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15 Abstract

16 1. CONTEXT

17 Addressing the limitations of scaling agronomic recommendations, which are usually confined to small 

18 areas, requires a spatial framework for characterizing production environments in a timely and cost-

19 effective manner. 

20

21 2. OBJECTIVE

22 This study aimed to introduce a data-driven framework to characterize rainfed wheat crop production 
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23 environments in Ethiopia. The framework entails mapping of the annual rainfed wheat area and the 

24 delineation of crop-specific and dynamic agro-ecological spatial units (ASUs). 

25
26 3. METHODS

27 An ensemble machine learning approach built upon time-series satellite images and environmental data 

28 was used for crop type mapping while pixel- and object-based clustering algorithms were used to delineate 

29 dynamicASUs from two temporal perspectives: annual ASUs for the 2021 and 2022 growing seasons to 

30 assess short-term dynamism, and ASUs from aggregated data (2016 - 2022) to capture long-term variations 

31 in the production environment. 

32

33 4. RESULTS AND CONCLUSIONS

34 Model evaluation showed that the ensemble of random forest, gradient boosting, and classification and 

35 regression trees predicted wheat cropland in the 2021 and 2022 growing seasons with 88-90% accuracy. A 

36 concordance in defining ASUs between pixel- and object-based approaches was observed with consistency 

37 and dynamism in ASUs from 2021 to 2022 and between single-year and aggregated ASUs across 

38 approaches. This consistency and dynamism in ASUs highlight the spatial scalability and temporal 

39 flexibility of the framework, which allows for characterizing production environments across scales and 

40 analyzing trends and fluctuations, providing valuable insights for addressing food security and 

41 environmental challenges.

42

43 5. SIGNIFICANCE

44  The developed spatial framework could facilitate future yield gap analysis and agronomic assessments for 

45 rainfed wheat in Ethiopia and be transfered to other crops and production environments. 

46   
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54

55 1. Introduction

56

57 Characterization of production environments on a large scale is essential for targeted interventions, 

58 informed decision-making, and a sustainable solution for global food security (Cassman and Grassini, 2020). 

59 Yet, the scope of agronomic information derived from on-farm trials, field experiments and crop model 

60 simulations is mostly limited to small areas due to the high cost and time required to obtain the necessary 

61 input data (Ramirez-Villegas and Challinor, 2012; van Bussel et al., 2015; Beza et al., 2017) and the need 

62 to account for biophysical variability across different agricultural landscapes (Veldkamp et al., 2001). There 

63 are also challenges in capturing temporal variability in the production environment over different growing 

64 seasons. A spatial framework that can account for spatio temporal variability a corss cropland cohorts 

65 sharing similar biophysical attributes is essential to scaling out agronomic research for development efforts. 

66

67 A prominent spatial framework to characterize crop production environments is the climatic zonation 

68 scheme of the Global Yield Gap Atlas (GYGA-CZ; van Wart et al., 2013). Other examples include the 

69 Technology Extrapolation Domain (TED) framework (Edreira et al., 2018) and the Similar Response Unit 
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70 (SRU) framework (Tamene et al., 2022). However, most past efforts remain too coarse, generic, and static 

71 for technology targeting in complex production landscapes and often involve subjective decisions when 

72 segmenting environments based on a limited number of variables.  For instance, the GYGA-CZ focused on 

73 three climatic variables, overlooking important variation in edaphic factors and landscape characteristics 

74 inherent to smallholder  production  systems of sub-Saharan Africa (Vanlauwe et al., 2007; Amede et al., 

75 2022). Moreover, existing frameworks are crop-agnostic, hence not able to inform targeting of crop-specific 

76 interventions and responses to environmental conditions (Porter and Semenov, 2005), and rely on expert 

77 opinion-driven matrix zonation, introducing subjectivity and limiting transferability across landscapes 

78 (Williams et al., 2008). They are also static and not able to capture inter- and intra-annual variation in 

79 environmental conditions, a key feature of rainfed crop production systems. Such limitations translate into 

80 products that are often too coarse and generic to guide research and development activities at the local level. 

81
82 Crop production in sub-Saharan Africa takes place in smallholder production systems characterized by 

83 small and fragmented farms (Giller et al., 2021; Headey et al., 2014; Fritz et al., 2015) and heterogeneous 

84 landscapes (Kassawmar et al., 2018; Tamene et al., 2022). Shifts in cultivated  areas  are also common over 

85 time (Bussel et al., 2015). Spatial frameworks for  characterizing  production environments in such contexts 

86 thus need to rely on up-to-date and fine-scale crop area distribution data (See et al., 2015; Bussel et al., 

87 2015) and crop-specific and dynamic agro-ecological zonation schemes that can capture variations in the 

88 production environment. Given the diverse thermal, moisture, soil, and terrain requirements of different 

89 crops (You et al., 2009), data-driven spatial frameworks built upon multi-source and multi-thematic data 

90 can assist in the near real-time delineation of crop-specific agro-ecological spatial units (ASUs) that 

91 maximize the within-zone homogeneity while minimizing the number of zones required to cover a specific 

92 crop area.

93
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94 The objective of this study was to introduce and operationalize a crop-specific and dynamic spatial 

95 framework for segmenting and characterizing heterogeneous and diverse crop production environments. 

96 The framework entails the prediction of crop area distribution and the delineation of ASUs through 

97 integrating high-resolution Earth Observation (EO) data and environmental data with ground observations. 

98 ASUs refer to homogeneous spatial units sharing similar biophysical conditions in which crop production 

99 technologies are likely to perform similarly. We assumed that (1) delineating the target crop type 

100 distribution area is required for crop-specific zonation to strike a balance between within-unit variability 

101 and the number of units required to cover the targeted crop areas, and (2) dynamic ASUs can capture time 

102 variant characteristics of rainfed crop production systems. This effort can benefit from the availability of 

103 high spatial and temporal resolution, as well as spectrally rich satellite images (e.g., Sentinel-1 and Sentinel-

104 2) and accessible cloud computing platforms such as Google Earth Engine.  

105

106 The proof of concept of our spatial framework was conducted for  smallholder wheat production systems 

107 in Ethiopia. Wheat is of strategic importance to national food security in the country due to high import 

108 dependency (Silva et al., 2023, Tadesse et al., 2022; Senbeta and Worku, 2023). The crop is predominantly 

109 cultivated under rainfed conditions on fertile, loamy, black soils with high water-holding capacity (Falco et 

110 al., 2005), in highlands and mid-altitudes areas during the main rainy season spanning between June and 

111 November (White et al., 2001; Mersha, 2000). Technology targeting in the complex wheat production 

112 landscapes of Ethiopia can guide investments aiming to increase wheat productivity and resource-use 

113 efficiency in farmers’ fields, which remain well below what is biophysically possible with improved 

114 agronomic practices (Silva et al., 2021). For this reason, the relevance of the newly introduced framework 

115 is discussed in the context of technology targeting in support of national food security and yield gap analysis. 

116 Yet, its applicability can be extended to other crops and production environments in a cost-effective way. 
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117 2. Materials and Methods

118 2.1. Methodological approach 

119 A spatial framework integrating the broader agroecological context of the Ethiopian wheat belt was 

120 developed and operationalized in Google Earth Engine (Gorelick et al., 2017). The Ethiopian wheat belt 

121 denotes the cropland and non-cropland areas suitable for cultivation of rainfed wheat and of other similar 

122 crop types (Tadesse et al., 2022). Our data-driven framework comprises two-steps (Figure 2): (1) mapping 

123 the annual rainfed wheat areas for the 2021 and 2022 Meher growing seasons and (2) developing dynamic 

124 ASUs within the Ethiopian rainfed wheat belt to characterize the agro-ecological conditions under which 

125 wheat production takes place. 

126
127 Figure 1 | Two step data-driven spatial framework to map cropland area and delineate agro-ecological spatial units 

128 (ASUs) based on the integration of multi-source time series satellite images and environmental data. Step 1 entails the 
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129 spatial prediction of the  annual rainfed wheat area. Step 2 entails the delineation of crop specific and dynamic ASUs 

130 with two complementary approaches, pixel- and object-based clustering. RF stands for Random Forest, CART for 

131 Classification and Regression Tree, GBM for Gradient Boosting Machine and SNIC for Simple Non-Iterative 

132 Clustering.

133 2.2. Rainfed wheat area mapping 

134 Crop-type field data were collected during the 2021 and 2022 Meher growing seasons to train and evaluate 

135 models for rainfed wheat area mapping. A total of 1651 (1251 wheat fields and 400 fields of other crops) 

136 and 2927 (1747 wheat fields and 1180 fields of other crops) ground truth points were inventoried in 2021 

137 and 2022, respectively. To ensure a balanced representation between wheat and other crops in the data sets 

138 and to reduce bias and model inaccuracy caused by class imbalance, additional ground truth points 

139 representing non-wheat areas were generated using a decision rule approach (Ghazaryan et al., 2018) for 

140 the 2021 Meher growing season. To that end, the composite Normalized Difference Vegetation Index 

141 (NDVI) (mean and maximum) and seasonal information (phase and amplitude) from Sentinel-2 NDVI data 

142 were extracted for all wheat ground truth points. Subsequently, criteria for wheat-specific characteristics, 

143 such as NDVI mean (0.53 to 0.6), peak (0.7 to 0.8), phase (0.35 to 0.56), and amplitude (0.5 to 1), were 

144 used as decision rules for discriminating between wheat and non-wheat points. Following this, 1000 random 

145 points were extracted from the 10-meter Digital Earth Africa cropland dataset (DEA, 2021), and the 

146 composite NDVI and seasonal information were extracted as for the wheat ground truth points. Random 

147 points with values within the specified wheat characteristics were removed, resulting in the identification 

148 of 516 non-wheat points. 

149 Sentinel-1 and Sentinel-2 satellite images and derived variables were integrated with a variety of 

150 environmental data to predict the rainfed wheat area distribution (Figure 1; Table S1). Time series 

151 information including spectral bands, vegetation indices (e.g., NDVI), and spectral indices (e.g., greenness 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4915178

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://www.zotero.org/google-docs/?lsBZLB


8

152 index) derived from Sentinel-2 satellite images, and backscatter coefficients derived from Sentinel-1 

153 satellite images between mid-June to late November, coinciding with the critical growth phases of rainfed 

154 wheat crops in Ethiopia, were considered. The fusion of Sentinel-1 and Sentinel-2 satellite images allows 

155 to address temporal gaps due to cloud cover in Sentinel-2 satellite images, thus facilitating the 

156 discrimination of wheat crop growth stages from those of other similar crop types (Ofori-Ampofo et al., 

157 2021). Phenological information, determined by a 20% threshold for season start and 50% for season end, 

158 along with seasonal information, were derived from Sentinel-2 NDVI time series using the threshold 

159 approach for phenology (Jonsson and Eklundh, 2002) and harmonic transformation for seasonal parameters 

160 (Jakubauskas et al., 2001). This information allowed us to capture the different wheat growth stages (Lu et 

161 al., 2014) and the cyclical patterns (repetitive fluctuation) of environmental variables affecting wheat 

162 development (Ghazaryan et al., 2018; Jakubauskas et al., 2002). Climatic (mean monthly precipitation, 

163 temperature, and solar radiation), topsoil (organic carbon, pH, and texture), and topographic (elevation and 

164 slope) factors were also included as predictors to account for spatial variations in wheat crop phenology 

165 influenced by agro-ecological gradients (Blickensdörfer et al., 2022; Wang et al., 2019). All predictors were 

166 masked to the crop land mask (Zanaga et al.,2022) within the rainfed wheat belt (Supplementary Figure S1) 

167 prior to the model fitting.

168

169 An ensemble of three machine learning algorithms commonly used for land cover and land use mapping 

170 (e.g., Bui et al., 2021; Li et al., 2023; Xu et al., 2018) were used to predict the wheat area distribution for 

171 the 2021 and 2022 Meher growing seasons. The models were fitted per growing season considering 70% 

172 of the ground truth points for model training and the remaining 30% for model evaluation. The machine 

173 learning algorithms included random forest (RF; Breiman, 2001), classification and regression tree (CART; 

174 Breiman et al., 1984), and gradient boosting (GB; Friedman, 2001). Results from the three algorithms were 

175 ensembled using a majority voting approach (Ahmed et al., 2023) in which grid cells classified as wheat by 
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176 two or three algorithms were combined, resulting in a final ensemble wheat distribution map. The predicted 

177 wheat area distribution for the two growing seasons were then merged to capture general geographical 

178 patterns and trends in wheat cultivation over time in Ethiopia.

179

180 2.3. Delineation of dynamic ASUs 
181

182 A data-driven approach was adopted to delineate dynamic ASUs (Figure 1). Two analytical approaches 

183 were employed to understand the short-term variation and longer-term trends in ASUs. First, we established 

184 two sets of ASUs for the 2021 and 2022 growing seasons using year-specific features (Supplementary Table 

185 S1) which captured short-term variations in ASUs. Second, ASUs were developed using aggregated 

186 features over a period of seven years (2016–2022) to capture longer-term trends in the production 

187 environment. 

188

189 ASUs zonation relied on climatic, soil, topographic, and remote sensing data known to influence crop 

190 growth and development (Supplementary Table S1). Climatic variables included growing degree days 

191 (GDD), temperature seasonality, and aridity index as monthly averages over the growing season (see also 

192 van Wart et al., 2013). GDD was calculated by subtracting the mean monthly temperatures, derived from 

193 Muñoz Sabater (2019), from the wheat's base temperature of 2 oC (Simane, 1999). Temperature seasonality 

194 was calculated as the standard deviation of the monthly average temperature derived from Abatzoglou et 

195 al. (2018). The aridity index was calculated as the ratio of annual total precipitation (Funk et al., 2015) to 

196 total potential evapotranspiration (Trabucco and Zomer, 2018). Soil variables and topographic factors were 

197 included in the zonation scheme because climatically suitable zones may lack the necessary soil and 

198 topographic attributes for rainfed wheat cultivation. Soil predictors included pH, organic carbon, and 
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199 texture class (Hengl et al., 2021), and plant available water holding capacity estimated with the texture 

200 class-based estimation method (Grossman and Reinsch, 2002). Topographic features included elevation 

201 and slope (Farr et al., 2007). Remote sensing variables, including vegetation indices, synthetic aperture 

202 radar (SAR) backscatter, and seasonal information, were considered to capture the spatiotemporal 

203 variability in vegetation, thereby supporting a dynamic ASU zonation. 

204

205 We adopted a clustering approach for ASUs development, leveraging its capacity to handle multiple input 

206 variables, minimize intraclass variability, and mitigate subjectivity in class definition. This approach relies 

207 on measuring similarity using distance functions, where smaller distances indicate higher similarity within 

208 units (Cao et al., 2012; Xu and Wunsch, 2005). Two clustering approaches were employed. The pixel-based 

209 approach clusters individual grid cells based on their intrinsic values, hence capturing fine spatial patterns 

210 which are important for agronomic assessments at local level. Conversely, the object-based approach 

211 involves generating super-pixels, extracting their mean feature values, and clustering the extracted means. 

212 This approach thus allows the generalization of complex patterns, making it suitable for agronomic 

213 assessments across large scales.

214

215 For pixel-based clustering, the variables presented in Supplementary Table S1 were extracted for the rainfed 

216 wheat belt (Supplementary Figure S1), followed by preprocessing and feature engineering with rescaling, 

217 normalization, multicollinearity analysis, and dimensionality reduction. Secondly, the proximity distance 

218 (Puzicha et al., 2000; Green and Rao, 1969 ) between variables was examined to gain insights into the data's 

219 internal structure. Thirdly, the optimum number of clusters (referred to as ASUs in this context) was defined 

220 based on the elbow method (Kwedlo, 2011), the silhouette coefficient (Kaufman and Rousseeuw, 2009; 

221 Rousseeuw, 1987), and the Bayesian Information Criterion (BIC, Fraley and Raftery, 1998; Neath and 

222 Cavanaugh, 2012). The elbow method minimizes the total within-cluster sum of squares (WSS), and the 
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223 point at which the graph forms an elbow indicates the optimal cluster count (Brock et al., 2008). The 

224 silhouette coefficient gauges cluster quality by assessing data cohesion within clusters and inter-cluster 

225 separability, with a higher average silhouette width indicating better clustering (Tomasini et al., 2016). BIC 

226 balances the goodness-of-fit and model complexity, with the lowest value indicating the optimal number of 

227 clusters (Fraley and Raftery, 1998; Gao, 2010; Jones, 2011). Finally, pixel-based clustering was conducted 

228 with the WekaXmean clustering algorithm (Beckham et al., 2016; Arthur and Vassilvitskii, 2007), an 

229 extension of k-means clustering (Pelleg and Moore, 2000) in Google Earth Engine 

230 For object-based clustering, the initial step involved super-pixel segmentation of a time series of Sentinel-

231 2 NDVI data spanning between 2016 and 2022. This segmentation was achieved through the application of 

232 the Simple Non-Iterative Clustering (SNIC) algorithm, an advanced variant of Simple Linear Iterative 

233 Clustering (SLIC; Mi and Chen, 2020). Super-pixel segmentation aims to create coherent grid cell 

234 groupings (Stutz et al., 2018), serving as objects for feature extraction in subsequent steps. This grouping 

235 of grid cells into super-pixels aims to capture higher-level information from satellite images by analyzing 

236 these objects as units rather than isolated grid cells. The mean values of the features used in pixel-based 

237 ASUs (see Supplementary Table S1) were then extracted within each super-pixel. An analogous procedure 

238 and algorithmic approach to that used for pixel-based clustering was then applied to establish the object-

239 based ASUs. 

240 The optimum number of ASUs were numerically labeled and are conditional on the clustering approach 

241 and data aggregation procedure. Thus, they may not represent the same spatial extent for two different 

242 clustering approaches. The evaluation and comparison of the two approaches, pixel and object, is explained 

243 in Section 2.4.
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244 2.4. Evaluation of model performance and analysis of ASUs

245 The accuracy of the rainfed wheat distribution maps generated by each algorithm and their ensemble was 

246 assessed using the overall accuracy (OA), the kappa index, and the producer accuracy (PA) and user 

247 accuracy (UA). Each algorithm’s ability to generalize unseen data from different time periods was also 

248 evaluated. For instance, the three algorithms were trained using data from the 2021 Meher growing season 

249 and evaluated on unseen data from 2022 Meher growing season, and vice versa. National statistics on 

250 rainfed wheat harvested area (CSA, 2022; FAOSTAT, 2022) were also used to evaluate the crop area 

251 estimated with our approach against official statistics at regional and national levels.

252

253 The validity and practical significance of both pixel- and object-based ASUs derived from features  

254 aggregated over the period  2016–2022 were tested using internal and external evaluation metrics. Internal 

255 evaluation included assessing between-unit separability using Kruskal-Wallis tests (Kruskal and Wallis, 

256 1952) for selected input variables (Supplementary Table S1) and silhouette coefficients (Tomasini et al., 

257 2016) to check within-unit cohesion and between-unit separability. External evaluation of ASUs relied on 

258 wheat yield data collected with crop cuts (n=1560) during the 2022 Meher growing season as external 

259 information, and a Kruskal-Wallis test was conducted using these data to assess statistically significant 

260 differences in wheat yield across ASUs.

261

262 The similarity between pixel-and object-based ASUs, as well as the temporal scalability and dynamism of 

263 ASUs over time, were evaluated using proximity analysis (Puzicha et al., 2000) through pairwise distance 

264 measurements. The comparison between pixel- and object-based ASUs aimed to determine the similarity 

265 between pixel- and object-based ASUs, serving as a means of evaluating the accuracy and reliability of 

266 each approach and the extent they can capture similar spatial patterns in ASU delineation. Temporal 

267 scalability and dynamism aimed to evaluate whether ASUs could capture changes in the production 
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268 environment over time. In this regard, we examined the stability and variation between ASUs derived from 

269 the single-year (2021 and 2022) and aggregated (2016–2022) datasets for both pixel- and object-based 

270 clustering. ASUs from single-year datasets were referred to as ‘single-year ASUs’, and ASUs developed 

271 from the 2022 dataset were used as examples of this type, while those from multi-year datasets (2016–

272 2022) were labeled ‘aggregate ASUs’. The distinction between single-year and aggregate ASUs enabled us 

273 to examine the dynamics of the delineated ASUs over time. The ASUs generated with the pixel- and object-

274 based approaches were then masked to the spatial extent of the rainfed wheat area predicted for Ethiopia 

275 (Section 2.2). Subsequently, cumulative probability distribution functions were developed to assess the 

276 distribution and changes of ASUs across the rainfed wheat belt and the rainfed wheat area over time in both 

277 clustering approaches.

278 3. Results

279 3.1 Rainfed wheat area in Ethiopia

280 A distinct geographical pattern in the distribution of rainfed wheat areas, concentrated in the central region 

281 and expanding to the northern parts of Ethiopia, was evident in both growing seasons (Figures 3). The three 

282 algorithms reached high classification accuracies in the two growing seasons (OA > 90% and Kappa > 

283 0.85), with the highest accuracy reported for gradient boosting in the 2022 growing season (OA = 97% and 

284 Kappa = 0.92; Supplementary Table S2). An OA of 88% for the 2021 growing season and 94% for the 2022 

285 growing season was reported for the ensemble model (Supplementary Table S2). The algorithms also 

286 performed well in identifying wheat areas, with user accuracy of 92-96% and producer accuracy of 95-

287 97%. The ensemble model generalizability assessment was achieved with an OA of 70% when trained on 

288 the 2021 data and tested on the 2022 data and an OA of 90% when trained on the 2022 data and tested on 

289 the 2021 data, hence being able to generalize unseen data from different growing seasons (Supplementary 

290 Table S2). Elevation, solar radiation, and precipitation were the most important features to map the rainfed 
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291 wheat cropland in Ethiopia (Supplementary Figure S2).

292 The rainfed wheat cultivation area predicted with the model ensemble was 2.24 M ha in the 2021 Meher 

293 growing season and 2.50 M ha in the 2022 Meher growing season (Figure 3D). The predicted area 

294 overestimated the area reported in official statistics by about 13% in 2021 and 8% in 2022. Yet, there were 

295 considerable regional differences since the predicted wheat area was comparable to the reported wheat area 

296 in Oromia and SNPP regions, but consistently higher in Amhara region. For the Tigray region, the rainfed 

297 wheat area was consistent between the ensemble predictions and the official statistics for the 2021, but in 

298 2022 no official statistics were available for model evaluation due to political instability in the region. The 

299 rainfed wheat area predicted with the model ensemble was closer to the reported wheat area in official 

300 statistics than the area predicted by the individual algorithms (Supplementary Figure S3).
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301
302 Figure 2 | Rainfed wheat cropland distribution for the 2021 (A) and 2022 (B) Meher growing seasons and for both growing seasons 

303 combined (C). Panel (D) displays the predicted wheat area estimated as the sum of the area of each grid cell (10m x 10m) by the 

304 total number of grid cells identified as wheat only in relation to official statistics at regional (CSA, 2022) and national levels 

305 (FAOSTAT, 2022) for the respective growing seasons. The wheat area distribution maps were produced with an ensemble of 

306 gradient boosting (GB), classification and regression tree (CART), and random forest (RF). The ensemble prediction corresponds 

307 to the rainfed wheat distribution obtained from the combination of all grid cells consistently classified as wheat by two or three 

308 algorithms. Wheat area distribution predicted by each algorithm is provided in Supplementary Figures S3. 
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309 3.2. Dynamic ASUs for rainfed wheat in Ethiopia

310 Three sets of ASUs were produced with both pixel- and object-based cluster approaches for the Ethiopian 

311 wheat belt, two were growing season specific for 2021 and 2022 and one was aggregated for the period 

312 2016-2022 (Figure 4). Each set comprised 5 spatial units consistently defined through elbow, silhouette, 

313 and BIC metrics (Supplementary Figure S5) to ensure accurate landscape segmentation without 

314 oversimplification and excessive fragmentation. This process was informed by the pre-clustering 

315 examination of the underlying data structure, which revealed prominent clustering tendencies and 

316 distinctive patterns among the features (Supplementary Figure S4). 

317 The two approaches revealed similar spatial patterns in ASUs and exhibited both stability and dynamism 

318 in their spatial patterns between the 2021 and 2022 growing seasons (Figures 3 and 4). Considering the 

319 pixel-based approach, ASUs 3, 4, and 5 covered about 6%, 28%, and 21% of the rainfed wheat belt, 

320 respectively, and had a similar spatial pattern in both growing seasons, indicating stability in production 

321 environments over time (Figures 3A, 3C). Conversely, ASU 2 covered a larger share of the rainfed wheat 

322 belt in 2022 (27 %) than in 2021 (14%) and the opposite was true for ASU 1 (39 % in 2021 and 24 % in 

323 2022; Figure 3A). Regarding the object-based approach, ASUs 1, 3, and 5 exhibited similar spatial patterns 

324 over the two growing seasons (Figures 3B and 3D), but slight differences in area coverage between the 

325 seasons, especially ASUs 1 and 5 (Figure 4D). ASU 1 covered 24% of the rainfed belt in 2021 and 15% in 

326 2022, while ASU 5 covered 20% in 2021 and 27% in 2022. ASU 3  covered approximately 15% of the 

327 rainfed wheat belt in both growing seasons. Conversely, ASUs 2 and 4 showed changes in spatial pattern 

328 over time (Figures 3B and 3D) but maintained nearly the same spatial coverage in both growing seasons, 

329 with the latter covering around 19% and the former around 21% of the rainfed wheat belt area (Figure 4D). 

330 Results from the aggregate pixel-based ASUs aligned in the geographic extent with ASUs of the two 

331 growing seasons for ASUs 2 and 3, but noticeable temporal changes in ASUs 1, 4, and 5. Meanwhile, ASUs 
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332 delineated with the aggregate object-based approach resulted in temporal stability for ASU 5 and 3 and 

333 temporal dynamism for ASUs  1, 2, and 4 compared with the ASUs of the 2022 growing season.

334 Figures 3G and 3H depict the pixel- and object-based aggregate ASUs confined to the extent of the rainfed 

335 wheat area predicted for the 2021 and 2022 growing seasons, respectively. In the pixel-based aggregated 

336 ASUs, ASU 4 emerged as the primary environment for rainfed wheat cultivation (Figure 3G), covering 

337 about 65% of the rainfed wheat area (Figure 4C), closely followed by ASU 1, which covered 27% of the 

338 rainfed wheat area. In the object-based ASUs, ASUs 1 and 5 were the main environments for rainfed wheat 

339 cultivation, followed by ASU 4 (Figure 3H). ASUs 1 and 5 covered 43% and 38% of the rainfed wheat 

340 area, respectively (Figure 4D). Temporal dynamism between growing seasons was more evident with the 

341 pixel-based approach than with the object-based approach (Figures 4C and 4D). The rainfed wheat area 

342 covered with ASUs 1, 2, and 3 from the pixel-based approach was about 20% greater in the 2021 growing 

343 season than in the 2022 growing season. Such difference in area covered by different ASUs was less evident 

344 in the object-based approach. Large differences in area covered were observed between year-specific ASUs 

345 and the aggregate ASUs, independently of the clustering approach, indicating that aggregate ASUs were 

346 not able to capture year-specific variations in the production environment. 

347 In sum, dynamism in ASUs was less pronounced across the rainfed wheat beltthan t across the rainfed 

348 wheat area. This difference was due to shifts in the spatial patterns of ASUs over time, where an ASU might 

349 maintain its coverage but change its dominance within or outside the rainfed wheat area. Figures 4A and 

350 4B illustrate these patterns for the wheat belt, while Figures 4C and 4D highlight the changes specific to 

351 the rainfed wheat area, emphasizing the varying impacts on ASU coverage and spatial distribution. 

352 Temporal dynamism is more pronounced in the pixel-based approach than in the object-based approach for 

353 both ASUs and for both  thewheat belt level (Figures 3A-3D; Figures 4A and B) and  the rain-fed wheat 

354 area (Figures 4C and D).
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356 Figure 3 | Agroecological spatial units (ASUs) delineated in the Ethiopian rainfed wheat belt using pixel-and object 

357 based clustering approaches. Panels (A), (C), and (E) depict pixel-based ASUs for the 2021 and 2022 growing season, 

358 and aggregated ASUs derived from time series data for the period 2016-2022, respectively. Panels (B), (D) and (F) 

359 exhibit object-based ASUs for the year 2021 and 2022, and aggregated ASUs (2016-2022), respectively. Panels (G) 

360 and (H) display aggregate ASUs for the rainfed wheat area only (Figure 2). 

361

362
363 Figure 4 | Cumulative probability plots illustrating the distribution and changes of area covered by ASUs across the 

364 rainfed wheat belt (A, B) and the rainfed wheat area (C, D) using pixel- (A, C) and object-based (B, D) clustering 

365 approaches.

366
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367 3.3. Variability between ASUs and clustering performance 

368 The Kruskal-Wallis test revealed highly significant variations in all features across pixel-based ASUs 

369 (Figure 5A) and object-based ASUs (Figure 5B), particularly for NDVI, GDD, pH, elevation, and aridity 

370 index. The differences were non-significant for temperature seasonality and PAWC (Figure 5B). The 

371 separability between ASUs in both approaches was also verified using wheat yield data collected in the 

372 2022 growing season, revealing significant yield differences across ASUs (Supplementary Figure S6). 

373 Wheat yield variability between ASUs delineated with object-based clustering (about ~2 t ha -1 ) was found 

374 to be significantly different compared to those delineated with pixel-based clustering (about ~0.2 t ha -1 ). 

375 The clustering quality assessment revealed considerable cohesion and separation within and among ASUs, 

376 with an average silhouette coefficient of 0.51 for pixel-based ASUs and 0.59 for object-based ASUs 

377 (Figures 5C and 5D). For pixel-based ASUs, an average silhouette coefficient of 0.51 indicates that the 

378 clusters were moderately well-defined and cohesive and that grid cells within the same cluster were more 

379 similar to each other on average than to grid cells in other clusters. The average silhouette coefficient of 

380 0.59 for object-based ASUs reflects a better-defined cluster quality and separation compared to the pixel-

381 based clustering.

382
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383
384 Figure 5 | Internal clustering evaluation illustrating the variability between ASUs and clustering quality for both pixel- 

385 and object-based approaches. Panels (A) and (B) display the Kruskal-Wallis test showing the statistical differences 

386 between ASUs for pixel- and object-based ASUs, respectively. Panels (C) and (D) display the clustering quality using 

387 the silhouette coefficient for both pixel- and object-based approaches, respectively. Each bar in (C) and (D) refers to 

388 a grid cell (Figure 4) and dashed lines display the mean silhouette coefficient for each clustering approach.

389 3.4. Similarity and temporal scalability of dynamic ASUs 

390 The similarity and complementarity between ASUs developed for different time periods with pixel- and 

391 object-based approaches is provided in Figure 6. Pixel- and object-based ASUs were mostly similar 

392 between each other, but there were also dissimilarities between some of them (Figure 5A). For instance, 

393 object-based ASU 1 had a high similarity with pixel-based ASUs 1 and 5, whereas object-based ASU 5 had 
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394 a high dissimilarity with pixel-based ASU 5. All other pairwise comparisons of ASUs showed more modest 

395 levels of (dis)similarity. 

396 The similarity matrix revealed both stability and dynamism between the single-year 2022 and aggregate 

397 ASUs in the pixel- and object-based approaches (Figures 6B and 6C). Similarity between ASUs indicates 

398 stability whereas dissimilarity between ASUs indicates dynamism across time perspectives. In the pixel-

399 based approach, most aggregate ASUs and single-year ASUs demonstrated a notable degree of stability, 

400 except for the observed slight dynamism between ASU 1 across time perspectives (Figure 6B). Conversely, 

401 in the object-based approach, only ASUs 1 and 5 showed strong stability between the two-time perspectives, 

402 while ASU 4 showed strong dynamism and ASUs 2 and 3 showed a slight dynamism. The analysis suggests 

403 that while there is stability between the aggregated and single-year ASUs, there are also specific ASUs 

404 (e.g., ASU 1 in the pixel-based approach and ASU 4 in the object-based approach) which are unstable 

405 across the time perspectives.

406

407 Figure 6 | Similarity and temporal scalability assessment in ASUs produced with different approaches: (A) similarity 

408 between aggregate object- and pixel-based ASUs, (B) temporal scalability and dynamism for pixel-based ASUs, and 

409 (C) temporal scalability and dynamism for object-based ASUs. Temporal scalability and dynamism considered the 
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410 ASUs from the 2022 growing season and the aggregate ASUs. A log-transformation was applied to the original 

411 distance matrix to improve readability. A darker shade of blue denotes a stronger similarity between ASUs developed 

412 with different approaches, while dark red denotes the opposite.

413 4. Discussion

414 4.1. Rainfed wheat area mapping in Ethiopia 

415 We used an ensemble machine learning approach relying on ground truth observations and remote sensing 

416 and environmental features to map the annual rainfed wheat distribution at high spatial resolution in 

417 Ethiopia. Our approach achieved an overall modeling accuracy of 88% in the 2021 growing season and 

418 94% in the 2022 growing season and the predicted rainfed wheat area was comparable to that reported in 

419 official statistics at regional and national levels in two growing seasons (CSA, 2022; FAOSTAT, 2022). 

420 The proposed method can therefore be used to generate crop-specific area estimates under smallholder 

421 conditions, bringing important advantages over generic crop type distribution data that are not growing 

422 season specific (e.g., SPAM2020, You et al., 2024). The higher accuracy observed in this study compared 

423 to earlier studies (Eisfelder et al., 2024; Khatami et al., 2020; Delrue et al., 2013; ) can be explained by 

424 three main methodological aspects.

425 First, we combined multi-source high-resolution satellite time series images from Sentinel-1 (i.e., radar 

426 images) and Sentinel-2 (i.e., optical images), including derived spectral and vegetation indices, as well as 

427 seasonal and phenological information, to discriminate rainfed wheat from other crops that have similar 

428 spectral signatures (Ofori-Ampofo et al., 2021; Orynbaikyzy et al., 2020). The combination of both images 

429 was  shown to improve the classification accuracy in other studies as well (Eisfelder et al., 2024; Felegari 

430 et al., 2021; Inglada et al., 2016) likely due to better characterization of crop development and 

431 environmental cyclical patterns (Ashourloo et al. 2022; Al-Shammari et al. 2020; Ghazaryan et al., 2018; 
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432 Lu et al., 2014). Second, environmental data proved important to map the wheat area distribution in addition 

433 to remote sensing information as elevation was the most important feature driving the crop area mapping 

434 (see also Blickensdörfer et al., 2022; Liu et al., 2020). Finally, the ensemble machine learning approach 

435 outperformed the accuracy of the individual algorithms to predict wheat area as also shown in other recent 

436 studies (Walhazi et al., 2024; Ahmed et al., 2023; Mahajan et al., 2023; Sagi and Rokach, 2018; Pourdarbani 

437 et al., 2019). 

438 Representative and high-quality observational data is critical for model training and to ensure the 

439 transferability of our framework to other crops and production environments. Investments in data collection 

440 are thus required to build the data stack necessary to generate crop-specific and near real-time crop area 

441 distribution maps. Coordinated efforts to assemble geo-referenced ground data (Jolivot et al., 2021) or 

442 crowd-sourced data (Wu et al., 2023; See et al., 2013) can help generate the required information for crop 

443 type mapping. Assessing the area of applicability of the trained models will also remain important to 

444 evaluate where reliable predictions can be made (Meyer and Pebesma, 2021).

445 4.2. Delineation of ASUs to characterize production environments
446

447 The ASUs framework was employed to characterize wheat production environments in Ethiopia 

448 considering different clustering algorithms and spatio-temporal aggregation of the input data.  Pixel- and 

449 object-based ASUs were similar in terms of their characteristics (Figure 6A) and spatial arrangement 

450 (Figure 4 A-F) and so was the consistency between single-year and aggregate ASUs (Figures 6B and 6C). 

451 Internal and external evaluation metrics demonstrated the reliability of the framework to segment 

452 production environments. For instance, ASUs 1 identified with pixel-based clustering captured topographic 

453 and environmental conditions associated with the highland regions of the Ethiopian wheat belt. These 

454 include elevated terrain, high vegetation index, ample plant-available water holding capacity, and low 
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455 degree of temperature seasonality and low growing degree days. 

456 Our approach to develop ASUs balanced the trade-off between oversimplification and excessive 

457 fragmentation of production environments through the exploration of similarities between grid cells (Figure 

458 S3) and the data-driven definition of the optimum number of ASUs. As such, the ASUs were delineated 

459 such that climatic homogeneity within zones was achieved while minimizing the number of zones required 

460 to capture significant portions of the cultivated area of the target crop. The ASUs framework thus offered 

461 advantages over previous studies relying on matrix zonation derived from expert knowledge (e.g., Edreira 

462 et al., 2018; van Wart et al., 2013; Mueller et al., 2012;). Lobell (2013) highlighted the need to keep the 

463 spatial units small enough to minimize within unit climate variations but large enough to reduce the costs 

464 of data collection for yield gap analysis. 

465 Combining pixel and object-based approaches ensured spatial scalability that can be adaptable for 

466 characterization of production environments across spatial scales. Pixel-based ASUs unveiled spatial 

467 patterns at high resolution (Figure 4A-C), which could be suitable for agronomic assessments at local level 

468 (e.g., Stuart et al., 2016). Conversely, object-based ASUs resulted in coarser yet more interpretable ASUs 

469 (Figure 4D-F), hence offering opportunities for agronomic assessments at national to global level. This 

470 flexibility to generate high-resolution and coarser ASUs is an important feature of our data-driven approach, 

471 which can be attuned to the spatial scale most suitable to the analysis at hand. As shown in Figure 6A, pixel-

472 based ASUs 3, 4 and 5 differed from their object-based counterparts, indicating these two approaches are 

473 not mutually exclusive. This distinction underscores the complementary of the two methods  such that using 

474 both approaches leads to a more comprehensive understanding of the production environment.

475 The delineated ASUs with both pixel- and object-based approaches were temporally scalable yet dynamic. 

476 There was a consistent agreement between aggregate ASUs and year-specific ASUs, which indicates 

477 similarities in longer-term and short-term variations in the production environments for rainfed wheat in 
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478 Ethiopia. Such agreement between different time perspectives is likely different in e.g., semi-arid 

479 environments with high rainfall variability, which remains to be tested in future. Yet, some of the ASUs 

480 (e.g., ASU 1 from pixel-based and ASU 4 from object-based approach) changed across time perspectives, 

481 indicating the ability of the framework to capture changes in crop production environments. Our findings 

482 thus address earlier concerns regarding the relevance of a temporally scalable framework for agronomic 

483 analysis (e.g., Sadras et al., 2015; Lobell et al., 2013). 

484 4.3. Relevance and transferability of the ASUs framework
485

486 Wheat is a strategic crop for food security in Ethiopia, where farmers’ yields remain well below what is 

487 biophysically possible with improved agronomic practices and import dependency poses a heavy burden 

488 on the national economy (Silva et al., 2023; Senbeta et al., 2023; Tadesse et al., 2022; Silva et al., 2021). 

489 Narrowing wheat yield gaps is therefore high on the agenda of national policies. The ASUs developed in 

490 this paper provide a first step to characterize Ethiopia’s wheat production environments in the context of 

491 yield gap analysis for wheat in the country. The approach followed for ASU delineation offered spatial 

492 units grounded in relevant agro-ecological attributes, which could facilitate agronomic assessments of 

493 wheat productivity and resource- use efficiency across different spatial and temporal scales. For instance, 

494 pixel- based ASUs could support context-specific yield gap analyses (e.g., Stuart et al., 2016) or targeting 

495 fertilizer advisories across the rainfed wheat belt (Liben et al., 2024) for which short-term and localized 

496 environmental characterization is required. Conversely, object-based ASUs could support large-scale yield 

497 gap analyses aiming to inform food security and climate change assessments at supra-national level 

498 (Alimagham et al., 2024; van Ittersum et al., 2016). More broadly, the ASUs framework can also inform 

499 the tailoring of agricultural technologies to local contexts when combined with socio-economic data 

500 (Muthoni et al., 2017; Tesfaye et al., 2015), and the ex-ante evaluation of agricultural technologies across 

501 spatial scales (Andrade et al., 2019), among others.
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502 The ASUs framework developed and tested in this study can be adaptable and transferable to other crops 

503 and regions with minor modifications. For instance, feature engineering will require crop-specific 

504 adjustments that are also context-specific when aiming to transfer the ASUs framework to other regions. 

505 This will be especially important for remote sensing-derived features (seasonal parameters and vegetation 

506 indices) and environmental data which are crop- and growing season-specific (Supplementary Table 1). 

507 Including time series information for time-variant features will remain important to ensure temporal 

508 transferability and capture inter- and intra-annual variations in the production environment. From a 

509 methodological standpoint, conducting pre-cluster data exploration and defining the optimum number of 

510 clusters in a data-driven way is required to avoid both oversimplification and hyper-segmentation of 

511 production environments, which could also be achieved using dynamic clustering algorithms (Zhang and 

512 Hepner, 2017). As clustering analysis is computationally intensive, cloud computing platforms like Google 

513 Earth Engine will be necessary. Finally, we recommend assembling data stacks with ground truth 

514 observations on crop type presence and measured crop yields to be able to generate accurate crop type maps 

515 and evaluate the performance of the clustering analysis in data-rich regions. Internal evaluation techniques 

516 based on dissimilarity analysis across the feature space would be recommended for data-poor regions 

517 (Hardy et al., 2011; Brun et al., 2007).

518 5. Conclusion 

519 We developed data-driven crop-specific, and time-variant agro-ecological spatial units (ASUs) that can 

520 facilitate the characterization of crop production environments. The framework entailed the mapping of 

521 rainfed wheat areas in Ethiopia during the 2021 and 2022 growing seasons based on ensemble machine 

522 learning and multi-source time series satellite images, derived vegetation indices, and environmental data, 

523 and the delineation of crop-specific time variant ASUs using pixel- and object-based clustering algorithms. 

524 The model ensemble predicted the distribution of rainfed wheat areas in Ethiopia accurately, achieving high 
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525 classification accuracy (>90%) and strong generalizability over the two growing seasons. The rainfed wheat 

526 area estimates for 2021 and 2022 were 2.24 and 2.50 million hectares, respectively, a 10% deviation above  

527 reports in official statistics.  ASUs were developed using pixel- and object-based clustering approaches in 

528 Ethiopia's rainfed wheat belt. While the spatial scalability of ASUs could support the characterization of 

529 production environments across spatial scales, its temporal dynamism could support the analysis of  longer-

530 term trends and short-term fluctuations in the production environment. This spatio-temporal flexibility 

531 allows the framework to capture the change in crop production environment over both space and time to 

532 inform responses to essential food security and environmental challenges. The framework developed in this 

533 study can be adaptable and transferable to other crops and regions in a cost-effective way where ground 

534 truth observations are readily available. This adaptability allows for a broader relevance including scaling 

535 out agronomic findings and technologies to a broader geographic scale, hence supporting sustainable crop 

536 intensification  in complex production environments.
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