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Abstract: Background/Objectives: Hybridity authentication is an important component of quality
assurance and control (QA/QC) in breeding programs. Here, we introduce HybridQC v1.0, a QA/QC
software program specially designed for parental purity and hybridity determination. HybridQC
rapidly detects molecular marker polymorphism between parents of a cross and utilizes only the
informative markers for hybridity authentication. Methods: HybridQC is written in Python and
designed with a graphical user interface (GUI) compatible with Windows operating systems. We
demonstrated the QA/QC analysis workflow and functionality of HybridQC using Kompetitive
allele-specific PCR (KASP) SNP genotype data for cowpea (Vigna unguiculata). Its performance was
validated in other crop data, including sorghum (Sorghum bicolor) and maize (Zea mays). Results:
The application efficiently analyzed low-density SNP data from multiple cowpea bi-parental crosses
embedded in a single Microsoft Excel file. HybridQC is optimized for the auto-generation of key
summary statistics and visualization patterns for marker polymorphism, parental heterozygosity,
non-parental alleles, missing data, and F1 hybridity. An added graphical interface correctly depicted
marker efficiency and the proportions of true F1 versus self-fertilized progenies in the data sets used.
The output of HybridQC was consistent with the results of manual hybridity discernment in sorghum
and maize data sets. Conclusions: This application uses QA/QC SNP markers to rapidly verify true
F1 progeny. It eliminates the extensive time often required to manually curate and process QA/QC
data. This tool will enhance the optimization efforts in breeding programs, contributing to increased
genetic gain.

Keywords: software program; quality assurance; quality control; hybridity determination; F1 verification;
parental purity; KASP assay; single nucleotide polymorphism; marker efficiency

1. Introduction

Molecular markers have become indispensable to breeding, given the need to accel-
erate the rate of genetic gain to meet the growing global food demand. For several past
centuries, the human population depended entirely on the outcome of conventional breed-
ing efforts for food and other aesthetic needs. The human population is projected to reach
9.8 billion by 2050 [1], and the resultant food demand has provoked a fundamental shift in
how crop breeding is being conducted. There is unanimous agreement on fully integrating
genomics into the breeding process to achieve the desired speed and genetic gain [2–4].
This comes with the need to restructure breeding programs to accommodate molecular
marker applications, including the capacity to handle large volumes of molecular data
often used in making breeding decisions. Molecular marker technologies have advanced
over time from hybridization-based restriction fragment length polymorphisms (RFLPs)
to PCR-based random-amplified polymorphic DNA (RAPD), amplified fragment length
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polymorphisms (AFLPs), and sequence repeats (SSRs), and more recently, high-throughput
single-nucleotide polymorphisms (SNPs) [5]. Recent advances that have lowered the cost of
high-throughput sequencing technology have led to the development of several genotyping
platforms [6,7]. These developments have significantly changed the approach to marker
discovery and analyses. To cut the cost even further, low-density genotyping platforms
have been developed with few and cheap markers for easy and routine breeding applica-
tions. One such platform is the KASP assay technology, which is based on the fluorescence
resonance energy transfer and allele-specific oligo extension system [8,9]. Low-density
KASP assays have been used in different crop species, including cowpea (Vigna unguicu-
lata) for hybridity testing and parental fingerprinting [10], sorghum (Sorghum bicolor) for
marker-assisted introgression [11], and Cassava (Manihot esculenta) for marker-assisted
selection [12], among others. It is evident that molecular markers are now being deployed
across many scientific fields, including developmental biology, systematics, conservation
biology, and forensic studies [13]. In modern plant breeding, molecular markers are piv-
otal in constructing genetic maps, identifying underlying gene traits, studying genetic
variability, and quality assurance (QA) and quality control (QC).

Quality assurance focuses on well-established processes and standards that prevent
mixing high-quality germplasm with low-quality or genetically impure materials [14]. A
good QA therefore prevents mistakes in developing or maintaining new breeding lines.
Quality control, on the other hand, aims to identify and correct errors or mixers that might
have slipped through QA protocols [14,15]. Typically, QC allows for checking the true
genetic identity of parental lines relative to the original source, determining seed genetic
purity, and verifying whether the hybrids are truly derived from the specified parents,
among other applications [14]. QA/QC is therefore a fundamental aspect of breeding
optimization efforts aimed at minimizing errors and wastage of resources and time in
breeding operations [10,14,16], thereby enabling increased genetic gains [17]. Breeding is a
multi-stage, costly, and time-consuming intervention with the end goal of generating high-
quality varieties acceptable to the end users. Therefore, deploying molecular markers for
QA/QC at critical breeding stages would ensure precise selection decisions, and the correct
type of genetic materials are carried forward in the breeding program. Diagnostic markers
for QA/QC have been developed in several crops and are being used to address different
QA/QC aspects, including genetic fingerprinting and purity of the parental germplasm,
parent–offspring identity, genetic purity of hybrids, validation of crosses in nurseries, and
tracking specific traits in germplasm [10–12,14,16–19].

Marker deployment for routine QA/QC in a breeding program also needs efficient
means of processing the data to facilitate faster decisions. Despite recent progress in devel-
oping diagnostic markers for QA/QC in crop breeding, limited applications can process
low-density marker panels. Consequently, QA/QC data are often manually scrutinized
in Microsoft Excel, which becomes daunting when large data volumes are to be handled.
Efforts to address this gap led to the development of one QC application called Flapjack
v1.22.04.21, a graphical genotyping software that can perform marker-assisted backcross-
ing, forward breeding, and pedigree verification, among other functions [20]. Several
different molecular software programs do exist but are not explicitly designed for QA/QC
in a breeding program; these include applications for genetic diversity analysis [21–23],
polymorphism analysis [5,24], marker-assisted recurrent selection [25], and QTL discovery
analysis [26,27]. We introduce HybridQC, a QA/QC software program designed explic-
itly for F1 verification in diploid species. HybridQC computes genetic polymorphism
between parental lines and uses only polymorphic markers to assess the genuineness of
purported F1 offspring. This allows breeders to discard selves by clearly discriminating
homozygotes (accidental selves) from plants that are expected to be heterozygous. We
have demonstrated the functionalities of HybridQC using KASP-based SNP data from
the cowpea breeding program at the International Institute of Tropical Agriculture (IITA).
Users can download HybridQC installation executables for Windows and example data
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from GitHub at https://github.com/Ayatoo047/HybridQC-build/releases/tag/v1.0.0
(accessed on 24 September 2024).

2. Materials and Methods
2.1. The Genotype Data

We used KASP-based SNP genotype data from IITA’s cowpea breeding program
to test the functionality of the software. The data consist of 1408 putative F1 offspring
plus 206 parental lines that were genotyped with 22 QA/QC SNP markers. The F1s
were developed by making pair-wise crosses among 206 parental lines, giving rise to
103 bi-parental populations. The number of F1 offspring per bi-parental population ranged
from 5 to 34. Tissue samples were collected from individual F1 offspring and their parents
using the protocol previously described by [10]. DNA extraction and genotyping were
conducted at the Intertek lab in Sweden following the company’s KASP assay genotyping
protocol. Genotyping was conducted based on KASP assays for the 22 cowpea markers
(17 QA/QC SNP panel + 5 diagnostic markers). The profiles of the cowpea QA/QC SNP
panels were previously described and are publicly available [10]. The genotyping output in
Intertek format has been provided as an example of data in the Supplementary Materials.

2.2. Software Development

HybridQC was written in Python language. Python is a trendy programming envi-
ronment because it can be implemented in various ways, including automation, website
development, and data analysis. Python scripts were written and optimized to read direct
KASP assay genotyping output in Intertek format. To make the software user-friendly
without the need to understand Python programming, we created a graphical user interface
(GUI) application that is easily installable on Microsoft Windows operating systems. The
executable file is supplied in this article as Supplementary Materials. The GUI is equipped
with widgets for easy navigation. These widgets include a file upload button, threshold
selection buttons with default settings, and analysis and run completion buttons (Figure 1).
The threshold selection of HybridQC allows the user to set three key thresholds: minimum
acceptable level of polymorphism, maximum allowable level of missing data, and hybridity.
By default, hybridity is determined only if marker polymorphism between parents is ≥20%
and missing data is ≤20%; otherwise, “NA” is returned to indicate a lack of confidence in
assessing the authenticity of the F1 offspring. In addition, an offspring is considered true F1
if hybridity ≥ 50%; otherwise, “FALSE” is returned to indicate possible self-fertilization.
When the default setting is not selected, the user can set their threshold levels.
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2.3. The Genetic and Mathematical Principles

The application was developed to analyze the genuineness of the first-generation
offspring coming from a cross between two parents. In diploid species like cowpea, an
offspring receives one allele each from the two parents. Molecular markers can track these
alleles in the offspring, making it possible to discern if an offspring is a true cross of the
specified parents. An illustration of offspring hybridity detection using molecular markers
in cowpea is presented in Figure 2. HybridQC was designed to imitate this detection
process and summarize the hybridity results.
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Figure 2. An illustration of the molecular discernment of hybridity in cowpea. Molecular markers
are represented by three SNPs (SNP1, SNP2, and SNP3). The F1s were derived from two parents: an
IITA variety IT97K-573-1-1 and a land race Danila. The alleles of parents IT97K-573-1-1 and Danila
are presented in red and blue fonts, respectively, and the parents are homozygous across all three
SNP marker loci. The purported four F1 offspring are shown as F1-1, F1-2, F1-3, and F1-4. Offspring
numbers 1 to 3 are heterozygous at all three SNP marker loci and are considered true F1s while
offspring number 4 has homozygous alleles at all 3 loci, and the alleles are similar to parent 1; hence,
it is a product of self-fertilization and is considered false F1.

To effectively determine the hybridity of a purported F1 offspring, a marker must
first differentiate between the two parents in what is termed polymorphism detection.
If a molecular marker cannot distinguish between the two parents, it is referred to as
monomorphic and is considered uninformative. This application detects and computes
marker polymorphism based on the formula described by [10]:

Parental Marker Polymorphism =

(
Pm

Tm − Mc

)
× 100 (1)

where Pm is the number of polymorphic markers per pair of parents, Tm is the total
number of markers used to genotype the pairs of parents, and Mc is the number of missing
genotype calls in the two parents of a cross.

The application selects only highly polymorphic markers and uses these marker sets
to determine the hybridity of individual F1 offspring. Percent hybridity is then computed
based on the formula modified from [10] to account for missing genotype calls:

Hybridity =

(
Lhet

Pm − Mc

)
× 100 (2)

where Lhet is the number of polymorphic SNPs detecting an F1 as heterozygous (true
hybrid), Pm is the number of all the polymorphic SNPs between the parents of a particular
F1, and Mc is the number of missing genotype calls.
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HybridQC is also sensitive to highly heterozygous parental lines, and hence, it com-
putes parental heterozygosity. Hybridity results of F1 offspring from highly heterozygous
parents are considered invalid since the genotypes of a true hybrid from such parents are
impossible to decode. The percentage of heterozygous loci for each parent is computed
as shown:

Parental Heterozygosity =

(
Phet

Tm−Mc

)
× 100 (3)

where Phet is the number of parental loci that are heterozygous, Tm is the total number
of SNP markers, and Mc is the number of missing genotypes calls in the two parents of
a cross.

The software is also capable of detecting non-parental alleles in the F1 offspring. The
offspring are scanned for the presence of strange alleles, which is indicative of either
outcrossing, seed mixture, or sometimes genotyping errors. The percentage of non-parental
alleles for each F1 offspring is computed as shown:

Non − parental Alleles =
(

Lnpa

Pm

)
× 100 (4)

where Lnpa is the number of loci that have non-parental (strange) alleles, and Pm is the
number of polymorphic SNP markers.

We also added functionality to assess the performance of the markers based on the
ability to differentiate between parental lines, referred to here as molecular marker efficiency.
Marker efficiency is assessed based on the formula [10]:

Marker e f f iciency =

(
f m
Tc

)
× 100 (5)

where f m is the frequency of marker polymorphism among parental pairs, and Tc is the
total number of parental combinations.

2.4. Assumptions

HybridQC analyzes data from co-dominant genetic markers, especially SNPs, with
genotype data conforming to the Intertek KASP assay output. Other types of co-dominant
markers would have to be re-coded to match the KASP assay genotype data formats.
HybridQC analysis assumes that the species is diploid and that markers are autosomal.
It also assumes that markers are inherited independently of each other, in other words,
that they are in linkage equilibrium. Consequently, HybridQC operates on well-developed
QA/QC marker panels selected based on good genome coverage, high SNP polymorphism,
and SNP call neutrality.

3. Implementation
3.1. The Analysis Workflow

The workflow for QA/QC analysis using HybridQC has been presented in Figure 3.
The workflow has three components: (i) Data box, which involves the acquisition of KASP
assay SNP data and putting it in the right format; (ii) Analysis box, which is equipped with
functionalities to upload the SNP data, select the threshold parameters, and run the analysis;
and (iii) Output box, which is divided into the main window and graphics window. The
main window contains the analysis results with polymorphisms and hybridity color hits. In
addition, columns with summary statistics are added in this window. The graphic window
is generated in new sheets, and it contains a pie chart and bar chart for hybridity and
marker efficiency, respectively (Figure 3).
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3.2. The Input Data and Analysis

The input data are a direct result of the KASP assay in Intertek format. It contains the
SNP genotype arranged into groups, starting with the two parents of a cross followed by
the derived F1 offspring (Figure 4). Multiple bi-parental crosses can be included in one
input data file. The input data file is formatted to include a column labeled “Sample ID”, a
unique label that identifies the sample. The second column contains the “Sample Name”,
which specifies the pedigrees or the actual names of the samples, and the third column is
designated as “Type”, which identifies each sample either as a parent or an F1 offspring.
The remaining columns contain the SNP marker IDs. Each SNP marker has two alleles
represented by a combination of any of the four DNA nucleotide bases: A, T, C, and G, that
are used to score the genotype of all samples. The missing SNP calls are represented by
the symbol “?” or “Uncallable” (Figure 4). A typical example of input data are provided in
Supplementary Materials.

Data analysis is accomplished first by clicking the file selection button and browsing
the Microsoft Excel input data, which should have been saved in a computer directory
with the file extension “.xlsx”. This is followed by setting the desired input thresholds
including minimum polymorphism, maximum missing data, and minimum hybridity
levels; otherwise, a default threshold is selected, and the analysis is completed by clicking
the “Run” button.
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highlighted in pink depict the acceptable symbols for missing SNP calls. The rectangular dash and
solid lines indicate the genotypes of parents and the offsprings respectively.

3.3. HybridQC Output

Parental polymorphism: Following a successful analysis, HybridQC generates output
in an Excel spreadsheet that presents the results in the form of color patterns, graphical
visualization, and statistical summaries. The first output is the pattern of SNP polymor-
phism between the parental pairs and parental heterozygosity. The polymorphism pattern
is depicted as color hits with the polymorphic SNP alleles between the parents marked in
green while the non-polymorphic alleles are red (Figure 5). This identifies the informative
SNP markers that would be considered to test the authenticity of purported F1 offspring,
while the monomorphic (uninformative) SNPs are excluded from subsequent analysis.
The pattern of parental heterozygosity is represented by blue cells depicting loci that are
heterozygous for at least one of the two parents involved in a cross. Highly heterozygous
parents are considered impure, and therefore, the computation of hybridity is ignored for
the resultant F1 offspring.

Hybridity status: The second output is the pattern of hybridity status of the offspring,
which is also presented as color hits with orange cells delineating SNP genotypes that
identify an offspring as a true hybrid (Figure 5). These loci are heterozygous for the unique
alleles coming from the two parents. However, the cells containing homozygous alleles are
left uncolored and they represent the product of self-fertilization (failed cross). In addition,
HybridQC is able to detect F1 offspring that carry non-parental alleles. This is depicted by
purple cells in the output (Figure 5).



Genes 2024, 15, 1252 8 of 13

Genes 2024, 15, x FOR PEER REVIEW 8 of 13 
 

 

addition, HybridQC is able to detect F1 offspring that carry non-parental alleles. This is 
depicted by purple cells in the output (Figure 5). 

 
Figure 5. HybridQC analysis output shows the summary statistics and color pattern depiction of 
polymorphism, parental heterozygosity, and hybridity. Columns A and B contain Sample ID and 
Sampe Name, Columns C-M contain the summary statistics, Column N contains the germplasm 
type (Parent vs. F1), and Columns O-S contain the marker genotype calls. Red cells indicate non-
polymorphic parental loci while green represent polymorphic loci. The blue cells depict parental 
loci that are heterozygous. The orange cells represent loci that detected offsprings as being hetero-
zygous. The purple cells show detection of non-parental alleles. The boxes and the respective arrows 
highlight and explain the type of output generated by HybridQC. “NA” indicate that %hybridity 
was not computed. 

Summary statistics: The third key output includes summary statistics that are in-
serted as new columns with the headings “#polymorphic”, “%polymorphism”, “#paren-
tHet”, “%parentHet”, “#NonParentAllele”, “%NonParentAllele”, “#true”, “#missing”, 
“%missing”, “%hybridity”, and “status” (Figure 5). The columns for “#polymorphic” and 
“%polymorphism” present the computations for counts and percentages of polymorphic 
SNP markers, respectively, between each parental combination. The columns for “#par-
entHet”, and “%parentHet” present the statistics for counts and percentage marker loci 
that are heterozygous, respectively, in each parental line. The column for “#true” presents 
the results for counts of marker loci that are heterozygous and therefore detect an off-
spring as a true hybrid. The “#NonParentAllele” and “%NonParentAllele” columns con-
tain results for counts and percentages of loci, respectively, that have non-parental 
(strange) alleles. On the other hand, “#missing” and “%missing” depict counts and per-
centages of missing SNP genotype calls, respectively. The column labeled “%hybridity” 
presents the computation for the level of the hybridity of an offspring expressed in percent. 
It takes the frequency (counts) of polymorphic SNP loci, detecting an offspring as a true 
hybrid, and expresses it as a percent of the total number of polymorphic loci. Another 
column labeled “status” generates five types of feedback comments: (i) “TRUE CROSS”, 
implying the offspring is a true hybrid, (ii) “SELF”, referring to self-fertilized offspring, 
(iii) “Undetermine: missing data”, meaning there is insufficient data to draw a conclusion 
regarding hybridity of offspring, (iv) “Undetermine: Parent not polymorphic” implying 
the number of informative SNPs is insufficient to draw a conclusion regarding hybridity 
of offspring, and (v) “Undetermine: Parent Heterozygous” indicating that hybridity of an 
F1 offspring is obscured by the level of heterozygosity of the parents (Figure 5). These 
comments depend on the thresholds that can be set during the analysis and are meant to 
provide easy decision making on the selection of true offspring to advance in the breeding 

Figure 5. HybridQC analysis output shows the summary statistics and color pattern depiction of
polymorphism, parental heterozygosity, and hybridity. Columns A and B contain Sample ID and
Sampe Name, Columns C-M contain the summary statistics, Column N contains the germplasm
type (Parent vs. F1), and Columns O-S contain the marker genotype calls. Red cells indicate non-
polymorphic parental loci while green represent polymorphic loci. The blue cells depict parental loci
that are heterozygous. The orange cells represent loci that detected offsprings as being heterozygous.
The purple cells show detection of non-parental alleles. The boxes and the respective arrows high-
light and explain the type of output generated by HybridQC. “NA” indicate that %hybridity was
not computed.

Summary statistics: The third key output includes summary statistics that are inserted
as new columns with the headings “#polymorphic”, “%polymorphism”, “#parentHet”,
“%parentHet”, “#NonParentAllele”, “%NonParentAllele”, “#true”, “#missing”, “%miss-
ing”, “%hybridity”, and “status” (Figure 5). The columns for “#polymorphic” and “%poly-
morphism” present the computations for counts and percentages of polymorphic SNP
markers, respectively, between each parental combination. The columns for “#parentHet”,
and “%parentHet” present the statistics for counts and percentage marker loci that are
heterozygous, respectively, in each parental line. The column for “#true” presents the
results for counts of marker loci that are heterozygous and therefore detect an offspring
as a true hybrid. The “#NonParentAllele” and “%NonParentAllele” columns contain
results for counts and percentages of loci, respectively, that have non-parental (strange)
alleles. On the other hand, “#missing” and “%missing” depict counts and percentages
of missing SNP genotype calls, respectively. The column labeled “%hybridity” presents
the computation for the level of the hybridity of an offspring expressed in percent. It
takes the frequency (counts) of polymorphic SNP loci, detecting an offspring as a true
hybrid, and expresses it as a percent of the total number of polymorphic loci. Another
column labeled “status” generates five types of feedback comments: (i) “TRUE CROSS”,
implying the offspring is a true hybrid, (ii) “SELF”, referring to self-fertilized offspring,
(iii) “Undetermine: missing data”, meaning there is insufficient data to draw a conclusion
regarding hybridity of offspring, (iv) “Undetermine: Parent not polymorphic” implying
the number of informative SNPs is insufficient to draw a conclusion regarding hybridity
of offspring, and (v) “Undetermine: Parent Heterozygous” indicating that hybridity of
an F1 offspring is obscured by the level of heterozygosity of the parents (Figure 5). These
comments depend on the thresholds that can be set during the analysis and are meant to
provide easy decision making on the selection of true offspring to advance in the breeding
program. By default, if the %hybridity is ≤50%, a status “SELF” is returned; otherwise,
it is “TRUE CROSS”. In addition, if %polymorphism is ≤20% and %missing ≥20%, the
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status “Undetermined: Parent not polymorphic” and “Undetermined: missing data” are
returned, respectively. The user is provided with the option to change these default settings
by unselecting the default input thresholds and manually inserting their desired thresholds.
The threshold for parental heterozygosity is set at a maximum of 20% by default, such that,
the hybridity status of offspring derived from parents with heterozygosity exceeding 20%
is labeled “Undetermine: Parent Heterozygous”.

Visualization: In addition, HybridQC automatically generates some graphics that
allow us to easily summarize the hybridization results. A pie chart of hybridity and SNP
maker efficiency is populated in separate sheets during the analysis. The hybridity pie
chart presents the proportion of purported F1 offspring that are identified as being true
hybrids and those that are products of self-fertilization. In the case of the example data
from cowpea, 73% of all F1 offspring were true hybrids, while 21% were failed crosses
(Figure 6a). The pie chart also presents the proportions of offspring whose authenticity
cannot be determined due to a lack of sufficient information, particularly related to marker
polymorphism and missing data. In the example of the cowpea data set, the undetermined
proportions due to lack of polymorphism and missing data were 5% and 1%, respectively
(Figure 6a). HybridQC also assesses each SNP marker’s efficiency, allowing the opportu-
nity to evaluate future usage of these markers. The example data showed that the SNP
marker “snpVU00015” was less efficient than others in differentiating between the parents
(Figure 6b).
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Figure 6. HybridQC graphical interface. (a) A pie chart showing the proportions of F1 offspring
that were identified as true hybrid (TRUE CROSS), self-fertilized (SELF), and the proportion unde-
termined due to lack of polymorphism among parents, excessive missing data, and high parental
heterozygosity. (b) A bar graph presenting the performance of each QC SNP marker based on the
ability to differentiate between the parents. On the x-axis are the SNP markers, and the y-axis is the
marker efficiency.

3.4. Validation of HybridQC Performance

We created 12 data scenarios to evaluate the performance of HybridQC under different
data sizes, with the number of SNPs ranging from 22 to 202 and F1 samples varying from
104 to 4831 (Supplementary File S4). HybridQC processed a data set of 104 to 1000 samples
genotyped with 22 QA/QC SNP SNPs within 0.4 to 1 s. Supplying data size 100 SNPs by
2500 samples, the software computation time increased to 60 s, while with a combination
of 202 SNPs and 4831 samples, the run time was 360 s (Supplementary File S4). When we
compared this output with that from manually processed data, it revealed a 100% match in
the hybridity and parental purity results. In addition, we validated the performance of the
software using published sorghum (S. bicolor) quality control SNP data [28] and maize (Zea
mays) [29]. The sorghum data consisted of 39 putative F1 progenies derived from two bi-
parental crosses (Supplementary File S5), while the maize data had 87 F1 derived from five
bi-parentals (Supplementary File S6). Using default settings, HybridQC could accurately
reproduce published hybridity results that were manually computed (Supplementary
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Files S7 and S8). For instance, out of 39 sorghum F1 samples, the manually assessed
hybridity status of 38 (97%) samples matched the results from HybridQC. One sample
(KARIMTAMA1 × FRAMIDA_17) was registered by the software as “undetermined”
because the sample exceeded the missing data threshold (Supplementary File S7), an
outcome that was not detected manually. For the maize data set, published hybridity
results were 100% equivalent to the results from HybridQC (Supplementary Files S8).

4. Discussion

Quality control and assurance are fundamental in every breeding program as they are
the basis for ensuring operational efficiency in terms of resource use and time. It is an aspect
of breeding optimization efforts that is key in enhancing genetic gain [17]. The realization
of the significance of an efficient QA/QC system in breeding programs has sparked the
development of low-density diagnostic markers suitable for this purpose. In most cases, it
is difficult to distinguish crop germplasm or identify genetic impurities morphologically
or biochemically. Molecular markers are abundant, unaffected by the environment, and
highly discriminative [30], making them fit for QA/QC in crop plants. DNA-based markers
like SNPs are ideal for genetic testing because they are highly polymorphic, co-dominant
in expression to allow effective differentiation between homozygotes and heterozygotes,
are highly reproducible, expressed at all the developmental stages, have known positions
in the genome, often also linked with traits of interest, and possible to automate so that
one can handle thousands of samples in quick time [14,30]. Because of these qualities,
applying molecular markers for QA/QC in breeding programs is becoming routine. In the
CIMMYT maize breeding program, a detailed molecular marker-based QA/QC protocol
was developed for routine deployment in parental selection, parentage verification of
maize hybrids, genetic purity, identity, and reference profiles of finished inbred lines and
breeder’s seeds [14]. In cowpea, a 17 QA/QC SNP panel was developed and validated
for routine use in parental fingerprinting, germplasm purity profiling, and F1 hybridity
verification [10]. Recently, the authors of [28] validated 49 quality control KASP SNPs for
sorghum and demonstrated their usage in hybridity determination. Similar advances are
reported in root and tuber crops such as yam (Dioscorea spp.) [31] and sweet potato (Ipomoea
batatas) [17]. It should be noted that molecular marker integration into breeding programs
requires the capacity to process and manage the data. This necessitates the development of
appropriate tools to process molecular data to facilitate decision-making. This need has
long been realized, as evidenced in the development of many software programs, including
linkage mapping and QTL analysis [26,32], genome-wide association mapping [33–35],
population genetic diversity [21–23], and genomic predictions [36–38]. These are significant
advances in bridging the data processing gap in molecular integrated breeding; however,
these software programs address only the trait discovery needs, leaving the post-discovery
aspects wanting. After the discovery and validation of QTL, specialized markers tagging
the QTL region are often designed for routine deployment in breeding. These include trait
markers that are deployed either in forward breeding or marker-assisted backcrossing
(MABC) and QA/QC markers. To enhance the QA/QC data analysis workflow in breeding
programs, we developed HybridQC, a program that efficiently processes KASP-based
SNP data for F1 hybridity verification in diploid species. A limited number of software
programs are designed specifically for QA/QC in plant breeding. One such software is an
Online Marker Efficiency Calculator (iMEC v1.0) [5] that is limited only to the computation
of marker performance based on polymorphism information content (PIC). In addition,
OptiMAS v1.5 [25], was also designed specifically for marker-assisted recurrent selection,
allowing for tracking parental alleles and selecting the best parents for intermating. One
software close enough to HybridQC, that incorporates several types of molecular data
analysis, including pedigree verification of F1 progeny to verify the trueness of a cross,
marker-assisted backcrossing, and forward breeding, is the Flapjack [20]. Unlike Flapjack,
HybridQC is devoted to determining the genuineness of putative F1s, and it does this
with high efficiency without the need for complicated file formats and analysis. Flapjack
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requires the creation of map and genotype files, and all bi-parental population data are
handled separately. HybridQC can process the genotype data of putative F1 progenies of
multiple bi-parental populations at once, without the need to create independent data sets
for each bi-parental cross. Consequently, HybridQC analyzes thousands of F1 progenies
from multiple crosses in a single run. Performance tests with different data sizes revealed
that HybridQC can analyze more than 4000 samples genotyped with 200 QA/QC SNPs
within 360 s. In most cases, QA/QC marker panels are not more than 50 SNPs which can be
processed by HybridQC within 10 to 30 s depending on the sample size. Further evaluation
of software performance using data sets from sorghum [28] and maize [29] depicted results
consistent with published manually computed data. The maize data provided an example
of ideal data with no missing calls and all putative F1s being true hybrids. The sorghum
data were a typical example of common breeding data, with 3% missing genotype calls and
28% false hybrids. The software accurately detected these patterns, validating its effective
performance in different crops. HybridQC accepts genotypes directly in Intertek format,
eliminating the need for multiple and complex file format conversions often required by
other software programs. However, if the user obtains QA/QA SNP data from other
genotyping platforms in VCF and other formats, we recommend using other software
programs such as PGDSpider [39] and TASSEL [33] for data conversion. The results
are simple to interpret, accompanied by graphical summaries and visualization patterns.
HybridQC generates the output in Excel spreadsheets with simple statistical summaries
of the percentage hybridity of purported F1 and a feedback comment that allows quick
selection of the desired offspring to advance in the breeding program.

5. Conclusions

A simple and specialized software program was developed for hybridity authentica-
tion in diploids. Currently, there are several software tools for molecular analyses, and
they have different functionalities, providing computation solutions for diverse genetic
and genomic studies. Exceptionally few programs are designed to process low-density
molecular data that are deployed for QA/QC in plant breeding programs. Breeders have
no option but to manually curate marker data, resulting in delays in making breeding deci-
sions. HybridQC provides a user-friendly platform to conduct F1 verification analysis using
SNP markers. Future upgrades of HybridQC are hoped to accommodate other QA/QC
aspects such as genetic purity, genetic identity, and reference profiling. This application
will strengthen QA/QC programs in breeding operations and facilitate the effective use of
markers as part of modernization efforts for increased genetic gain.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes15101252/s1. File S1: software installation executables for
Microsoft Windows; File S2: Example cowpea input data containing KASP-based SNP genotypes
in Intertek format; File S3: Example output from the analysis of cowpea SNP data using HybridQC
software; File S4: Results of performance evaluation in large data sets; File S5: sorghum data set;
File S6: Maize data set; File S7: Hybrid QC results from sorghum data; File S8: HybridQC results
from maize data.
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24. Nagy, S.; Poczai, P.; Cernák, I.; Gorji, A.M.; Hegedűs, G.; Taller, J. PICcalc: An Online Program to Calculate Polymorphic
Information Content for Molecular Genetic Studies. Biochem. Genet. 2012, 50, 670–672. [CrossRef]

25. Valente, F.; Gauthier, F.; Bardol, N.; Blanc, G.; Joets, J.; Charcosset, A.; Moreau, L. OptiMAS: A Decision Support Tool for
Marker-Assisted Assembly of Diverse Alleles. J. Hered. 2013, 104, 586. [CrossRef] [PubMed]

26. Manly, K.F.; Olson, J.M. Overview of QTL Mapping Software and Introduction to Map Manager QT. Mamm. Genome 1999, 10,
327–334. [CrossRef] [PubMed]

27. Agler, C.S.; Shungin, D.; Ferreira Zandoná, A.G.; Schmadeke, P.; Basta, P.V.; Luo, J.; Cantrell, J.; Pahel, T.D.; Meyer, B.D.; Shaffer,
J.R.; et al. Protocols, Methods and Tools for Genome-Wide Association Studies (GWAS) of Dental Traits. Methods Mol. Biol. 2019,
1922, 493. [CrossRef]

28. Gimode, D.M.; Ochieng, G.; Deshpande, S.; Manyasa, E.O.; Kondombo, C.P.; Mikwa, E.O.; Avosa, M.O.; Kunguni, J.S.; Ngugi, K.;
Sheunda, P.; et al. Validation of Sorghum Quality Control (QC) Markers across African Breeding Lines. Plant Genome 2024, 17,
e20438. [CrossRef] [PubMed]

29. Offornedo, Q.; Menkir, A.; Babalola, D.; Gedil, M. Developing and Deploying an Efficient Genotyping Workflow for Accelerating
Maize Improvement in Developing Countries. Gates Open Res. 2022, 6, 3. [CrossRef]

30. Amiteye, S. Basic Concepts and Methodologies of DNA Marker Systems in Plant Molecular Breeding. Heliyon 2021, 7, e08093.
[CrossRef]

31. Agre, P.A.; Clark, L.V.; Garcia-Oliveira, A.L.; Bohar, R.; Adebola, P.; Asiedu, R.; Terauchi, R.; Asfaw, A. Identification of Diagnostic
KASP-SNP Markers for Routine Breeding Activities in Yam (Dioscorea Spp.). Plant Genome 2023, 17, e20419. [CrossRef]

32. Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated Software for Genetic Linkage Map Construction and Quantitative
Trait Locus Mapping in Biparental Populations. Crop J. 2015, 3, 269–283. [CrossRef]

33. Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of
Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [CrossRef]

34. Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom.
Bioinform. 2021, 19, 629–640. [CrossRef]

35. Mägi, R.; Morris, A.P. GWAMA: Software for Genome-Wide Association Meta-Analysis. BMC Bioinform. 2010, 11, 288. [CrossRef]
[PubMed]

36. Meher, P.K.; Kumar, A.; Pradhan, S.K. Genomic Selection Using Bayesian Methods: Models, Software, and Application. In
Genomics of Cereal Crops; Springer: New York, NY, USA, 2022; pp. 259–269. [CrossRef]

37. Endelman, J.B. Ridge Regression and Other Kernels for Genomic Selection with R Package RrBLUP. Plant Genome 2011, 4, 250–255.
[CrossRef]

38. Caamal-Pat, D.; Pérez-Rodríguez, P.; Crossa, J.; Velasco-Cruz, C.; Pérez-Elizalde, S.; Vázquez-Peña, M. Lme4GS: An R-Package for
Genomic Selection. Front. Genet. 2021, 12, 680569. [CrossRef] [PubMed]

39. Lischer, H.E.L.; Excoffier, L. PGDSpider: An Automated Data Conversion Tool for Connecting Population Genetics and Genomics
Programs. Bioinformatics 2012, 28, 298–299. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cropgenebank.sgrp.cgiar.org/images/file/learning_space/molecular_markers/volume2/12_Software%2520programs.pdf
https://cropgenebank.sgrp.cgiar.org/images/file/learning_space/molecular_markers/volume2/12_Software%2520programs.pdf
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1080/09291016.2019.1642650
https://doi.org/10.1007/s10528-012-9509-1
https://doi.org/10.1093/jhered/est020
https://www.ncbi.nlm.nih.gov/pubmed/23576670
https://doi.org/10.1007/s003359900997
https://www.ncbi.nlm.nih.gov/pubmed/10087288
https://doi.org/10.1007/978-1-4939-9012-2_38
https://doi.org/10.1002/tpg2.20438
https://www.ncbi.nlm.nih.gov/pubmed/38409578
https://doi.org/10.12688/gatesopenres.13338.3
https://doi.org/10.1016/j.heliyon.2021.e08093
https://doi.org/10.1002/tpg2.20419
https://doi.org/10.1016/j.cj.2015.01.001
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1016/j.gpb.2021.08.005
https://doi.org/10.1186/1471-2105-11-288
https://www.ncbi.nlm.nih.gov/pubmed/20509871
https://doi.org/10.1007/978-1-0716-2533-0_13
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.3389/fgene.2021.680569
https://www.ncbi.nlm.nih.gov/pubmed/34220954
https://doi.org/10.1093/bioinformatics/btr642

	Introduction 
	Materials and Methods 
	The Genotype Data 
	Software Development 
	The Genetic and Mathematical Principles 
	Assumptions 

	Implementation 
	The Analysis Workflow 
	The Input Data and Analysis 
	HybridQC Output 
	Validation of HybridQC Performance 

	Discussion 
	Conclusions 
	References

