fig. 3). Results showed that 45, 61 and 63 lines in the TRN had lower GEBVs for STR8WAP, 21 

STR10WAP and STR12WAP, respectively. On the other hand, about 50% of the lines in the TST 22 

set had lower emerged Striga plants in comparison with the mean at STR8WAP, STR10WAP and 23 

STR12WAP. The mean GEBV for Striga damage was 2.1 and 2.6 for SDR1 and SDR2, 24 

respectively in the TRN, while that of the TST was 2.2 (SDR1) and 2.7 (SDR2) (Fig. 3). The 25 

predicted GEBV of SDR ranged from 1.7 (SDR1) to –3.1 (SDR2) for the TRN and 1.8 (SDR1) 26 

to–3.1(SDR2) in the TST. A total of 27 and 144 DH lines showed lower GEBVs for SDR than the 27 

mean for the TRN and TST, respectively. In total, 56% (TRN) and 48.4% (TST) of the lines 28 

showed smaller AUSNPC than the mean GEBV. Additionally, 50 and 239 lines had higher 29 

predicted GY than the mean in the TRN and TST sets, respectively. Of the 606 DH lines, 282, 307 30 
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and 313 lines had a lower number of emerged Striga plants than the mean GEBVs at 8, 10 and 1 

12WAP, respectively.  2 

Discussion 3 

Breeding for Striga resistance in maize presents a unique challenge owing to the quantitative 4 

nature of Striga inheritance, narrow genetic base of elite Striga resistant germplasm, constrained 5 

phenotyping capacity, and high phenotyping costs. Breeding for Striga resistance therefore 6 

requires multiple approaches including classical breeding, use of molecular markers, and a 7 

combination of the two approaches to address these challenges. Our objectives were to assess the 8 

prediction accuracy of genomic selection in determining the genetic values of tested and untested 9 

DH lines under artificial Striga infestation. 10 

Phenotypic variation and heritability 11 

The testcrosses in this study were developed from a diverse set of DH lines whose pedigree 12 

included Striga-susceptible but elite mid-altitude tropical maize lines from CIMMYT and Striga 13 

resistant donor lines from IITA. The results indicated significant genotype and G × E interaction 14 

for all traits possibly due to differential responses to Striga infestation among testcrosses arising 15 

from the diverse genetic backgrounds of the lines and differences among the locations used. The 16 

differences at the locations could be attributed to climatic and edaphic factors (Menkir et al. 2012; 17 

Makumbi et al. 2015). The genetic variance was 9 and 20 times larger at 10WAP and 12WAP, 18 

respectively, than at 8WAP which corroborates with results from an earlier study (Gowda et al. 19 

2021). This suggests that there is sufficient variability among these hybrids for Striga emergence 20 

that can be uncovered at 10 and 12 WAP and to reduce phenotyping costs at 8WAP. The genetic 21 

variance recorded in this study was larger than G × E variance, similar to the result reported by 22 

Menkir and Kling (2007) and Gowda et al. (2021).  The observed large genetic variance could 23 

arise from the use of lines containing Striga resistant alleles of diverse origins (Menkir, 2011; 24 

Menkir et al. 2012) and diverse elite mid-altitude lines from CIMMYT. Furthermore, use of DH 25 

populations could have contributed to the observed larger genetic variance (Gallais, 1990). 26 

The variability observed between the number of emerged Striga plants and Striga damage rating 27 

among locations suggests the likelihood of different Striga ecotypes exhibiting variable virulence 28 

as well as the effects of different climatic and edaphic factors. Mbuvi et al. (2017) reported 29 
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significant variability among Striga ecotypes at Kibos and Alupe with the ecotypes at Kibos found 1 

to be more virulent on sorghum compared to the ecotypes at Alupe. This may explain the low 2 

Striga damage rating observed at Alupe despite the high number of emerged Striga plants recorded 3 

at this site.  Heritability estimates for most of the Striga resistance parameters and grain yield 4 

across locations were moderate, suggesting that selection of superior inbred lines with relevant 5 

Striga resistance traits should be possible.  Heritability estimates for Striga resistance parameters 6 

like emerged Striga counts have been variable in several studies, ranging from moderate (Adewale 7 

et al. 2020; Gowda et al. 2021; Okunlola et al. 2023) to high (Menkir et al. 2012) based on 8 

differences in the germplasm used.   9 

The correlation between the number of emerged Striga plants at 10 and 12 WAP and grain yield 10 

was low and non-significant. This corroborates the findings by Adewale et al. (2020), Stanley et 11 

al. (2021) and Okunlola et al. (2023) but is contrary to results by Menkir and Kling (2007) and 12 

Gowda et al. (2021). On the other hand, SDR showed significant negative correlations with grain 13 

yield, suggesting that SDR is a useful parameter for measuring Striga resistance under artificially 14 

infested conditions and could be used to select inbred lines combining lower Striga damage and 15 

higher grain yield.  Correlations between two traits may be due to pleiotropy, linkage, or both, 16 

amount of linkage disequilibrium, and the effect of the environment. The low correlation between 17 

grain yield and number of emerged Striga plants at 10 and 12 WAP suggests a lack of linkage 18 

between genes controlling these traits. Parents of the inbred lines used in the present study show 19 

significant negative correlation between SDR and STR, and between grain yield and SDR, and 20 

STR under Striga infestation. It is possible that the lines derived from crosses between IITA and 21 

CIMMYT lines may not carry all the favorable alleles derived from the parental lines leading to 22 

weak correlation among these traits.  Selection-induced changes can modify the genetic correlation 23 

between traits either by altering the pattern of polymorphism at loci with pleiotropic effects or by 24 

changing the linkage disequilibrium among closely linked loci (Lande, 1984). While these 25 

correlations are useful, more detailed investigations should focus on genetic correlations between 26 

various Striga resistance parameters and grain yield based on a larger data set (multiple 27 

environments and seasons), as these provide the breeder with a better understanding of the 28 

relationship among traits (pleiotropy or linkage) and could have implications for application of 29 

indirect selection in a breeding program.   30 
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Genomic prediction 1 

Genotype × environment interactions significantly influence phenotypic performance and ultimate 2 

selection potential in crops (Des et al. 2013). We used the reaction norm model which considers 3 

the epistatic effects resulting from various interactions among genotypes, markers, and the 4 

environment to estimate an individual’s phenotype or its performance in new environments 5 

(Jarquín et al. 2014). Prediction of genetic values of lines in environments in which they were not 6 

tested (CV0 and CV2) resulted in low to moderate prediction accuracy. This suggests that 7 

estimation of the GEBVs of lines in new environments is possible for Striga resistance parameters 8 

and grain yield. This kind of genetic value prediction is akin to sparse testing due to the use of 9 

information on the performance of lines in correlated environments (Burgueño et al. 2012; Mageto 10 

et al. 2020).  This is attributed to the ability of the reaction norm model to leverage information 11 

from relatives resulting from the interaction of genotypes within and across environments and 12 

correlated environments (Burgueño et al. 2012).   The prediction accuracy for CV0, CV1 and CV2 13 

for Striga resistance parameters obtained in this study was lower than that reported by Gowda et 14 

al. (2021).  However, our results indicate 14‒19% better prediction accuracy for grain yield 15 

compared to Gowda et al. (2021) for the three CV schemes. These differences in results may be 16 

due to the complexity of Striga resistance, besides the differences in germplasm and prediction 17 

models used. The prediction accuracy was relatively low with the application of GS to newly 18 

developed lines (CV1). A similar finding was reported by Gowda et al. (2021) for Striga resistance 19 

in maize and by Semagn et al. (2022) for multiple disease resistance in wheat.  The low prediction 20 

accuracy with CV1 is attributed to its reliance on the phenotypic values and genetic relationships 21 

of other lines (Burgueño et al. 2012; Mageto et al. 2020).  22 

The predictive power of genetic models is significantly affected by low trait heritability (Liu et al. 23 

2018). The relatively low to moderate prediction accuracy observed for Striga resistance 24 

parameters in this study was possibly due to the low trait heritability and relatively small training 25 

population size (Heffner et al. 2011; Ornella et al. 2012). The moderate heritability for most traits 26 

may partly explain the low to moderate prediction accuracies recorded for Striga resistance 27 

parameters in this study. A positive correlation between high trait heritability and high prediction 28 

accuracy was reported for kernel zinc concentration in maize (Mageto et al. 2020). The limited 29 

TRN size was due to the limited area available for artificial Striga screening, which in turn limited 30 
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the number of testcrosses that could be evaluated in the field. A large TRN set is important for 1 

increased prediction accuracy (Lorenz et al. 2012; Gowda et al. 2015; Beyene et al. 2019). 2 

However, the level of prediction accuracy achieved in this study should still allow for application 3 

of GS by removing lines with the least favorable GEBVs for key Striga resistance traits before 4 

testcrossing (Edriss et al. 2017). The moderate prediction accuracies for some traits could be 5 

attributed to the close relationship between the TRN and TST sets as well as the model used 6 

(Jarquín et al. 2017; Brandariz and Bernardo, 2019). In this study, we identified 300 lines with 7 

desirable GEBVs for fewer emerged Striga plants at 10 and 12WAP. These lines putatively have 8 

good alleles that could reduce Striga emergence in maize. These lines should be tested in hybrid 9 

combinations under artificial Striga infestation and optimal conditions to identify the most suitable 10 

lines combining Striga resistance and other adaptive traits. Selection of genotypes that support a 11 

reduced number of emerged Striga plants should help in curtailing the replenishment of the Striga 12 

seed bank in the soil.  13 

 14 

Prospects in breeding for resistance to Striga  15 

Breeding for Striga resistance is one of the strategies that can be used to increase maize grain yield 16 

while also contributing to reduced Striga seed bank in the soil in Striga affected regions in SSA. 17 

Maize breeding programs targeting Striga resistance are faced with a multitude of challenges 18 

which could be overcome by a combination of conventional and molecular technologies. With 19 

advances in genomic approaches and lower genotyping costs, the integration of classical and 20 

genomic-assisted breeding strategies has the potential to address some of the limitations of 21 

breeding for Striga resistance to enhance genetic gains. The application of genomic selection for 22 

the improvement of complex traits in tropical maize has been documented (Crossa et al. 2010; 23 

Vivek et al. 2017; Beyene et al. 2019, 2021). The application of DH technology for efficient inbred 24 

line development (Prasanna et al. 2012; Chaikam et al. 2019) could be used to unravel larger 25 

genetic variability for selection efficiency. The application of forward breeding for key diseases 26 

such as maize lethal necrosis (MLN) and maize streak virus (MSV) for new DH lines should reduce 27 

the number of DH lines to be phenotyped under artificial Striga infestation and hence reduce 28 

phenotyping costs (Prasanna et al. 2021).  29 
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Our results show that there is potential to implement GS in breeding for Striga resistance in maize. 1 

The application of GS in breeding for Striga resistance should be integrated with the use of DH 2 

lines, and application of sparse phenotyping. Sparse testing has been reported to improve the 3 

efficiency of GS through optimal resource utilization and enhancement of prediction accuracy 4 

(Jarquín et al. 2020; Montesinos‐López et al. 2023b).  The use of sparse testing and GS in selection 5 

for target traits has been reported in wheat and maize (Jarquín et al. 2020; Atanda et al. 2022). The 6 

application of sparse testing and GS in breeding for Striga resistance requires optimization of the 7 

TRN set. Montesinos‐López et al. (2023a) suggested that the optimization of TRN populations in 8 

GS can be enhanced through appropriate prediction models and experimental designs in sparse 9 

testing. Therefore, detailed investigations on TRN size under Striga infestation may be necessary 10 

before scaling the application of GS in maize Striga resistance breeding programs. By leveraging 11 

genomic relationships and tapping into hidden replicated alleles, genomic prediction offers the 12 

benefits of more accurate predictions and effective reduction of the high costs associated with 13 

phenotyping of large sets of individuals (Vivek et al. 2017; Wang et al. 2020). Integration of 14 

several genomics-enabled techniques including use of environmental data (Jarquin et al. 2014; 15 

Jarquín et al. 2020; Crossa et al. 2022) should assist in achieving better genetic gains for reduced 16 

Striga infestation and higher grain yield under Striga infestation. While the application of modern 17 

breeding techniques can lead to higher genetic gains in breeding for Striga resistance, part of the 18 

solution to the problem of Striga in Africa will be integrated Striga management that encompasses 19 

multiple control strategies to obtain maize yield sustainability. Stacking multiple stress tolerance 20 

in addition to Striga tolerance (e.g. Menkir et al. 2020) should improve maize productivity in the 21 

Striga affected agroecologies in SSA. 22 

Conclusions 23 

Genomic-enabled selection can be an important tool in improving the efficiency of breeding for 24 

Striga resistance in maize. Using the reaction norm model with two cross validation schemes (CV0 25 

and CV2), our findings reveal moderate prediction accuracies for three key Striga resistance traits, 26 

(STR10WAP, STR12WAP and AUSNPC), and grain yield (GY) at two out of the three locations 27 

under artificial Striga infestation. The reaction norm model sufficiently modeled the interactions 28 

among genotypes, environments, markers, and G × E effects, to obtain accurate genomic GEBVs. 29 

This study revealed a close relationship between the GEBVs across the TRN and TST sets for key 30 
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Striga resistance traits, with 300 DH inbred lines displaying favorable GEBVs for these 1 

parameters. These results suggest that application of genomic-enabled strategies can facilitate 2 

improvements in Striga resistance in maize. These results provide a foundational framework for 3 

the potential integration of GS in breeding for Striga resistance in maize across sub-Saharan 4 

Africa. Future research should focus on optimizing the training population size for large scale 5 

application of GS and testing a combination of GS and sparse phenotyping approaches in field 6 

evaluation of lines and hybrids for resistance to Striga under artificial infestation conditions.  7 

Data availability 8 

Supplementary data are available.  9 
• Supplementary Table 1 - Pedigrees of DH Lines in GS Study gives the list and pedigrees 10 

of DH lines used in the study.   11 
• Supplementary Figure 1 shows the distribution of the GEBVs for the number of emerged 12 

Striga plants for the training and testing populations.  13 
• The phenotypic and marker data are freely available from CIMMYT’s Dataverse 14 

(https://hdl.handle.net/11529/10549033).  15 
• File named Phenotypic_Data.CSV contains phenotypic data from 232 testcross (TC) 16 

hybrids.  17 
• File named GS_Marker_Data.CSV contains genotypic data for 606 doubled haploid 18 

(DH) lines. 19 
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Trait 

KIBOS  ALUPE  SIAYA 

𝜎𝐺
2 𝜎𝜀

2 𝐻𝑎
2   𝜎𝐺

2 𝜎𝜀
2 𝐻𝑎

2    𝜎𝐺
2 𝜎𝜀

2 𝐻𝑎
2 

STR8WAP 16.75*** 63.51 0.35 
 

25.20*** 77.05 0.40 
 

16.23*** 75.76 0.30 

STR10WAP 136.66*** 334.54 0.45 
 

133.56*** 325.07 0.45 
 

44.14** 303.14 0.23 

STR12WAP 275.95*** 632.55 0.47 
 

189.14*** 408.31 0.48 
 

194.70*** 510.89 0.43 

SDR1 0.13*** 0.37 0.42 
 

0.17*** 0.29 0.54 
 

0.20*** 1.05 0.28 

SDR2 0.19*** 0.55 0.41 
 

0.20*** 0.49 0.46 
 

0.19*** 0.99 0.27 

SDR 0.15*** 0.38 0.44 
 

0.18*** 0.31 0.53 
 

0.19*** 0.94 0.29 

AUSNPC  1912.02*** 4475.35 0.46  1696.94*** 3507.76 0.49  925.27*** 3844.05 0.32 

Grain yield  0.45*** 1.47 0.38 
  

0.37*** 1.61 0.31 
  

1.01*** 1.76 0.53 

*, **, ***: Significant at P < 0.05, P < 0.01, and P < 0.001, respectively.  3 

𝐻𝑎
2,broad-sense heritability; 𝜎𝐺

2, genotypic variance; 𝜎𝜀
2, error variance; STR8WAP, emerged Striga plants 8 weeks 4 

after planting (WAP);  STR10WAP,  emerged Striga plants 10WAP; STR12WAP, emerged Striga plants 12 WAP;  5 
SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; SDR, Average Striga damage rating; AUSNPC, 6 
Area under Striga number progress curve.    7 

 8 

 9 
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Table 2. Summary statistics, variance component estimates and heritability for different Striga 1 
resistance parameters and grain yield across three locations under artificial Striga infestation in 2020.  2 

Trait Mean Range 𝐿𝑆𝐷0.05 𝜎𝐺
2 𝜎𝐺𝐸

2  𝜎𝜀
2 𝐻𝑏

2 

STR8WAP 8 4‒32 6.3 9.24*** 9.94*** 72.39 0.38 

STR10WAP 27 16‒82 14.1 80.02*** 22.65** 322.99 0.57 

STR12WAP 39 21‒126 18.4 181.61*** 32.99* 520.38 0.65 

SDR1 2.1 1.5‒3.9 0.6 0.12*** 0.05*** 0.57 0.51 

SDR2 2.6 1.8‒4.4 0.6 0.13*** 0.06*** 0.68 0.49 

SDR 2.3 1.6‒4.2 0.5 0.11*** 0.05*** 0.55 0.51 

AUSNPC  102.2 59.5‒331.0 50.0 1182.87*** 295.5** 3966.04 0.61 

Grain yield  4.5 3.1‒6.1 1.0 0.40*** 0.22*** 1.61 0.54 

**, ***: Significant at P < 0.01 and P < 0.001, respectively.  3 

𝐻𝑏
2, broad-sense heritability; 𝜎𝑒

2, error variance; 𝜎𝐺
2, genotypic variance; 𝜎𝐺𝐸

2 , genotype by environmental variance; 4 
STR8WAP, emerged Striga plants 8 weeks after planting (WAP);  STR10WAP,  emerged Striga plants 10WAP; 5 
STR12WAP, emerged Striga plants 12 WAP;  SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; 6 
SDR, Average Striga damage rating; AUSNPC, Area under Striga number progress curve.7 
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Table 3. Prediction accuracies for Striga resistance parameters and grain yield using three cross 1 
validation schemes (CV0, CV1 and CV2) for Kibos, Alupe and Siaya and across locations under 2 
artificial Striga infestation. 3 

  CV0    CV1   CV2 

Trait KIBOS ALUPE SIAYA 

Across 
locations 
(weighted 

r) 

 KIBOS ALUPE SIAYA 

Across 
locations 
(weighted 

r)   

KIBOS ALUPE SIAYA 

Across 
locations 
(weighted 

r)  

STR8WAP 0.39 0.43 0.07 0.30  0.35 0.15 0.07 0.19  0.34 0.18 0.08 0.20 

STR10WAP 0.37 0.40 0.24 0.34  0.33 0.46 0.10 0.29  0.36 0.56 0.19 0.37 

STR12WAP 0.26 0.17 0.30 0.24  0.31 0.43 0.19 0.31  0.31 0.53 0.26 0.37 

SDR1 0.29 0.29 0.28 0.29 
 0.06 0.10 0.00 0.05  0.31 0.28 0.18 0.26 

SDR2 0.64 0.59 0.36 0.53 
 0.01 0.10 0.20 0.10  0.27 0.36 0.35 0.33 

SDR 0.35 0.36 0.33 0.35 
 0.01 0.04 0.13 0.06  0.27 0.28 0.30 0.29 

AUSNPC 0.40 0.53 0.25 0.39  0.34 0.43 0.10 0.29  0.38 0.56 0.21 0.38 

Grain yield 0.59 0.59 0.59 0.59   0.26 0.30 0.20 0.25   0.63 0.53 0.52 0.56 

CV0, Cross validation 0; CV1, Cross validation 1; CV2, Cross validation 2; STR8WAP, emerged Striga plants 8 4 
weeks after planting (WAP); STR10WAP, emerged Striga plants 10WAP; STR12WAP, emerged Striga plants 12 5 
WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; SDR, Average Striga damage rating; 6 
AUSNPC, Area under Striga number progress curve.   7 
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FUGURE CAPTIONS 1 

 2 

Fig. 1. Boxplots of Striga resistance parameters and grain yield at the three trial locations in Kenya (K, Kibos; A, 3 
Alupe; S, Siaya) in 2020. STR8WAP, emerged Striga plants 8 weeks after planting (WAP); STR10WAP, emerged 4 
Striga plants 10WAP; STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 5 
WAP, respectively; SDR, Average Striga damage rating; AUSNPC, Area under Striga number progress curve (m2). 6 

 7 

Fig. 2. Pearson’s correlation coefficients between different Striga resistance parameters and grain yield for testcrosses 8 
evaluated under artificial Striga infestation across three test locations in Kenya (Kibos, Alupe, and Siaya) in 2020.  9 
STR8WAP, emerged Striga plants 8 weeks after planting (WAP); STR10WAP, emerged Striga plants 10WAP; 10 
STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; 11 
SDR, Average Striga damage rating; AUSNPC, Area under Striga number progress curve; GY, grain yield. 12 

 13 

Fig. 3. Boxplots of mean GEBVs for Striga resistance parameters and grain yield for the training (TRN) and testing 14 
(TST) sets across the trial locations. 8WAP, emerged Striga plants 8 weeks after planting (WAP); 10WAP, emerged 15 
Striga plants 10WAP; 12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, 16 
respectively; SDR, Average Striga damage rating; AUSNPC, Area under Striga number progress curve. 17 

 18 

Fig. 4. Principal component analysis of the GEBVs for the TRN and TST sets. The x and the y-axes are the first and 19 
the second principal components respectively. TRN, training population, TST, testing population. 20 

 21 

  22 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae186/7731522 by International Institue of Tropical Agriculture (IITA) user on 09 Septem

ber 2024



33 

 1 

Figure 1 2 
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Figure 2 5 
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Figure 3 2 
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