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Use of low cost near‑infrared 
spectroscopy, to predict pasting 
properties of high quality cassava 
flour
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Determination of pasting properties of high quality cassava flour using rapid visco analyzer is 
expensive and time consuming. The use of mobile near infrared spectroscopy (SCiO™) is an alternative 
high throughput phenotyping technology for predicting pasting properties of high quality cassava 
flour traits. However, model development and validation are necessary to verify that reasonable 
expectations are established for the accuracy of a prediction model. In the context of an ongoing 
breeding effort, we investigated the use of an inexpensive, portable spectrometer that only records 
a portion (740–1070 nm) of the whole NIR spectrum to predict cassava pasting properties. Three 
machine‑learning models, namely glmnet, lm, and gbm, implemented in the Caret package in R 
statistical program, were solely evaluated. Based on calibration statistics  (R2, RMSE and MAE), 
we found that model calibrations using glmnet provided the best model for breakdown viscosity, 
peak viscosity and pasting temperature. The glmnet model using the first derivative, peak viscosity 
had calibration and validation accuracy of  R2 = 0.56 and  R2 = 0.51 respectively while breakdown had 
calibration and validation accuracy of  R2 = 0.66 and  R2 = 0.66 respectively. We also found out that 
stacking of pre‑treatments with Moving Average, Savitzky Golay, First Derivative, Second derivative 
and Standard Normal variate using glmnet model resulted in calibration and validation accuracy 
of  R2 = 0.65 and  R2 = 0.64 respectively for pasting temperature. The developed calibration model 
predicted the pasting properties of HQCF with sufficient accuracy for screening purposes. Therefore, 
SCiO™ can be reliably deployed in screening early‑generation breeding materials for pasting 
properties.

Keywords Pasting temperature, Peak viscosity, Breakdown viscosity, Prediction models, Early generations’ 
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Cassava (Manihot esculenta Crantz) is an important food-security staple crop for over 800 million people in Latin 
America, Asia, and  Africa1. All parts of cassava are useful, foliage are consumed as vegetables, stems as planting 
materials and roots for food or starch extraction due to unique starch properties. At a household level, cassava 
roots are consumed as fresh roots, cooked roots, baked or fried. Both fresh and dried cassava chips are used 
in livestock feeding. Cassava roots can be processed to make high quality cassava flour (HQCF). High quality 
cassava flour is used to make various products such as bread, bans, and cakes. Starch extracted from cassava 
can be to make biscuits. Cassava starch can be used as adhesives, can be used in paper manufacturing, in textile 
industry, in pharmaceutical, in cosmetic Industries and in making biodegradable products. Thus, cassava serves 
both as food and a raw material for industrial purposes. These diverse uses of cassava make it a potential crop 
contributing to food security and economic development.
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In addition, compared to other important staples, cassava is a resilient crop with high tolerance to drought 
and poor soils. The crop widely adapt to various climates and cropping  systems2. Fresh cassava roots contain 
30–40% dry matter of which around 74–85% of the dry root weight is  starch3. Utilizing cassava in food sectors 
and at the home level or applying cassava starch successfully depends on its cooking quality, notably its pasting 
 properties4. The knowledge of pasting properties is an essential indicator of the cooking quality of foods and 
their  constituents5. Food processors mainly apply this knowledge to optimize the ingredient levels and tempera-
ture–pressure requirements to achieve the desired  product5.

Pasting properties are primarily evaluated using pasting curves. The pasting curves are obtained using Rapid 
Visco Analyser (RVA). However, the determination of pasting properties of high quality cassava flour (HQCF) 
with an RVA is time consuming and  expensive6. Many breeding programs are limited with resources, so screen-
ing a large number of germplasm in early generation using RVA is a great challenge.

NIR spectra are rich in chemical and physical information about organic material and may yield valuable 
information about the  material7. Using statistical and mathematical manipulation of the spectral data scien-
tists have been able to use NIR spectroscopy to predict several traits in several crops including  cassava1,8–12. In 
addition, pasting properties of rice were predicted with sufficient accuracy by NIRS based on flour  spectra6. In 
prediction, calibration models are generated and are validated using reference values and spectra data. These 
calibration models are then used for phenotyping purposes. NIRS (SCiO™) technique had hitherto not been used 
for predicting pasting properties in cassava. Therefore, the aim of this study was to assess the feasibility of utiliz-
ing a portable near-infrared spectrometer (SCiO™) spectrometer in predicting pasting properties of high-quality 
cassava flour. SCiO™ could be a cost-effective solution in early generations’ phenotyping for pasting properties 
of HQCF in resource-limited cassava breeding programs.

Materials and methods
Genetic materials and study site
The set of genetic materials used in this study comprised of 236 cassava genotypes. Some of the genetic materials 
had a background from Latin America, IITA and TARI. The other genetic materials were a random collection of 
elite genotypes from famers’ fields in Tanzania. Genotypes were planted in single rows of ten plants each. Planting 
was done in two different locations namely Tanzania Agricultural Research Institute (TARI)-Ukiriguru in the 
lake zone and Chambezi-experimental station in the eastern zone. The genotypes were planted using Augmented 
design in 2020/2021 and 2021/2022 seasons. TARI-Ukiriguru is located in Misungwi District, (2° 43.1′ S, 33° 1.0′ 
E) at an altitude of 1198 m above sea  level13 whereas Chambezi is located at around 6° 38′ 39′′ S, 39° 10′ 29′′ E.

Reference data measurement
Sample preparation
Before reference data measurement, cassava roots were prepared into HQCF using a standard protocol developed 
by  IITA5. At 12 months after planting (MAP), five fresh cassava roots that were healthy and firm were harvested 
from each plot at both sites. The randomly selected fresh and healthy cassava roots were then peeled and washed 
using tap water. The washed cassava roots for each genotype were grated into a mash separately using a mechani-
cal grater. The mash was then placed into a clean bag and strongly squeezed to make it crumbly. The resulted 
product was dried in an oven at 60 °C for 24 h and stored at 4 °C waiting for further analysis.

Determination of HQCF pasting properties
Laboratory analysis for HQCF pasting properties determination was done at the International Institute of Tropi-
cal Agriculture (IITA), Dar es Salaam, Tanzania. The Analysis was done using Perten Rapid Visco Analyzer 
(RVA) Tecmaster equipment whose model number is N103802. Before RVA profiling, the stored mash was 
milled to obtain HQCF. Three grams (3.0 g) of HQCF of each genotype that were harvested were weighed and 
poured into the canister; 25 ml of distilled water was then poured into the canister’s contents. The product was 
thoroughly stirred to mix and then the canister was fitted into the RVA equipment. The product was heated from 
50 to 59 °C with a holding time of 4 s and then cooled to 50 °C with 4 s holding time. The pasting properties of 
HQCF namely: peak viscosity, breakdown and pasting temperature were read from the pasting profile. These 
pasting properties parameters are among useful measures of pasting quality for industrial application of HQCF. 
Pasting temperature is associated with the energy costs during processing. Peak viscosity is an indication of water 
holding capacity of HQCF. Breakdown is related to paste  stability14.

Spectroscopic analysis
Near infrared (NIR) spectra was collected using a highly portable molecular sensor called SCiO™. This device 
collects spectra on electromagnetic spectrum region between 740 and 1070 nm. SCiO sensors transmit data into 
a tablet through synchronization with Bluetooth. Before analysis, the device was calibrated using a built-in refer-
ence. The HQCF of each sample were placed in a container. Each sample was then scanned in triplicate (scanning 
the same samples at different positions). The average spectra of each sample were then used for further analysis.

Calibration of SCiO™
Spectral averaging and pre‑treatment
All analyses were done in R statistical software (R). The replicated spectra data were averaged using aggregate 
function of R. To remove outliers, spectra were filtered based on mahalanobis distance using filter_spectra func-
tion of waves package. Using dplyr package, the spectral data were matched with the reference data to ensure 
that both datasets had same samples.
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Initial comparison of NIRS models developed with default tuning
In order to make informed decision about the most promising models for calibration and optimization, three 
machine-learning algorithms were evaluated: Lasso and Elastic-Net Regularized Generalized Linear Models 
(glmnet), Linear Model (lm) and Gradient Boosting Machines (gbm) all implemented within the Caret package 
in R statistical software. These machine learning models have been successively used elsewhere on phenomics 
for  beans15. Prior to calibration, summary statistics of the reference data was computed. The reference data were 
combined with pre-treated spectra data using moving‑average pre-treatment only. The sample was partitioned 
into calibration and validation subsets in a 7:3 ratio. This was achieved using CreateDataPartition function of 
Caret. Calibration was done using glmnet model implemented by Caret package in R statistical software. To 
ensure robust and fair comparisons, default-tuning parameters were used on the three models; all cross-validated 
using repeated CV of 50 folds with 20 repetitions. Evaluation of the models was compared based on two metrics: 
coefficient of determination  (R2) and root mean square error (RMSE).

Optimization and comparison of glmnet and gbm calibration models
Following the results from initial model comparison, the glmnet and gbm algorithms were selected for optimi-
zation. The Spectral data for this phase underwent pre-treatment utilizing the prospectr package, which offers 
an array implemented of the following pre-treatments parameters, (1) Moving Average which removes random 
fluctuations around the signal (noise) that can originate from the instrument or environmental laboratory condi-
tions, (2) Savitzky-Golay, First derivative (derivative 1) and Second derivative(derivative 2) to remove additive 
effects in the spectra, (3) Standard Normal Variate (SNV) which normalizes spectra to correct for light scatter, 
and (4) Multiplicative Scatter Correction (MSC) to remove multiplicative effects and Baseline Removal.

Two groups of calibration models were developed; (1) calibration models developed separately on each 
spectral pre-treatment method, and (2) models based on spectra with differently stacked pretreatments. In both 
these cases, glmnet and gbm models were fitted in Caret package in R. Both models were cross-validated using 
repeated CV of 50 folds with 20 repetitions. Conversely, these models have different hyper-parameter tuning 
factors and therefore, in glmnet, hyper-parameters were tuned using alpha of 0–1 and lambda of 0–1 with length 
of 100 while in gbm, hyper-parameters were tuned using number of trees equal to 500:2000, shrinkage of 01 
and n.minobsinnode of 20. The best model was selected based on  R2 and root mean square error of calibration 
(RMSEC) and root mean square error of validation (RMSEV). In addition, overfitting or underfitting of the 
model was considered in model selection.

Compliance to IUCN policy
We, the authors of USE OF LOW COST NEAR-INFRARED SPECTROSCOPY, TO PREDICT PASTING PROP-
ERTIES OF HIGH QUALITY CASSAVA FLOUR, hereby affirm that our research adheres to the guidelines set 
forth in the IUCN Policy Statement on Research Involving Species at Risk of Extinction. Additionally, we confirm 
compliance with the regulations outlined by the Convention on the Trade in Endangered Species of Wild Fauna 
and Flora. This commitment underscores our dedication to ethical research practices, conservation efforts, and 
the responsible management of endangered species, as outlined by these internationally recognized policies.

Results
Summary statistics
Summary statistics revealed a great measure of dispersion based on high values of standard deviation and range 
across the three traits (Table 1). Peak Viscosity had a mean value of 6052.79 Centipoise (cP), a standard devia-
tion (SD) of 1037.19 cP, and a range of 5680.0 Cp. Breakdown viscosity had a mean of 3774.25 cP, SD of 664.57 
cP and range of 4534.0 cP while pasting temperature had a mean of 75.84 °C, SD of 1.74 °C and range of 8.95 °C.

Initial comparison of NIRS models developed with default tuning
The gbm model registered the lowest MAE and RMSE; consequently, it had the highest R2 values for all three 
properties measured (Fig. 1). This was followed by the glmet model and, lastly, the lm model, which had higher 
MAE and RMSE values but the lowest R2 for all measured properties. This suggested that gbm was the most 
robust among the three models tested. Based on these results, two best models (gbm and glmnet) were selected 
for further optimization. Additionally, ANOVA results showed that the models are not statistically different 
(Table 2). However, model validation statistics showed that LM had the highest error values and the lowest 

Table 1.  Means, ranges and standard deviations (SD) of reference values for the pasting properties parameters 
of HQCF.

Peak viscosity (Cp) Breakdown (Cp) Pasting temperature (°C)

Minimum 2320.00 1150.00 70.95

Maximum 8000.00 5684.00 79.90

Range 5680.00 4534.00 8.95

Mean 6052.79 3774.25 75.84

SD 1037.19 664.57 1.79
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coefficient of determination compared to glmnet and gbm (Table 3). This formed the basis for dropping LM 
from upstream comparison/analysis.

Optimization and comparison of glmnet and gbm calibration models
More robust calibrations were achieved using glmnet model than gbm model (Tables 4 and 5). Calibrations 
from gbm models did not produce any superior model across the three studied traits. Indeed, gbm models were 
characterized with low accuracies and in any instance where calibration accuracy or validation was higher than 
that of glmnet, overfitting or underfitting were observed (Table 5).

Robust calibration models for peak viscosity and breakdown were achieved from models developed from 
individual spectral pre-treatment (Table 4). Robust model for the two traits was revealed in glmnet model devel-
oped using first derivative spectral pre-treatment. Results revealed that with glmnet model using fisrt derivative, 

Figure 1.  Initial model comparison statistics.

Table 2.  Explanatory variable: models. ns = not significant.

Trait df MS

Peak 2 1087925ns

Breakdown 2 78099ns

Pasting temp 2 1.6255ns

Table 3.  Model validation statistics at initial stages of analysis. RMSE = Root Mean Square Error, MAE = Mean 
Absolute Error.

Method Trait RMSE MAE R2

GLMNET Peak 853.39 654.85 0.41

GBM Peak 748.64 574.50 0.55

LM Peak 1302.89 973.71 0.21

GLMNET Breakdown 506.89 383.56 0.44

GBM Breakdown 471.35 350.71 0.51

LM Breakdown 1198.66 819.92 0.10

GLMNET Pasting temp 1.26 0.97 0.51

GBM Pasting temp 1.09 0.86 0.63

LM Pasting temp 2.45 1.73 0.26
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peak viscosity had calibration and validation accuracy of  R2 = 0.56 and  R2 = 0.51 respectively while breakdown 
had calibration and validation accuracy of  R2 = 0.66 and  R2 = 0.66 respectively (Fig. 2). Nevertheless, in all models 
there were some instances of low accuracies, overfitting and underfitting. Results from model calibrations using 
glmnet provided overall best model for pasting temperature (Table 6). Compared to other models, stacking of 
pre-treatments with Moving Average + Savitzky Golay + First Derivative + Second derivative + Standard Normal 
variate provided calibration model for pasting temperature with calibration and validation accuracy of  R2 = 0.65 
and  R2 = 0.64 respectively (Fig. 2).

Discussion
Mobile NIRS has been reported to offer quick, in-field phenotyping of cassava roots for pasting  properties11. 
In the context of an ongoing breeding effort, we investigated the use of a cheaper, portable spectrometer that 
only records a portion (740–1070 nm) of the whole NIR spectrum to predict cassava pasting properties. The 
findings given here show that pasting properties prediction is feasible using low-cost, portable spectrometers 
like the SCiO.

Reference data
A wide range of dispersion was revealed in the reference data through the means, ranges, and standard devia-
tions for each pasting property parameter of the calibration. Disruptive statistics for calibration and validation 
set was not done due to the fact that random sampling was used to create the two sets which would reorganize 
differently if done again. A wider range existed in each parameter measured; this shows variations between 
the samples which is good for calibrations purposes. Variation in near-infrared (NIR) spectroscopy reference 
set is of significant importance for several reasons. Calibrations variation allows for better handling of sample 
heterogeneity, ensuring that the models are robust and accurate across a wide range of sample compositions and 
 properties16. NIR spectrometers may exhibit inherent variability due to drift, noise, or changes in environmental 
conditions, incorporating variation in calibrations, the models can account for instrument-specific effects, result-
ing in improved accuracy and reliability of  predictions17. Sample preparation techniques, sample presentation, 
and ambient conditions can also influence NIR spectroscopy  measurements9. These effects can be captured by 
considering variation in calibrations, leading to predictions that are more accurate. In summary, incorporating 
variation in NIR spectroscopy calibrations is crucial for robust and accurate predictions across a wide range of 
samples and measurement scenarios.

Table 4.  Calibration and validation statistics of glmnet model. MA = Moving Average, SG = Savitzky-Golay, 
D1 = First Derivative, D2 = Second Derivative, SNV = Standard Normal Variate, MSC = Multiplicative Scatter 
Correction, BR = Baseline Removal, Value in brackets is Root Mean Square Error of calibration and validation,

R2 for peak viscosity R2 for breakdown R2 for pasting temperature

Calibration Validation Calibration Validation Calibration Validation

MA 0.50 (754.11) 0.27 (919.8) 0.61 (453.17) 0.63 (398.74) 0.60 (1.19) 0.47 (1.29)

SG 0.48 (802.24) 0.39 (790.05) 0.60 (471.75) 0.52 (428.91) 0.59 (1.21) 0.52 (1.27)

D1 0.56 (718.17) 0.51 (752.31) 0.66 (424.09) 0.66 (381.76) 0.68 (1.08) 0.53 (1.20)

D2 0.53 (733.08) 0.45 (797.60) 0.66 (412.27) 0.51 (466.35) 0.65 (1.12) 0.61 (1.17)

SNV 0.26 (1053.43) 0.01 (880.28) 0.37 (578.24) 0.15 (590.88) 0.43 (1.46) 0.27 (1.67)

MSC 0.54 (1567.02) 0.23 (948.15) 0.58 (1159.91) 0.63 (417.10) 0.60 (3.20) 0.64 (1.07)

BR 0.41 (819.96) 0.29 (830.29) 0.50 (506.38) 0.47 (466.21) 0.47 (1.37) 0.45 (1.31)

Table 5.  Calibration and validation statistics of gbm model. MA = Moving Average, SG = Savitzky-Golay, 
D1 = First Derivative, D2 = Second Derivative, SNV = Standard Normal Variate, MSC = Multiplicative Scatter 
Correction, BR = Baseline Removal, Value in brackets is Root Mean Square Error of calibration and validation, 
temp = temperature, cP = Centipoise.

R2 for Peak Viscosity (cP)
R2 for 
Breakdown (cP) R2 for Pasting temp (°C)

Calibration Validation Calibration Validation Calibration Validation

MA 0.50 (737.22) 0.53 (698.47) 0.53 (470.30) 0.72 (351.61) 0.70 (1.03) 0.51 (1.26)

SG 0.49 (774.02) 0.58 (634.71) 0.56 (460.04) 0.64 (363.17) 0.59 (1.16) 0.64 (1.06)

D1 0.40 (796.09) 0.58 (703.24) 0.55 (453.14) 0.63 (394.74) 0.59 (1.12) 0.55 (1.24)

D2 0.45 (762.35) 0.36 (892.44) 0.54(458.38) 0.57 (415.97) 0.58 (1.14) 0.52 (1.29)

SNV 0.46 (418.18) 0.61 (526.09) 0.37 (578.24) 0.15 (590.88) 0.60 (1.12) 0.52 (1.32)

MSC 0.44 (782.68) 0.39 (775.48) 0.53 (454.77) 0.44 (530.24) 0.58 (1.18) 0.58 (1.08)

BR 0.52 (718.70) 0.50 (749.95) 0.60 (423.05) 0.58 (452.01) 0.65 (1.07) 0.46 (1.34)
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Initial comparison of NIRS models developed using default tuning parameters
To succeed in developing robust calibration models, one has to select superior machine learning models from 
several available and embark on optimizing it. Herein we compared calibration accuracies of three machine-
learning models namely: glmnet, lm and gbm. From this initial comparison, gbm appeared to be superior followed 
closely by glmnet and lastly lm model. However, the significance of this difference was not determined because 
it aimed to provide a rough picture on promising model to continue with. This result gave us the green light to 
drop lm model and optimize glmnet and gbm models.

Figure 2.  Best validation accuracy for peak viscosity and breakdown from glmnet model fitted using first 
derivative pre-treatment and for pasting temperature calibrated by stacking pre-treatment in glmnet model.

Table 6.  Calibration and validation  R2 for glmnet models developed by stacking of spectral pre-treatments. 
MA = Moving Average, SG = Savitzky-Golay, D1 = First Derivative, D2 = Second Derivative, SNV = Standard 
Normal Variate, MSC = Multiplicative Scatter Correction, BR = Baseline Removal, Value in brackets is Root 
Mean Square Error of calibration and validation, temp = temperature, cP = Centipoise.

R2 for Peak Viscosity (cP) R2 for breakdown (cP) R2 for pasting temp (°C)

Calibration Validation Calibration Validation Calibration Validation

MA + SG 0.51 (769.42) 0.38 (831.89) 0.58 (469.56) 0.56 (430.59) 0.60 (1.22) 0.50 (1.24)

MA + SG + D1 0.56 (718.89) 0.34 (790.94) 0.70 (380.23) 0.45 (519.76) 0.66 (1.10) 0.55 (1.18)

MA + SG + D1 + D2 0.48 (780.61) 0.44 (767.97) 0.63 (443.87) 0.51 (447.23) 0.66 (1.48) 0.60 (1.53)

MA + SG + D1 + D2 + SNV 0.51 (800.31) 0.38 (759.96) 0.67 (398.97) 0.40 (549.94) 0.65 (1.23) 0.64 (1.20)

MA + SG + D1 + D2 + SNV + MSC 0.52 (794.05) 0.37 (794.05) 0.65 (433.00) 0.61 (401.54) 0.68 (1.14) 0.55 (1.20)

MA + SG + D1 + D2 + SNV + MSC + BR 0.52 (755.53) 0.47 (800.77) 0.64 (421.86) 0.43 (491.68) 0.68 (1.08) 0.53 (1.23)
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Comparison of glmnet and gbm models based on single spectral pretreatment
Comparison of glmnet and gbm models developed from each of the seven pre-treatment revealed that after 
optimization of both models through application model tuning parameters, in overall, glmnet provided better 
model for peak viscosity and breakdown than gbm. These results are in line with previous studies done  by18 who 
reported that glmnet appeared to be slightly robust than gbm in detection of diabetes. Comparatively, gbm did not 
offer more superior model in this research. Overall best calibration model for peak viscosity had calibration and 
validation accuracies of  R2 = 56 and  R2 = 51 respectively. This model was achieved from glmnet calibrations based 
only on first derivative spectral pre-treatment. Indeed, we had other models with higher validation accuracy of 
 R2 > 56. However, their calibration accuracies were very low, reflecting underfitting, which is undesirable. Looking 
at all calibration models for breakdown, glmnet model based on first derivative provided overall best model with 
calibration and validation accuracies of  R2 = 0.66 and  R2 = 0.66 respectively. Similarly, there were models with 
 R2 > 0.66 however, they did overfit or underfit and thus undesirable. Indeed, this results comes to an agreement 
with reports  by19 who published their finding based on multiple reviews that glmnet is more accurate compared 
to gbm models. Overall, best model for pasting temperature was identifying from glmnet models developed by 
stacking spectral pre-treatments namely; Moving Average + Savitzky Golay + First Derivative + Second Deriva-
tive + Standard Normal Variate. This pasting temperature model respectively had a calibration and validation 
accuracy of  R2 = 65 and  R2 = 64. The fact that, best calibration model for peak viscosity and breakdown viscosity 
were achieved using first derivative pre-treatments. This may imply that certain sole pre-treatments are able to 
enhance the signal of a particular trait, thus leading to robust calibration  model20. Furthermore, the fact that 
pasting temperature was achieved using stacking of moving Average + Savitzky Golay + First Derivative + Second 
derivative + Standard Normal Variate pre-treatments could imply that the best calibration model is not always 
achieved through stacking more pre-treatments, since certain pre-treatment combinations reaches a specific 
threshold beyond which it over-corrects the spectra making it lose signal for a particular trait. This result agrees 
with the results which reported that raw spectra pre-processing can negatively affect the performance of near-
infrared spectroscopy models  prediction10. Generally, results reported here provide evidence that NIR could be 
used to predict cassava root traits. These results agree with reports by several other scientists on the feasibility 
of estimating many cassava traits using NIR. Demonstrated the feasibility of cassava root dry matter content 
prediction with low-cost, mobile spectrometers such as the SCiO used in our study and informed its use in 
routine breeding  decisions1. Ikeogu et al.9 showed the feasibility of using portable Vis/NIRS device (QualitySpec 
Trek: S-10016) in predicting dry matter content and carotenoids in fresh cassava roots which could accelerate 
accurate phenotyping and general improvement of cassava. Rittiron et al.12 were able to show the possibility of 
estimating starch content in cassava roots using portable vis/NIR spectrometers operated in interactance mode 
in the spectral regions of 350–1050 nm for predicting the starch content of fresh cassava roots. Showed that a 
portable high throughput NIRS device (QualitySpec Trek: S-10016) can be used to increase breading efficiency 
by its quick estimation of dry matter content and total carotenoid content in fresh cassava  root8. The calibration 
and prediction accuracy results that we report here indicate that the SCiO is a suitable alternative to expensive 
spectrometers for pasting properties phenotyping, especially when factoring in cost and throughput. Indeed 
SCiO is an extremely better option because it is comparatively highly portable, cheap coupled with its high 
throughput ability.

Conclusions
The feasibility of utilizing SCiO for pasting properties estimation of high quality cassava flour was evaluated. 
The developed calibration model predicted pasting properties of HQCF with sufficient accuracy for screening 
purposes. Therefore, SCiO can be reliably deployed in quality screening of early generation material for pasting 
properties for breeding especially in resource constrained breeding programs.

Data availability
The data used in this study are available on GitHub at https:// github. com/ mikid adio/ SCiO- Calib ration- data. gi.
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