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Striga hermonthica (Del.) Benth., a parasitic weed, causes substantial yield losses in maize production in sub-Saharan Africa. Breeding for 
Striga resistance in maize is constrained by limited genetic diversity for Striga resistance within the elite germplasm and phenotyping 
capacity under artificial Striga infestation. Genomics-enabled approaches have the potential to accelerate identification of Striga resist-
ant lines for hybrid development. The objectives of this study were to evaluate the accuracy of genomic selection for traits associated 
with Striga resistance and grain yield (GY) and to predict genetic values of tested and untested doubled haploid maize lines. We geno-
typed 606 doubled haploid lines with 8,439 rAmpSeq markers. A training set of 116 doubled haploid lines crossed to 2 testers was phe-
notyped under artificial Striga infestation at 3 locations in Kenya. Heritability for Striga resistance parameters ranged from 0.38–0.65 
while that for GY was 0.54. The prediction accuracies for Striga resistance-associated traits across locations, as determined by cross-val-
idation (CV) were 0.24–0.53 for CV0 and from 0.20 to 0.37 for CV2. For GY, the prediction accuracies were 0.59 and 0.56 for CV0 and 
CV2, respectively. The results revealed 300 doubled haploid lines with desirable genomic estimated breeding values for reduced num-
ber of emerged Striga plants (STR) at 8, 10, and 12 weeks after planting. The genomic estimated breeding values of doubled haploid 
lines for Striga resistance-associated traits in the training and testing sets were similar in magnitude. These results highlight the potential 
application of genomic selection in breeding for Striga resistance in maize. The integration of genomic-assisted strategies and doubled 
haploid technology for line development coupled with forward breeding for major adaptive traits will enhance genetic gains in breeding 
for Striga resistance in maize.
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Introduction
Striga hermonthica (Del.) Benth. is a parasitic weed that affects 
maize (Zea mays L.) production in sub-Saharan Africa (SSA). 
Striga spp. has a wide geographical distribution and affects up to 
60% of the arable land in the region (Mbuvi et al. 2017). The 
weed adversely affects maize production in SSA causing yield 
losses ranging from 20–100% (Ransom et al. 1990; Berner et al. 
1996; Khan et al. 2006; Ejeta 2007a, 2007b). Striga depends entirely 
on its host for growth and survival. Under favorable growing con-
ditions, Striga seeds break dormancy in response to germination 
stimulants (Strigolactones) produced by the host. A germinated 
Striga plant then establishes vascular connections with the host’s 
roots via the haustoria through which it draws nutrients and 
water resulting in stunted growth, chlorosis, impaired photosyn-
thesis, reduced maize biomass, and yield loss (Gurney et al. 1995; 
Spallek et al. 2013).

Several control strategies have been proposed to reduce the 
burden of Striga for farmers in SSA. These include crop rotation 

(Oswald and Ransom 2001), intercropping (Khan et al. 2002), 

push–pull technology (Khan et al. 2008), host plant resistance 

(Menkir et al. 2007; Rich and Ejeta 2008), herbicide resistant maize 

(Makumbi et al. 2015), and integrated pest management (Khan 

et al. 2016; Kanampiu et al. 2018). Host plant resistance is one of 

the most promising approaches for Striga control as the technol-

ogy is embedded in the seed. Host plant resistance, coupled with 

other control approaches, is considered an important Striga con-

trol strategy for smallholder farmers due to its ease of deployment 

and adoption (Mwangangi et al. 2021).
Breeding for Striga resistance is hampered by the limited 

sources of resistance within elite maize germplasm, complex 
genetics of resistance, complicated host–parasite relationship 
(Amusan et al. 2008), and limited phenotyping capacity. 
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Phenotyping for Striga resistance or tolerance requires uniform 
artificial Striga infestation that exposes maize seedlings to a large 
number of Striga seeds to prevent escape (Kim 1996; Kling et al. 
1999). Although the artificial Striga infestation technique has 
been successful, breeders are limited by lack of large experimen-
tal fields that can solely be dedicated for artificial screening. This 
can slow progress in identifying resistant inbred lines and hybrids 
as a limited number of genotypes can be screened at a time. 
Despite these challenges, significant progress has been made in 
developing and deploying Striga resistant maize varieties in 
West Africa by the International Institute of Tropical Agriculture 
(IITA, https://www.iita.org) and its partners over the years (Kim 
et al. 1994; Badu-Apraku et al. 2007; Menkir and Kling 2007; 
Menkir et al. 2012; Menkir and Meseka 2019). A study by Menkir 
et al. (2007) showed that the key traits for Striga resistance breed-
ing namely grain yield, Striga damage rating, and Striga counts are 
conditioned by many genes with small effects. Recurrent selection 
studies have shown improvements in Striga resistance related 
traits in maize in West Africa (Menkir and Kling 2007; 
Badu-Apraku et al. 2009; Badu-Apraku 2010). Recent studies re-
ported genetic gains of 93.7 kg ha−1 year−1 (Menkir and Meseka 
2019) and 101 kg ha−1 year−1 (Badu-Apraku et al. 2020a) for grain 
yield under Striga infestation. These gains were attributed to sig-
nificant gains in the reduced number of emerged Striga plants 
and less Striga damage. Menkir and Meseka (2019) reported gains 
of −6.7% and −5.5% year−1 for number of emerged Striga plants at 
8 and 10 weeks after planting (WAP), respectively. The reported 
genetic gains are attributed to the use of effective screening proto-
cols (Kim 1994; Kim and Adetimirin 2001), and better understand-
ing of the genetics of Striga resistance (Kim 1994; Yallou et al. 2009; 
Badu-Apraku et al. 2013).

The genetic gains reported in breeding for Striga resistance at 
IITA have been achieved through development of inbred lines 
using conventional pedigree breeding method and backcrossing. 
In addition, recurrent selection has been used to accumulate de-
sirable alleles for traits associated with resistance to Striga 
(Badu-Apraku et al. 2007; Menkir and Kling 2007). Developing near- 
homozygous inbred lines in 6–8 generations through the pedigree 
method could slow the rate of genetic gain in breeding for resist-
ance to Striga in maize. The use of the doubled haploid (DH) tech-
nology in maize through which completely homozygous lines can 
be developed within 13–14 months could significantly reduce the 
breeding cycle time, and accelerate population and variety devel-
opment (Bernardo 2009; Chaikam et al. 2019). Application of DH 
technology for line development for SSA has been implemented 
at a large scale at CIMMYT since 2012 (Prasanna et al. 2012; 
Chaikam et al. 2019).

The application of marker assisted selection along with 
conventional breeding and DH technology can speed up the iden-
tification of Striga resistant germplasm. Several quantitative trait 
loci related to Striga resistance have been reported (Badu-Apraku 
et al. 2020b, 2020c, 2023). Genome-wide association studies have 
identified significant single nucleotide polymorphisms (SNPs) as-
sociated with number of emerged Striga plants and Striga damage 
rating in tropical maize (Adewale et al. 2020; Stanley et al. 2021; 
Gowda et al. 2021; Okunlola et al. 2023). Accelerated line and var-
iety development can also be achieved through the incorporation 
of genomic selection (GS) in a breeding program. The use of DH 
lines in combination with genomic prediction/selection methods 
can accelerate genetic improvement in crop plants (Heffner et al. 
2010; Song et al. 2017; Cerrudo et al. 2018).

Genomic selection is an approach for improving complex quan-
titative traits. Genomic selection (Meuwissen et al. 2001) and 

genomic prediction of complex traits (de los Campos et al. 2009; 
Crossa et al. 2010; Pérez-Rodríguez et al. 2012) target breeding va-
lue estimates which include the parental average and a deviation 
resulting from Mendelian sampling (Heffner et al. 2009; Crossa 
et al. 2017). Genomic prediction has been used to estimate additive 
as well as nonadditive effects of lines (Crossa et al. 2017; Bonnett 
et al. 2022). Estimation of additive gene effects allows for selection 
in early generations such as F2 (Crossa et al. 2017). Genomic pre-
diction accounts for Mendelian segregation and considers the rea-
lized covariances based on dense molecular markers that span 
the genome (Pérez-Rodríguez et al. 2012). With both marker and 
phenotypic data, the genetic values of genotypes evaluated in sin-
gle and across environments are estimated using genomic predic-
tion through genotype by environment (G × E) interaction 
analyses. Research on crop and animal breeding has shown that 
prediction accuracy in selection for complex traits using pedigree 
information can significantly be improved through genomic selec-
tion with different models (Crossa et al. 2022).

Multiple genomic prediction models including parametric and 
nonparametric statistical and computational models that ac-
count for both genetic and nongenetic effects have been devel-
oped to estimate genomic breeding values (GEBVs) (Crossa et al. 
2017). Additionally, linear and nonlinear kernels that are based 
on genomic relationship matrices have been reported to be better 
than the conventional methods (Crossa et al. 2022). Nonlinear gen-
omic kernels such as the reaction norm model can account for 
epistatic effects between markers and incorporate large-scale en-
vironmental data (enviromics) and G × E analyses for improved 
prediction accuracy (Jarquín et al. 2014). The prediction accuracy 
of the model is assessed through cross-validation after which an 
appropriate model is used to predict the performance of untested 
genotypes by estimating their genomic breeding values. The can-
didate lines are therefore selected based on GEBVs generated from 
the marker and phenotype information of the training population 
(Crossa et al. 2017). Only genotypes with the best GEBVs are se-
lected and advanced depending on the trait. Genomic selection 
can thus accelerate breeding by reducing the duration of line 
and variety development, while also reducing phenotyping 
costs in crops like maize (Crossa et al. 2013; Edriss et al. 2017; 
Beyene et al. 2021; Butoto et al. 2022), and in other crops 
(Pérez-Rodríguez et al. 2012; Iwata et al. 2015; Velazco et al. 2019).

The use of genomic selection in breeding programs focusing on 
improving Striga resistance for increased genetic gains in grain 
yield under artificial Striga infestation could provide an option to 
overcome the challenge of limited and costly phenotyping. The 
International Maize and Wheat Improvement Center (CIMMYT, 
https://www.cimmyt.org) has developed several DH lines using 
Striga resistant maize germplasm from IITA. This germplasm 
could provide insights on the application of genomic selection 
for the incorporation of Striga resistance in mid-altitude maize 
germplasm in Eastern and Southern Africa where S. hermonthica 
still presents a major challenge. The objectives of this study 
were to (1) assess the efficiency of genomic prediction for Striga 
resistance-associated traits and grain yield using the reaction 
norm model, and (2) predict the genetic values of field tested 
and untested DH lines.

Materials and methods
Genetic material
This study utilized 606 DH lines developed by CIMMYT at the 
Maize DH Facility in Kiboko, Kenya (Supplementary Table 1). 
The DH lines were developed from induction of F2 and BC1F2 
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populations formed by crossing Striga resistant donor lines 
from IITA with elite mid-altitude tropical maize lines devel-
oped by CIMMYT. The Striga resistance donor lines from 
IITA include TZSTR182, TZSTR184, TZISTR1156, TZISTR1158, 
and TZSTR167. Line TZSTR167 was derived from a yellow com-
posite (TZLCOMP1.Y), whereas lines TZSTR182, TZSTR184, 
TZISTR1156, and TZSTR1158 were derived from bi-parental 
crosses of white inbred lines derived from a Striga resistant syn-
thetic (ACRSYN-W) and a composite (TZLCOMPIC4). The elite 
CIMMYT lines (CML521, CML522, and CML543) used for crossing 
had varying levels of drought tolerance and/or herbicide (ima-
zaypr) resistance. Some F1 crosses were advanced to F2 while 
others were planted alongside either the IITA donor lines or the 
adapted CIMMYT lines and crossed to form BC1F1. The BC1F1 

were selfed to form BC1F2 populations which were then submitted 
for DH induction. There were 171 and 435 DH lines developed from 
F2 and BC1F2 populations, respectively. Of the 606 DH lines, 116 
lines derived using CML522 (a drought tolerant and herbicide re-
sistant line) as a parent were selected to serve as the training 
population (TRN) and crossed to 2 inbred line testers from IITA 
to form 232 testcross hybrids.

Experimental design, test locations, and artificial 
Striga infestation
The 232 testcross (TC) hybrids were part of 351 TC hybrids that 
were developed from new DH lines and were tested in 2 trials. 
Trial 1 had 180 entries while Trial 2 had 171 entries. Each trial in-
cluded 116 TC hybrids from the TRN set. Only 232 TC hybrids 
were used for this study as only 116 lines had both genotypic and 
phenotypic data. Trial 1 included 2 internal genetic gain checks 
and 6 commercial checks while Trial 2 had 2 internal genetic 
gain checks and 7 commercial checks. The experimental design 
was 4 × 47 and 4 × 45 alpha-lattice with 2 replications for Trials 1 
and 2, respectively. Each experimental unit consisted of one 4 m 
row spaced 0.75 m apart and 0.20 m space between plants, giving 
a plant population density of approximately 66,666 plants ha−1 at 
all locations. The hybrids were evaluated in field trials under arti-
ficial Striga infestation at the Kenya Agricultural and Livestock 
Research Organization (KALRO) research stations at Kibos (0°2′S, 
34°48E, 1,193 masl) and Alupe (0°30′N, 34°7E, 1,250 masl), and at 
Siaya ATC (03°10′N, 34°17E, 1,288 masl) in 2020. The soil types 
are classified as Eutric Cambisol, Orthic Ferralsol, and Plinthic 
Ferralsol at Kibos, Alupe, and Siaya ATC, respectively. All locations 
have a bimodal rainfall distribution (March–July and September– 
November), with most of the rain falling between March and 
July. The fields used for artificial Striga infestation at the research 
stations had been previously used for imazapyr herbicide studies 
(Kanampiu et al. 2002, 2018; Makumbi et al. 2015), whose residual 
toxicity (Alister and Kogan 2005) kills Striga seed in the soil.

To obtain uniform exposure to Striga for each genotype, artificial 
Striga infestation was used. Striga seed was collected from infested 
maize fields in the Striga infested belt of western Kenya (Gethi et al. 
2005). Striga inoculum was prepared by thoroughly mixing 10 g of 
Striga seeds, with 5 kg of sand. The Striga seed-sand inoculum 
(20 g) was applied to each planting hole at a depth of 7–10 cm using 
a calibrated spoon that delivered up to ∼3,000 Striga seeds to en-
sure uniform Striga infestation in the trials (Makumbi et al. 2015). 
The Striga seed-sand inoculum was placed directly at the bottom 
of the planting hole for uniform exposure of the maize plants to 
Striga from the onset of germination. Di-ammonium phosphate 
(DAP, 18:46:0) fertilizer was applied at half the recommended 
rate (30 kg ha−1) at planting to enhance plant establishment but 
avoid suppressing Striga germination. Half dose (30 kg ha−1) of 

calcium ammonium nitrate (CAN, 26%) fertilizer was used for top-
dressing at 4 WAP. Standard agronomic and cultural practices 
were performed as recommended for each location. Hand weeding 
was carried out to eliminate all weeds except Striga plants.

Data collection
Data were recorded on the number of emerged Striga plants (STR), 
Striga damage rating (SDR), and ear weight. The number of 
emerged Striga plants per plot was recorded within 15 cm of either 
side of the row at 8, 10, and 12 WAP. The SDR was recorded at 10 
(SDR1) and 12 WAP (SDR2) using a 1–9 rating scale where 1 refers 
to a healthy plant with no visible symptoms of Striga damage (re-
sistant) and 9 is highly susceptible to Striga with totally scorched 
leaves, absent ears, and untimely death of the host plant (Kim 
1991; Kim et al. 2002). The area under Striga number progress curve 
(AUSNPC) was computed from the 3 STR plant counts (8, 10, and 
10 WAP) following the formula for calculating the area under dis-
ease progress curve (AUDPC) (Shaner and Finney 1977) as:

AUSNPC =
n

i=1

yi + yi−1

2

 
(ti − ti−1),

where yi is the number of Striga plants at the ith observation, ti is 
the time point in days after planting at the ith observation, and n is 
the total number of observations.

Finally, grain yield expressed in tons per hectare (t ha−1) was 
computed based on ear weight per plot, assuming 80% shelling 
percentage and adjusted to 12.5% grain moisture content.

Genotypic data
Leaf samples of the 606 DH inbred lines were collected 3 WAP and 
shipped to Intertek laboratories in Sweden for DNA extraction. 
The DNA samples were then forwarded to the Institute for 
Genomic Diversity, Cornell University (Ithaca, NY, USA) for geno-
typing with repetitive amplicon sequences (rAmpSeq markers). A 
genome indexing approach was used for designing primers using 
the conserved regions of the genome. The repeat amplicons were 
then multiplexed for genotyping as described by Buckler et al. 
(2016). The rAmpSeq protocol is a simple cost-effective sequen-
cing technology which uses targeted amplicon sequencing ap-
proach and gene specific primers to amplify targeted regions of 
interest. The DNA library was constructed, mapped to B73 maize 
reference genome (version 3) and each unique sequence tag was 
regarded as a dominant marker. The dominant markers were 
saved in present–absent variant format where one (1) and zero 
(0) denoted present or absent, respectively. For the 606 DH lines, 
a total of 8,439 sequence tags were called. The marker quality con-
trol (QC) process which involved the exclusion of monomorphic 
and uninformative markers, markers with minor allele frequen-
cies < 0.05 and those whose variances were equal to 0 was carried 
out in R Software (R Core Team 2022). After QC, 5,380 high quality 
rAmpSeq markers were selected for use in genomic prediction.

Statistical analyses
Analysis of variance
Striga count data were tested for normality using the Shapiro– 
Wilk test before conducting analysis of variance. Analysis of indi-
vidual trials was carried out using META-R (Alvarado et al. 2020). 
The best linear unbiased estimates (BLUEs) and the best linear un-
biased predictions (BLUPs) were computed by a linear mixed mod-
el in which genotype effect was considered as fixed and random, 
respectively. The BLUEs were used for the genomic prediction 
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model as input data while the random models were used to evalu-
ate quality of individual trials. All other effects in the model were 
considered random. The linear mixed model used for single site 
analysis is as follows:

yijk = μ + Gi + Rj + Bk(Rj) + εijk, 

where yijk is the response variable; μ is an intercept; Gi is the effect 

of the ith genotype; Rj is the effect of jth replicate; Bk(Rj) is the ef-

fect of the kth block within the jth replicate; while εijk is the experi-

mental error associated with the ith genotype, jth replicate, and 

kth block. We assumed ε ∼ NIID(0, σ2
ε ), where NIID is normal inde-

pendent and identically distributed random variables, σ2
ε is the as-

sociated variance parameter.
After individual analysis, data were analyzed combined across 

locations with a linear mixed model using ASReml-R version 4.2 
(Butler et al. 2009). From this point, moving forward, the environ-
ment is synonymous with location. The linear mixed model fitted 
for the combined analysis was:

yijkl = μ + Gi + Ej + Rk(Ej) + Bl(ER) jk + GEij + εijkl, 

where yijkl is the response variable; μ is an intercept; Gi is the effect of 

the ith genotype; Ej is the effect of the jth environment; Rk(Ej) is the 

effect of the kth replicate in the jth environment; Bl(ER) jk is the effect 

of the lth block within the kth replicate at the jth environment; GEij is 

the effect of the interaction between the ith genotype and the jth en-
vironment; while εijkl is the experimental error associated with the 

ith genotype, jth environment, kth replicate, and lth block where 
the error term is assumed to be normally, identical, and independ-
ently distributed (NIID) with mean 0 and homoscedastic variance 

σ2
ε . All effects except μ and Ej were considered random effects.

Broad-sense heritability was estimated for individual and com-
bined environments according to Hallauer et al. (2010). At individ-
ual environments, heritability was computed as:

H2
a =

σ2
G

σ2
G +

σ2
ε

R

  , 

where H2
a is the broad-sense heritability for individual environ-

ments, σ2
G is the genotypic variance, σ2

ε is the variance associated 

to the error, and R is the number of replications. The heritability 
across environments was computed as:

H2
b =

σ2
G

σ2
G +

σ2
GE

E
+

σ2
ε

E × R

  ,

where H2
b is the broad-sense heritability for combined environ-

ments, σ2
G is the genotypic variance, σ2

GE is the variance of the 
interaction between the genotype and the environment, E is 
the number of environments, R is the number of replicates, and 

the σ2
ε is the residual variance. BLUPs obtained from the combined 

phenotypic analysis were used to calculate Pearson’s correlation 
coefficients among the different traits.

Genomic prediction
We computed a genomic relationship matrix (GRM) according to 
Lopez-Cruz et al. (2015) for use in subsequent analysis. The GRM 

was computed as; G = M/p, where M is the matrix of markers cen-
tered and standardized by column (mean 0 and variance 1 by 
marker) and p is the number of markers. The objective of genomic 
prediction was to estimate the number of emerged Striga plants, 
Striga damage rating, AUSNPC, and grain yield for lines not evalu-
ated in the field. Given that some of the genotyped lines were eval-
uated at 3 locations (Kibos, Alupe, and Siaya), we employed the 
reaction norm model proposed by Jarquín et al. (2014) to predict 
GEBVs considering the environments, markers and the inter-
action between genotypes and environments. The BLUEs obtained 
from phenotypic analysis were used for genomic prediction. The 
equation for the reaction norm model is:

y = ZEβE + Zgg + u + e, 

where y is the BLUEs of the response vector (number of emerged 
Striga plants, Striga damage rating, AUSNPC, or grain yield), ZE is 
a design matrix for environments (locations), βE is the vector effect 
of the environments, βE ∼ MN(0, σ2

EI), where MN is multivariate 
normal distribution, 0 is a vector or zeros, σ2

E is the variance param-
eter associated with environments, and I is the identity matrix; 
Zg is a matrix that connects phenotypes with genotypes, and 
g is the vector of random effects of genotypes. We assumed g ∼ 
MN(0, σ2

gG) with σ2
g the variance associated to the genotypes, G is 

a genomic relationship matrix (Lopez-Cruz et al. 2015); u represents 
the interaction, we assumed u ∼ MN(0, σ2

g×EZgGZt
g# ZEZt

E), with 
σ2

g×E the variance parameter associated to the interaction and # 
representing the element-wise product of 2 matrices. Finally, 
e represents the error, we assumed e ∼ MN(0, σ2

e I), with σ2
e the vari-

ance associated to the error. Furthermore, we also assumed that 
βE, g, u, and e are distributed independently. In this study, no en-
vironmental variables were considered and therefore the environ-
mental effect corresponds to a dummy location effect. The training 
set (TRN) consisted of phenotypic data of 116 DH lines evaluated in 
232 testcrosses at Kibos, Alupe, and Siaya under artificial Striga in-
festation while the testing set (TST) consisted of the 490 DH lines 
not evaluated in the field.

Cross-validation
Two cross-validations schemes were used to determine the pre-
diction accuracy of the reaction norm model. Using the reaction 
norm model (Jarquín et al. 2014), 2 main prediction scenarios 
were considered: cross-validation 1 (CV1) and cross-validation 2 
(CV2) (Burgueño et al. 2012). The CV1 was used to predict the per-
formance of new lines that have not been field screened under 
artificial Striga infestation while CV2 sought to predict the genetic 
value of the lines in locations in which they have not been tested 
but were tested in other environments. For the computation of 
both CV1 and CV2 correlation values, 20% of the lines were consid-
ered as the testing set while the remaining 80% were used to train 
the model in 50-fold cross-validations. The training data set was 
used to train the model while testing set was used to estimate 
the model prediction accuracy measured by the Pearson’s correl-
ation coefficient between observed and predicted values. For each 
of the 50 random partitions, prediction accuracy was computed 
within and across environments (locations) for all traits. The reac-
tion norm model was fitted using the BGLR package in R 
(Pérez-Rodríguez and de los Campos 2014). Inferences were based 
on 30,000 iterations with a thin of 10, obtained after discarding the 
first 15,000 iterations that were taken as burn-in.

To evaluate the prediction accuracy in each environment, a 
third form of cross-validation (CV0) involving use of phenotypic 
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data from 2 environments to estimate the prediction accuracy of 
the model in estimating the performance of lines in the third en-
vironment was carried out. The prediction accuracy for each en-
vironment was estimated when the phenotypic data in that 
specific environment was treated as missing values (the testing 
set) using BGLR (Pérez-Rodríguez and de los Campos 2014).

Results
Analysis of variance and testcross performance
In this study, we used 606 new DH lines of which 116 were crossed 
to 2 testers to generate 232 testcross hybrids that were pheno-
typed under artificial Striga infested conditions at 3 locations in 
Kenya. Analysis of variance at individual locations showed 

significant variation among hybrids for all traits measured 
(Table 1). The magnitude of genetic variance for number of 
emerged Striga plants at 10 WAP (STR10WAP) and 12 WAP 
(STR12WAP) was 8.2 and 16.5 times greater than that for emerged 
Striga plants at 8 WAP (STR8WAP), respectively. Broad-sense her-
itability was low to moderate for Striga resistance parameters 
(0.23–0.54) and moderate for grain yield (0.31–0.53). Broad-sense 
heritability for the Striga resistance parameters was lower at 
Siaya compared to the other 2 locations. The mean number of 
emerged Striga plants at 8 WAP was the lowest at Alupe (7), but 
the same location recorded the highest mean number of emerged 
Striga plants at 10 WAP and 12 WAP (Fig. 1). The Striga damage rat-
ing (SDR), at 10 WAP, 12 WAP, and the average SDR were highest at 
Siaya and lowest at Alupe (Fig. 1). The AUSNPC was lowest at Kibos 

Fig. 1. Boxplots of Striga resistance parameters and grain yield at the 3 trial locations in Kenya (K, Kibos; A, Alupe; S, Siaya) in 2020. STR8WAP, emerged 
Striga plants 8 weeks after planting (WAP); STR10WAP, emerged Striga plants 10 WAP; STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga 
damage rating at 10 and 12 WAP, respectively; SDR, average Striga damage rating; AUSNPC, area under Striga number progress curve (m2).

Table 1. Variance component estimates and heritability for different Striga resistance parameters and grain yield at 3 locations under 
artificial Striga infestation in 2020.

Trait Kibos Alupe Siaya

σ̂2
G σ̂2

ε H2
a σ̂2

G σ̂2
ε H2

a σ̂2
G σ̂2

ε H2
a

STR8WAP 16.75b 63.51 0.35 25.20b 77.05 0.40 16.23b 75.76 0.30
STR10WAP 136.66b 334.54 0.45 133.56b 325.07 0.45 44.14a 303.14 0.23
STR12WAP 275.95b 632.55 0.47 189.14b 408.31 0.48 194.70b 510.89 0.43
SDR1 0.13b 0.37 0.42 0.17b 0.29 0.54 0.20b 1.05 0.28
SDR2 0.19b 0.55 0.41 0.20b 0.49 0.46 0.19b 0.99 0.27
SDR 0.15b 0.38 0.44 0.18b 0.31 0.53 0.19b 0.94 0.29
AUSNPC 1,912.02b 4,475.35 0.46 1,696.94b 3,507.76 0.49 925.27b 3,844.05 0.32
Grain yield 0.45b 1.47 0.38 0.37b 1.61 0.31 1.01b 1.76 0.53

H2
a , broad-sense heritability; σ̂2

G, genotypic variance; σ̂2
ε , error variance; STR8WAP, emerged Striga plants 8 weeks after planting (WAP); STR10WAP, emerged Striga 

plants 10 WAP; STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; SDR, average Striga damage rating; 
AUSNPC, area under Striga number progress curve. 

a Significant at P < 0.01. 
b Significant at P < 0.001.
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and Siaya (190 m2). Mean grain yield was highest at Alupe 
(5.3 t ha−1) and lowest at Siaya (3.3 t ha−1).

Combined analysis of variance under artificial Striga infest-
ation revealed highly significant (P < 0.001) variation among hy-
brids for all traits (Table 2). The G × E interaction was significant 
for all traits. The σ̂2

G was 3 and 5 times larger than σ̂2
GE for 

STR10WAP and STR12WAP, respectively. Broad-sense heritability 
was moderate to high for all Striga resistance parameters (0.38– 
0.65) and grain yield (0.54). The number of emerged Striga plants 
ranged from 4 to 126 with a mean of 8, 27, and 39 at 8, 10, and 
12 WAP, respectively. The AUSNPC ranged from 59.5 to 331 m2 

with a mean of 102.2 m2 while grain yield across locations ranged 
from 3.1 to 6.1 t ha−1 with an average of 4.5 t ha−1. Significant 
positive correlation between the 3 Striga resistance parameters 
was revealed (Fig. 2). The correlations between the number of 
emerged Striga plants at 8, 10, and 12 WAP and AUSNPC were 

high (r = 0.73–0.98). Striga damage rating showed significant nega-
tive correlation with grain yield (r = −0.73 to −0.79).

Prediction accuracy
The 606 DH lines were genotyped with 8,439 markers of which 5,380 
high quality rAmpSeq markers were used for the analysis. Three 
cross-validation (CV) schemes were used to assess the prediction 
accuracy of the reaction norm model. The CV0 and CV2 were 
used to determine the prediction accuracy of the model when esti-
mating the performance of previously phenotyped lines in new en-
vironments while CV1 was applied when assessing the accuracy of 
the model when estimating the performance of newly developed 
lines that have not been tested before. The results indicate moder-
ate prediction accuracies for most traits at Kibos and Alupe 
(Table 3). For individual locations, Alupe showed better prediction 
accuracies for most traits across the 3 CV schemes while Siaya 

Table 2. Summary statistics, variance component estimates, and heritability for different Striga resistance parameters and grain yield 
across 3 locations under artificial Striga infestation in 2020.

Trait Mean Range LSD0.05 σ̂2
G σ̂2

GE σ̂2
ε H2

b

STR8WAP 8 4–32 6.3 9.24c 9.94c 72.39 0.38
STR10WAP 27 16–82 14.1 80.02c 22.65b 322.99 0.57
STR12WAP 39 21–126 18.4 181.61c 32.99a 520.38 0.65
SDR1 2.1 1.5–3.9 0.6 0.12c 0.05c 0.57 0.51
SDR2 2.6 1.8–4.4 0.6 0.13c 0.06c 0.68 0.49
SDR 2.3 1.6–4.2 0.5 0.11c 0.05c 0.55 0.51
AUSNPC 102.2 59.5–331.0 50.0 1,182.87c 295.5b 3,966.04 0.61
Grain yield 4.5 3.1–6.1 1.0 0.40c 0.22c 1.61 0.54

H2
b , broad-sense heritability; σ̂2

e , error variance; σ̂2
G, genotypic variance; σ̂2

GE, genotype by environmental variance; STR8WAP, emerged Striga plants 8 weeks after 
planting (WAP); STR10WAP, emerged Striga plants 10 WAP; STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, 
respectively; SDR, average Striga damage rating; AUSNPC, area under Striga number progress curve. 

a Significant at P < 0.05. 
b Significant at P < 0.01. 
c Significant at P < 0.001.

Fig. 2. Pearson’s correlation coefficients between different Striga resistance parameters and grain yield for testcrosses evaluated under artificial Striga 
infestation across 3 test locations in Kenya (Kibos, Alupe, and Siaya) in 2020. STR8WAP, emerged Striga plants 8 weeks after planting (WAP); STR10WAP, 
emerged Striga plants 10 WAP; STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; SDR, average 
Striga damage rating; AUSNPC, area under Striga number progress curve; GY, grain yield.
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had the lowest prediction accuracies for the Striga resistance para-
meters but equal to the highest for grain yield with CV0 (0.59) and 
similar to Alupe for CV2 (0.52). The prediction accuracies for grain 
yield were similar for CV0 and CV2 at individual locations. For 
across location analysis, the predictive accuracy of the model 
was better for CV0 compared to both CV2 and CV1 for most traits 
except number of emerged Striga plants at 10 and 12 WAP 
(Table 3). Overall, the prediction accuracy of CV0 (0.24–0.59) and 
CV2 (0.20–0.56) was higher than that of CV1 (0.05–0.29). Grain yield 
generally showed better prediction accuracies (CV0 and CV2) across 
the trial locations compared to the Striga resistance parameters.

Genomic estimated breeding values
The GEBVs of the lines in the testing set (TST) were computed 
from both marker and phenotypic data (BLUEs) of the training 
set (TRN) using the reaction norm model. The mean GEBVs of 
Striga resistance parameters and grain yield for both the TRN 

and TST sets across the 3 trial locations are presented in Fig. 3, 
and their distribution in Supplementary Fig. 1. The results indi-
cated that there was a close relationship between the GEBVs in 
TRN and TST sets (Fig. 4). The mean GEBVs were either equal in 
the TRN and TST sets for STR8WAP and STR10WAP or slightly 
higher in the TST compared to the TRN for the other traits except 
grain yield for which the mean of the TST (4.0 t ha−1) was lower 
than that of the TRN (4.26 t ha−1). The mean GEBV of emerged 
Striga plants ranged from 7.5 for STR8WAP to 35.6 for 
STR12WAP in the TRN and 7.5 for STR8WAP to 36.4 for 
STR12WAP in the TST sets (Fig. 3). Results showed that 45, 61, 
and 63 lines in the TRN had lower GEBVs for STR8WAP, 
STR10WAP, and STR12WAP, respectively. On the other hand, 
about 50% of the lines in the TST set had lower emerged Striga 
plants in comparison with the mean at STR8WAP, STR10WAP, 
and STR12WAP. The mean GEBV for Striga damage was 2.1 and 
2.6 for SDR1 and SDR2, respectively, in the TRN, while that of 

Table 3. Prediction accuracies for Striga resistance parameters and grain yield using 3 cross-validation schemes (CV0, CV1, and CV2) for 
Kibos, Alupe, and Siaya and across locations under artificial Striga infestation.

Trait CV0 CV1 CV2

Kibos Alupe Siaya Across locations 
(weighted r)

Kibos Alupe Siaya Across locations 
(weighted r)

Kibos Alupe Siaya Across locations 
(weighted r)

STR8WAP 0.39 0.43 0.07 0.30 0.35 0.15 0.07 0.19 0.34 0.18 0.08 0.20
STR10WAP 0.37 0.40 0.24 0.34 0.33 0.46 0.10 0.29 0.36 0.56 0.19 0.37
STR12WAP 0.26 0.17 0.30 0.24 0.31 0.43 0.19 0.31 0.31 0.53 0.26 0.37
SDR1 0.29 0.29 0.28 0.29 0.06 0.10 0.00 0.05 0.31 0.28 0.18 0.26
SDR2 0.64 0.59 0.36 0.53 0.01 0.10 0.20 0.10 0.27 0.36 0.35 0.33
SDR 0.35 0.36 0.33 0.35 0.01 0.04 0.13 0.06 0.27 0.28 0.30 0.29
AUSNPC 0.40 0.53 0.25 0.39 0.34 0.43 0.10 0.29 0.38 0.56 0.21 0.38
Grain yield 0.59 0.59 0.59 0.59 0.26 0.30 0.20 0.25 0.63 0.53 0.52 0.56

CV0, cross-validation 0; CV1, cross-validation 1; CV2, cross-validation 2; STR8WAP, emerged Striga plants 8 weeks after planting (WAP); STR10WAP, emerged Striga 
plants 10 WAP; STR12WAP, emerged Striga plants 12 WAP; SDR1 and 2, Striga damage rating at 10 and 12 WAP, respectively; SDR, average Striga damage rating; 
AUSNPC, area under Striga number progress curve.

Fig. 3. Boxplots of mean GEBVs for Striga resistance parameters and grain yield for the training (TRN) and testing (TST) sets across the trial locations. 
8WAP, emerged Striga plants 8 weeks after planting (WAP); 10WAP, emerged Striga plants 10 WAP; 12WAP, emerged Striga plants 12 WAP; SDR1 and 2, 
Striga damage rating at 10 and 12 WAP, respectively; SDR, average Striga damage rating; AUSNPC, area under Striga number progress curve.
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the TST was 2.2 (SDR1) and 2.7 (SDR2) (Fig. 3). The predicted GEBV 
of SDR ranged from 1.7 (SDR1) to −3.1 (SDR2) for the TRN and 1.8 
(SDR1) to −3.1(SDR2) in the TST. A total of 27 and 144 DH lines 
showed lower GEBVs for SDR than the mean for the TRN and 
TST, respectively. In total, 56% (TRN) and 48.4% (TST) of the lines 
showed smaller AUSNPC than the mean GEBV. Additionally, 50 
and 239 lines had higher predicted GY than the mean in the 
TRN and TST sets, respectively. Of the 606 DH lines, 282, 307, 
and 313 lines had a lower number of emerged Striga plants than 
the mean GEBVs at 8, 10, and 12 WAP, respectively.

Discussion
Breeding for Striga resistance in maize presents a unique chal-
lenge owing to the quantitative nature of Striga inheritance, nar-
row genetic base of elite Striga resistant germplasm, constrained 
phenotyping capacity, and high phenotyping costs. Breeding for 
Striga resistance therefore requires multiple approaches including 
classical breeding, use of molecular markers, and a combination 
of the 2 approaches to address these challenges. Our objectives 
were to assess the prediction accuracy of genomic selection in de-
termining the genetic values of tested and untested DH lines un-
der artificial Striga infestation.

Phenotypic variation and heritability
The testcrosses in this study were developed from a diverse set of 
DH lines whose pedigree included Striga-susceptible but elite mid- 
altitude tropical maize lines from CIMMYT and Striga resistant do-
nor lines from IITA. The results indicated significant genotype and 
G × E interaction for all traits possibly due to differential re-
sponses to Striga infestation among testcrosses arising from the 
diverse genetic backgrounds of the lines and differences among 
the locations used. The differences at the locations could be at-
tributed to climatic and edaphic factors (Menkir et al. 2012; 
Makumbi et al. 2015). The genetic variance was 9 and 20 times lar-
ger at 10 WAP and 12 WAP, respectively, than at 8 WAP which cor-
roborates with results from an earlier study (Gowda et al. 2021). 
This suggests that there is sufficient variability among these hy-
brids for Striga emergence that can be uncovered at 10 and 12 
WAP and to reduce phenotyping costs at 8 WAP. The genetic vari-
ance recorded in this study was larger than G × E variance, similar 
to the result reported by Menkir and Kling (2007) and Gowda et al. 
(2021). The observed large genetic variance could arise from the 

use of lines containing Striga resistant alleles of diverse origins 
(Menkir 2011; Menkir et al. 2012) and diverse elite mid-altitude 
lines from CIMMYT. Furthermore, use of DH populations could 
have contributed to the observed larger genetic variance (Gallais 
1990).

The variability observed between the number of emerged Striga 
plants and Striga damage rating among locations suggests the 
likelihood of different Striga ecotypes exhibiting variable virulence 
as well as the effects of different climatic and edaphic factors. 
Mbuvi et al. (2017) reported significant variability among Striga 
ecotypes at Kibos and Alupe with the ecotypes at Kibos found to 
be more virulent on sorghum compared to the ecotypes at 
Alupe. This may explain the low Striga damage rating observed 
at Alupe despite the high number of emerged Striga plants re-
corded at this site. Heritability estimates for most of the Striga re-
sistance parameters and grain yield across locations were 
moderate, suggesting that selection of superior inbred lines with 
relevant Striga resistance traits should be possible. Heritability es-
timates for Striga resistance parameters like emerged Striga 
counts have been variable in several studies, ranging from moder-
ate (Adewale et al. 2020; Gowda et al. 2021; Okunlola et al. 2023) to 
high (Menkir et al. 2012) based on differences in the germplasm 
used.

The correlation between the number of emerged Striga plants 
at 10 and 12 WAP and grain yield was low and nonsignificant. 
This corroborates the findings by Adewale et al. (2020), Stanley 
et al. (2021), and Okunlola et al. (2023) but is contrary to results 
by Menkir and Kling (2007) and Gowda et al. (2021). On the other 
hand, SDR showed significant negative correlations with grain 
yield, suggesting that SDR is a useful parameter for measuring 
Striga resistance under artificially infested conditions and could 
be used to select inbred lines combining lower Striga damage 
and higher grain yield. Correlations between 2 traits may be due 
to pleiotropy, linkage, or both, amount of linkage disequilibrium, 
and the effect of the environment. The low correlation between 
grain yield and number of emerged Striga plants at 10 and 12 
WAP suggests a lack of linkage between genes controlling these 
traits. Parents of the inbred lines used in the present study 
show significant negative correlation between SDR and STR, 
and between grain yield and SDR, and STR under Striga infest-
ation. It is possible that the lines derived from crosses between 
IITA and CIMMYT lines may not carry all the favorable alleles 
derived from the parental lines leading to weak correlation 
among these traits. Selection-induced changes can modify 
the genetic correlation between traits either by altering the 
pattern of polymorphism at loci with pleiotropic effects or by 
changing the linkage disequilibrium among closely linked loci 
(Lande 1984). While these correlations are useful, more detailed 
investigations should focus on genetic correlations between 
various Striga resistance parameters and grain yield based 
on a larger data set (multiple environments and seasons), as 
these provide the breeder with a better understanding of the re-
lationship among traits (pleiotropy or linkage) and could have 
implications for application of indirect selection in a breeding 
program.

Genomic prediction
Genotype × environment interactions significantly influence 
phenotypic performance and ultimate selection potential in crops 
(Des Marais et al. 2013). We used the reaction norm model which 
considers the epistatic effects resulting from various interactions 
among genotypes, markers, and the environment to estimate an 
individual’s phenotype or its performance in new environments 

Fig. 4. Principal component analysis of the GEBVs for the TRN and TST 
sets. The x- and y-axes are the first and the second principal components, 
respectively. TRN, training population; TST, testing population.
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(Jarquín et al. 2014). Prediction of genetic values of lines in environ-
ments in which they were not tested (CV0 and CV2) resulted in low 
to moderate prediction accuracy. This suggests that estimation of 
the GEBVs of lines in new environments is possible for Striga re-
sistance parameters and grain yield. This kind of genetic value 
prediction is akin to sparse testing due to the use of information 
on the performance of lines in correlated environments 
(Burgueño et al. 2012; Mageto et al. 2020). This is attributed to the 
ability of the reaction norm model to leverage information from 
relatives resulting from the interaction of genotypes within and 
across environments and correlated environments (Burgueño 
et al. 2012). The prediction accuracy for CV0, CV1, and CV2 for 
Striga resistance parameters obtained in this study was lower 
than that reported by Gowda et al. (2021). However, our results in-
dicate 14–19% better prediction accuracy for grain yield compared 
to Gowda et al. (2021) for the 3 CV schemes. These differences in 
results may be due to the complexity of Striga resistance, besides 
the differences in germplasm and prediction models used. The 
prediction accuracy was relatively low with the application of 
GS to newly developed lines (CV1). A similar finding was reported 
by Gowda et al. (2021) for Striga resistance in maize and by Semagn 
et al. (2022) for multiple disease resistance in wheat. The low pre-
diction accuracy with CV1 is attributed to its reliance on the 
phenotypic values and genetic relationships of other lines 
(Burgueño et al. 2012; Mageto et al. 2020).

The predictive power of genetic models is significantly affected 
by low trait heritability (Liu et al. 2018). The relatively low to mod-
erate prediction accuracy observed for Striga resistance para-
meters in this study was possibly due to the low trait heritability 
and relatively small training population size (Heffner et al. 2011; 
Ornella et al. 2012). The moderate heritability for most traits 
may partly explain the low to moderate prediction accuracies re-
corded for Striga resistance parameters in this study. A positive 
correlation between high trait heritability and high prediction ac-
curacy was reported for kernel zinc concentration in maize 
(Mageto et al. 2020). The limited TRN size was due to the limited 
area available for artificial Striga screening, which in turn limited 
the number of testcrosses that could be evaluated in the field. A 
large TRN set is important for increased prediction accuracy 
(Lorenz et al. 2012; Gowda et al. 2015; Beyene et al. 2019). 
However, the level of prediction accuracy achieved in this study 
should still allow for application of GS by removing lines with 
the least favorable GEBVs for key Striga resistance traits before 
testcrossing (Edriss et al. 2017). The moderate prediction accur-
acies for some traits could be attributed to the close relationship 
between the TRN and TST sets as well as the model used 
(Jarquín et al. 2017; Brandariz and Bernardo 2019). In this study, 
we identified 300 lines with desirable GEBVs for fewer emerged 
Striga plants at 10 and 12 WAP. These lines putatively have good 
alleles that could reduce Striga emergence in maize. These lines 
should be tested in hybrid combinations under artificial Striga in-
festation and optimal conditions to identify the most suitable 
lines combining Striga resistance and other adaptive traits. 
Selection of genotypes that support a reduced number of emerged 
Striga plants should help in curtailing the replenishment of the 
Striga seed bank in the soil.

Prospects in breeding for resistance to Striga
Breeding for Striga resistance is one of the strategies that can be 
used to increase maize grain yield while also contributing to re-
duced Striga seed bank in the soil in Striga affected regions in SSA. 
Maize breeding programs targeting Striga resistance are faced 
with a multitude of challenges which could be overcome by a 

combination of conventional and molecular technologies. With ad-
vances in genomic approaches and lower genotyping costs, the in-
tegration of classical and genomic-assisted breeding strategies has 
the potential to address some of the limitations of breeding for 
Striga resistance to enhance genetic gains. The application of gen-
omic selection for the improvement of complex traits in tropical 
maize has been documented (Crossa et al. 2010; Vivek et al. 2017; 
Beyene et al. 2019, 2021). The application of DH technology for effi-
cient inbred line development (Prasanna et al. 2012; Chaikam et al. 
2019) could be used to unravel larger genetic variability for selection 
efficiency. The application of forward breeding for key diseases 
such as maize lethal necrosis (MLN) and maize streak virus (MSV) 
for new DH lines should reduce the number of DH lines to be phe-
notyped under artificial Striga infestation and hence reduce pheno-
typing costs (Prasanna et al. 2021).

Our results show that there is potential to implement GS in 
breeding for Striga resistance in maize. The application of GS in 
breeding for Striga resistance should be integrated with the use of 
DH lines, and application of sparse phenotyping. Sparse testing 
has been reported to improve the efficiency of GS through optimal 
resource utilization and enhancement of prediction accuracy 
(Jarquín et al. 2020; Montesinos-López et al. 2023b). The use of sparse 
testing and GS in selection for target traits has been reported in 
wheat and maize (Jarquín et al. 2020; Atanda et al. 2022). The appli-
cation of sparse testing and GS in breeding for Striga resistance re-
quires optimization of the TRN set. Montesinos-López et al. 
(2023a) suggested that the optimization of TRN populations in GS 
can be enhanced through appropriate prediction models and ex-
perimental designs in sparse testing. Therefore, detailed investiga-
tions on TRN size under Striga infestation may be necessary before 
scaling the application of GS in maize Striga resistance breeding pro-
grams. By leveraging genomic relationships and tapping into hid-
den replicated alleles, genomic prediction offers the benefits of 
more accurate predictions and effective reduction of the high costs 
associated with phenotyping of large sets of individuals (Vivek et al. 
2017; Wang et al. 2020). Integration of several genomics-enabled 
techniques including use of environmental data (Jarquín et al. 
2014; Jarquín et al. 2020; Crossa et al. 2022) should assist in achieving 
better genetic gains for reduced Striga infestation and higher grain 
yield under Striga infestation. While the application of modern 
breeding techniques can lead to higher genetic gains in breeding 
for Striga resistance, part of the solution to the problem of Striga 
in Africa will be integrated Striga management that encompasses 
multiple control strategies to obtain maize yield sustainability. 
Stacking multiple stress tolerance in addition to Striga tolerance 
(e.g. Menkir et al. 2020) should improve maize productivity in the 
Striga affected agroecologies in SSA.

Conclusions
Genomic-enabled selection can be an important tool in improving 
the efficiency of breeding for Striga resistance in maize. Using the 
reaction norm model with 2 cross-validation schemes (CV0 and 
CV2), our findings reveal moderate prediction accuracies for 3 
key Striga resistance traits (STR10WAP, STR12WAP, and 
AUSNPC) and grain yield (GY) at 2 out of the 3 locations under arti-
ficial Striga infestation. The reaction norm model sufficiently 
modeled the interactions among genotypes, environments, mar-
kers, and G × E effects, to obtain accurate GEBVs. This study re-
vealed a close relationship between the GEBVs across the TRN 
and TST sets for key Striga resistance traits, with 300 DH inbred 
lines displaying favorable GEBVs for these parameters. These re-
sults suggest that application of genomic-enabled strategies can 
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facilitate improvements in Striga resistance in maize. These re-
sults provide a foundational framework for the potential integra-
tion of GS in breeding for Striga resistance in maize across 
sub-Saharan Africa. Future research should focus on optimizing 
the training population size for large-scale application of GS and 
testing a combination of GS and sparse phenotyping approaches 
in field evaluation of lines and hybrids for resistance to Striga un-
der artificial infestation conditions.

Data availability
Supplementary data are available. 

• Supplementary Table 1—Pedigrees of DH lines in GS study 
gives the list and pedigrees of DH lines used in the study.

• Supplementary Fig. 1 shows the distribution of the GEBVs for 
the number of emerged Striga plants for the training and test-
ing populations.

• The phenotypic and marker data are freely available 
from CIMMYT’s Dataverse (https://hdl.handle.net/11529/ 
10549033).

• File named Phenotypic_Data.CSV contains phenotypic data 
from 232 testcross (TC) hybrids.

• File named GS_Marker_Data.CSV contains genotypic data for 
606 doubled haploid (DH) lines.

Supplemental material available at G3 online.
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