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Abstract

The fall armyworm (FAW), Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an

invasive agricultural pest, has significantly impacted crop yields across Africa. This study

investigated the relationship between temperature and FAW life history traits, employing life

cycle modeling at temperatures of 20, 25, 28, 30, and 32˚C. The development time for eggs,

larvae, and pupae varied from 0–3 days, 10–18 days, and 7–16 days, respectively. The opti-

mal temperature range for immature stage survival and female fecundity was identified as

21–25˚C, with the intrinsic rate of increase (rm) and gross reproductive rate (GRR) peaking

at 25–28˚C. Model validation confirmed the accuracy of these findings. The research further

projected the Establishment Risk Index (ERI), Activity Index (AI), and Generation Index (GI)

for FAW under current and future climates (2050 and 2070) using RCP 2.6 and RCP 8.5

scenarios. Results indicate that RCP 2.6 leads to a reduction in high-risk FAW areas, partic-

ularly in central Africa. Conversely, RCP 8.5 suggests an increase in areas conducive to

FAW activity. These findings highlight the impact of climate policy on pest dynamics and the

importance of incorporating climatic factors into pest management strategies. The study

predicts a potential decrease in FAW prevalence in West Africa by 2070 under aggressive

climate mitigation, providing a basis for future FAW management approaches.

Introduction

Crop failure resulting from global climate change poses one of the most significant threats to

the agricultural sector [1]. Given agriculture’s high dependence on and vulnerability to climate

variations, it becomes imperative for farmers to grasp the scale of climate change [2]. Regions
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and countries with elevated annual average temperatures, marginal or previously degraded

farmlands, and limited developmental resources face a heightened risk of enduring the full

brunt of climate change’s consequences on agriculture. The occurrence of insect pests may

also be affected by these shifts. Increasing temperatures can have a strong effect on the health,

growth, distribution, and population size of insects [3]. Extreme temperatures and precipita-

tion fluctuations, in particular, have a profound impact on the life cycles of insect pests; thus,

climatic changes are extremely likely to influence pests [4].

The fall armyworm (FAW), Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae),

represents a critical example of a new invasive pest species in Africa, whose recent adaptation

and spread across the continent, potentially accelerated by climate change, predominantly

affects maize crops. Furthermore, its impact extends to other economically vital crops such as

rice, sorghum, sugarcane, cotton, and various vegetables. This broad host range not only poses

significant challenges for agricultural productivity and food security but also underscores the

urgency of our study in developing effective management strategies for this adaptable pest [5].

FAW is a prominent endemic and agricultural pest in the Americas [6]. FAW was first

reported in Africa around 2016, marking the beginning of its invasion on the continent [5].

The invasion route is thought to have been through the importation of infested agricultural

products. Currently, FAW has spread to most countries in sub-Saharan Africa, posing signifi-

cant threats to food security and agricultural productivity [5]. The insect’s name, ’fall army-

worm,’ derives from the behavior of its larvae, which migrate in a military-like formation,

consuming crops and leaving vegetation devastation in their wake [7]. Due to its widespread

distribution, FAW is exposed to a wide range of environmental conditions, including varia-

tions in temperature, precipitation, and ground composition [8]. FAW’s migratory behavior is

influenced by a multitude of factors beyond temperature increases. These include variations in

precipitation, which affect habitat and food availability; ground composition impacting breed-

ing sites and plant health; wind currents aiding long-distance movement; availability of suit-

able host plants driving migration patterns; and biological influences like natural predators,

parasitoids, and diseases. All these elements collectively contribute to the spread and impact of

FAW [9]. Environmental changes also have an indirect impact on insect pests through their

influence on associated natural enemies, interspecies interactions, habitats, and the availability

of host plants [10].

As temperatures rise, the development time of insect immature stages decreases, making

them less vulnerable to predators and increasing their chances of survival [11,12]. Adults, on

the other hand, emerge earlier as the temperature increases, altering flight activity patterns

[13]. For the temperate zones, winter mortality decreases when the average temperature rises,

affecting population dynamics. At high temperatures, mature insects may experience reduced

body size or mass, a phenomenon that can adversely impact the fertility of females [14].

Insects, characterized by their high reproductive rates and short generation durations, exhibit

a remarkable capacity to respond swiftly to climate variability and change, surpassing the

adaptive abilities of vertebrates [9,15]. Insect species that do not rely on low temperatures to

induce diapause and have short life cycles tend to expand their geographic distributions in

response to warming. Conversely, those species dependent on colder temperatures may face

less favorable habitats, resulting in lower abundance [13,16]. Thus, in general rising tempera-

tures and increasing climate variability, will make pest management considerably more diffi-

cult [6].

Understanding S. frugiperda’s impact on crops under current and future climates is critical

for sustainable agricultural productivity and food security. Thus, it is essential to understand

the temperature-dependent population development potential in order to comprehend the

pest’s population dynamics and implement control tactics specific to agro-ecoregions,
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especially in light of the predicted changes in global temperatures, which have increased over

the last 30 years [16] and are expected to reach 1.1–6.4˚C by 2100 [17].

Earlier models have addressed FAW’s geographical distribution based on the relationship

between occurrence data and climate-related parameters [18,19], in addition to estimates of its

development thresholds Chen et al. [5] recommended research on the impact of varying tem-

peratures on the incidence of FAW. This can be achieved by utilizing a phenology model soft-

ware such as the Insect Life Cycle Modelling (ILCYM), developedby the International Potato

Centre (CIP). Here the phenology of insects is controlled by temperature and is organized

according to their life stages [20]. Such information is crucial for risk assessments, forecasts,

and management strategies, especially in a changing climate.

Several studies have examined how constant temperatures affect S. frugiperda development,

survival, and reproduction [21–23], though they only predicted the developmental rate using

linear and non-linear models and did not simulate its development, death, and fecundity to

estimate population increase. To date, non-linear models accounting for varying temperatures

in the immature stages of S. frugiperda have not been employed to forecast pest dispersal and

associated risks in Africa. Yet, the development of a complete population model that fully

takes Surface air temperature into account would enable more accurate forecasting of the

potential for population expansion of FAW as well as seasonal fluctuation across Africa in

many different agroecological zones and beyond. It would also assist in the prediction of the

future pest status and impact of S. frugiperda under climate change. Therefore, our study

aimed to estimate (i) the development rate of S. frugiperda under various constant tempera-

tures, (ii) the duration required to complete each developmental stage, (iii) the mortality rate

at different stages, and (iv) the egg-laying duration, which is the period from when the female

starts laying eggs until she ceases (oviposition period), as part of the overall development cycle

from egg to adult. The resulting phenology model will help identify regions where FAW per-

manent establishment is likely, estimate the number of generations per year, and provide

insights into the potential damage under different climate scenarios for the present, 2050, and

2070 in Africa.

Materials and methods

Study site

Africa is a vast continent that covers approximately 30 million square kilometers and com-

prises 54 countries (Fig 1). It has a diverse landscape that includes deserts, forests, grasslands,

and mountains. The continent’s climate varies from region to region, with some areas

experiencing high temperatures and low rainfall, while others have more moderate tempera-

tures and higher levels of precipitation. According to a report by the Intergovernmental Panel

on Climate Change (IPCC) [24], Africa is expected to experience an increase in temperature of

between 1.5˚C and 3˚C by the end of the century [17]. The continent has a diverse range of

ecosystems, including savannahs, rainforests, and deserts, which are home to a wide variety of

plant and animal species [25]. In terms of rainfall, Africa experiences a range of precipitation

levels depending on the region. Some areas, such as the Sahara Desert, receive very little rain-

fall, while others, such as the Congo Basin, receive high levels of rainfall throughout the year.

Approximately 40% of the African population lives in areas with high water stress, making

water scarcity a significant issue on the continent [25].

The methodology framework of the study

The flow chart (Fig 2) describes a methodology for assessing the risk and population

dynamics of the fall armyworm based on temperature and lifecycle data. While
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acknowledging the importance of precipitation as an environmental factor, the study con-

centrates solely on the impact of temperature variations on FAW. The exclusion of precipi-

tation from our current modeling is a reflection of our focused research objectives and does

not diminish the recognized importance of precipitation in the broader context of FAW

ecology. The process begins with the collection of life table data on the fall armyworm,

which is used in a model builder to create a phenology model for this pest. This model pre-

dicts the development stages of the fall armyworm based on temperature data, which is pro-

vided by a temperature raster layer.

Fig 1. Study areas map showing the African continent boundaries.

https://doi.org/10.1371/journal.pone.0299154.g001
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Experimental procedures of data collection

FAW stock colony. The initial fall armyworm colony of the mass production unit at the

Benin station of the International Institute of Tropical Agriculture (IITA) was established in

2018 with caterpillars and egg masses collected on maize in southern Benin and was regularly

rejuvenated with fresh field material. This colony followed a standardized rearing protocol

widely recognized in entomological research, ensuring consistency and replicability of the

experimental conditions. Mass rearing of the larvae was carried out in large plastic containers

(18 cm diameter x 10 cm height) lined on the inner side with tissue paper to maintain humid-

ity. The larvae were reared with a 50:50 mixture of sprouted maize grains (Benin, variety

EVDT) and germinated cowpea beans (Benin, variety Pkodji) until pupation. Pupae were

transferred in new containers for eclosion. Upon emergence, adults were fed with cotton balls

soaked in 10% (V/V) honey/water solution and allowed to mate. The containers were covered

with gauze on which oviposition took place. Colonies were maintained under natural photope-

riod conditions and at laboratory ambient temperatures of 26˚C and 83% RH. Crucial growth

stages were monitored with a micrometer under a stereoscopic binocular for accurate

measurement.

Larval development, age-specific fecundity, and adult longevity. All life table data were

obtained using climate chambers (Intelligent Artificial Climate Chamber, RTOP-500Y, Zhe-

jiang, China) that were regulated at five constant temperatures (20, 25, 28, 30 and 32˚C ±1˚C)

and 70±5% RH with a photoperiod of 12L:12D. The set temperatures and RH were monitored

throughout the experiment with HOBO loggers at 30 min intervals. For each temperature

Fig 2. Flowchart of the hierarchical methodology for the analysis of fall armyworm phenology.

https://doi.org/10.1371/journal.pone.0299154.g002
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level, freshly laid FAW egg masses were incubated in a plastic container of 130 cm3 vol. lined

with paper tissue until the eggs hatched. A total of 100 neonate caterpillars were then cau-

tiously transferred with a fine camel hairbrush to individual plastic cups of 30 cm3 vol. The lar-

vae were fed with sprouted maize that was renewed every second or third day until larvae

pupated. The development of the caterpillars was checked by daily measurement of the

cephalic capsule and the presence of exuviae under a stereoscopic binocular. Pupae were sexed

and maintained in moistened tissue paper to develop into adults. Newly hatched moths were

paired to ensure mating and maintained in a plastic container of 130 cm3 vol. until their death.

For each temperature level, 30 males and females were subjected to testing. Adult moths were

provided cotton balls previously immersed in a 10% (V/V) honey/water solution and females

were allowed to oviposit on tissue paper that lined the plastic container. Deposited eggs were

counted at daily intervals and longevity monitored until the death of the last adult.

Statistical analysis and phenology modeling

The open access ILCYM software (version 3.0 - http://www.cipotato.org),developedby CIP

[20], was utilized to create a temperature-dependent phenology model of S. frugiperda. We

used ILCYM’s modules for the phenology model by utilizing the ‘model builder’, ‘validation

and simulation ‘and ‘population analysis and mapping tools. The software’s model builder has

multiple empirical linear and nonlinear models which are utilized to analyze impacts of tem-

perature on insect development. The phenology model is validated using life table data

obtained at varying temperatures in the validation and simulation module, and the impact of

climate change on the distribution and abundance of the pest is predicted using the population

analysis and mapping module. The validation and simulation module takes the validated phe-

nology model as input and processes it through deterministic and stochastic simulations to

estimate the life table parameters that determine the pest population’s growth rate. Here we

utilized the model builder, validation, and simulation modules to create and test the phenology

and to simulate the life table parameters. After fitting a total of 59 non-linear models for each

development parameter. Non-linear models are particularly suited for ecological data as they

can more accurately capture complex biological phenomena where the relationship between

variables is not strictly proportional. These models are essential in our context, where tempera-

ture effects on pest development exhibit non-linear characteristics, such as variable growth

rates and survival probabilities at different temperature ranges. The most appropriate model

for each parameter was selected based on the coefficient of determination (R2) and Akaike’s

Information Criterion (AIC) [20]. Each fitted parameter in ILCYM was subjected to the Least

Square Design (LSD) test at a significance level of 0.05 to establish probability cutoffs. The

effects of temperature on the immature growth period, growth rate, mortality rate, male and

female longevity, senescence, and oviposition on S. frugiperda are summarized in Table 1. To

ensure the greatest consistency of the phenology model, all larval developmental stages (instars

1 to 6) were combined to create the larva stage, while the pre-pupa and pupa stages were

merged into one pupa stage.

Development time. For FAW’s developmental periods and adult longevity (in days) at

each temperature level the cumulative frequency distributions were fitted to a cumulative dis-

tribution function against normalized development times. The logit function was best for egg,

larva, pupa, female, and male, and (Table 1) shows the formulae and the parameters of the

function utilized [12].

Development rate. The development rate of S. frugiperda was determined by taking the

inverse of the median development time and using that value as the basis for the calculation.

Stinner et al. [26] employed non-linear models to predict the link between temperature and
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development rate for various embryonic stages when temperatures were extremely high. For

each and every stage of development, the non-linear model [27] was chosen. When compared

to the other models in the ILCYM software, the model with the highest R2 and the lowest AIC

values was selected as the best-fit model. This allowed us to determine which model was the

most accurate representation of the data. The Logan-5, Hilber & logan 2, and Logan-6 were

found to be the models that best fitted the egg larva and pupa stages, respectively (for the math-

ematical formula see Table 1).

Mortality rate. The mortality rate of S. frugiperda immature stages at each constant tem-

perature was then used to fit 49 non-linear models. Wang1 and Gaussian with log functions

for the egg, larva and pupa stages, respectively [28] proved to be the models that best described

how the mortalities of FAW’s immature stages were dependent on the different temperatures

(for the mathematical equation see Table 1).

Female fecundity and adult senescence. The cumulative fertility of FAW females was

plotted against age (for the mathematical formula see Table 1), and was used to fit the cumula-

tive proportion of eggs produced at each age to Exponential modified 1. We also used Simple

Gaussianto characterize temperature-dependent fecundity, which we did by fitting the number

of eggs laid by each female at each constant temperature. Additionally, we calculated adult

senescence (female and male) for each constant temperature by reversing the adult longevity

and fitting the data to an exponential simple function (Table 1).

Lifetable parameter. The FAW phenology model for development, mortality, female

fecundity, and adult senescence were built based on temperature data. Then, the stochastic

simulation’ module in ILCYM was used to estimate the following life table parameters: (1) the

gross reproductive rate (GRR), (2) the net reproductive rate (Ro), (3) the intrinsic rate of natu-

ral increase (rm), (4) the mean generation time (Tc), (5) the doubling time (Dt), and (6) the

finite rate of increase (λ) at the tested temperatures [20]. Five sets of simulations were run at

each temperature, beginning with 100 individuals in the egg stage followed by 30 males and

females for the adult stage.

Model validation

The phenology model was validated by utilizing the fluctuating temperature data that was

obtained by recording the daily maximum and minimum temperatures of the experimental

Table 1. A complete set of mathematical model equations utilized in ILYCM software to develop S. frugiperda phenology for each life stage.

Life history traits Model Name Equation Life Stage

Development time logit f(x) = 1/ (1 + exp (− (ai + b ln x))) Egg, Pupa, Female, and

Male

Development rate Logan 5 r(T) = alph. (1/(1+k.exp(-b.x))—exp(-(Tmax-x)/Dt)) Egg

Hilber & logan 2 r(T) = trid. ((xē)/(xē+D)—exp(-(Tmax-x)/Dt)) Larva

Logan 1 r(T) = Y(exp(p�T)-exp(p�Tmax-(Tmax-T)/v)) Pupa

Mortality rate Wang2 y ~ 1–1/ (exp ((1 + exp (-(x—Tl)/B)) * (1 + exp (- (Th—x)/B)) *H)) Egg

Wang1 m(T) = 1–1/ (exp ((1+exp (-(x-Topt)/B)). (1+exp(-(Topt-x)/B)).H)) Larva

Gaussian with log m(T) = y0+a�exp(-0.5(log(abs(x/x0))/b) 2) Pupa

Senescence Hilbert & Logan 3 y ~ trid * (((x—Tmin) ^2)/ ((x—Tmin) ^2 + D)—exp (- (Tmax—(x—Tmin))/Dt))

+ Smin

Female

Exponential Simple y ~ b1 * exp (b2 * x) Male

Relative

oviposition

Exponential modified

1

y ~ (1—exp (-(a * x + b * x^2 + c * x^3))) Female

Total oviposition Simple gaussian y ~ y0 + a * exp (-0.5 * ((x—x0)/b) ^2) Female

https://doi.org/10.1371/journal.pone.0299154.t001
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site where the S. frugiperda life table was created under ambient conditions. The Daily varying

temperatures data for the period from 01/01/2019 to 31/12/2021 were gathered from the rec-

ords of the IITA station in Cotonou, Republic of Benin (latitude 6.417127 and longitude

2.329207). The validation model was executed with the data obtained under fluctuating tem-

perature experiments. Next, the phenology model and fluctuating temperatures were used to

simulate S. frugiperda growth and life table characteristics.

To recreate these conditions, we derived a life table from the created phenology model,

which included 100 individuals in the egg stage. The results of this procedure (phenology

model simulation values) were compared with life table data collected under varying environ-

mental conditions. The constructed phenology model was validated by comparing the differ-

ences between observed and simulated values. The constructed phenology model’s validity was

confirmed by the consistency between observed and simulated values, suggesting it might be

utilized in future research to predict the spread and abundance of the pest in a warming

climate.

Mapping of the potential distribution of S. frugiperda under current

climate scenarios

The "population distribution and risk mapping" module of ILCYM which is integrated with a

simple geographic information system (GIS), was utilized to visualize the possible risk posed

by S. frugiperda [20,29]. Using the estimated life table parameters, the establishment risk index

(ERI), generation index (GI), and activity index (AI) were derived to indicate the risk of FAW

at each location. These equations were utilized to estimate the risk indices.

ERI ¼
Pi¼365

1
Ii

II
∗net � reproduction ð1Þ

Where, Ii is the interval of day i (with i = 1, 2, 3,. . ., 365) and the total number of intervals,

II, is 365.

GI ¼
P365

x¼0
365

Tx

365
ð2Þ

Where, Tx is the predicted generation length in days at Julian day x (x = 1, 2. . .,365)

AI ¼ log10

Y365

x¼1

lx ð3Þ

Where, λx is the finite rate of increase at Julian day x (x = 1, 2. . .,365)

Climate baseline information was interpolated utilizing the worldclim database (http://

www.worldclim.org) and subsequently employed in the simulations. To represent the current

scenario spanning from 1950 to 2000, as well as the future climate projections for 2050 and

2070 under two Representative Concentration Pathway (RCP) 2.5 (reflecting more ambitious

climate mitigation efforts) and 8.5 (indicating more pessimistic climate change scenarios),

long-term temperature records from various locations worldwide were used. These records

were instrumental in deriving both minimum and maximum temperature values for each

month, forming the foundational dataset [30]. The study utilized the output from the

ACCESS1-0 GCM model to represent both the current scenario and future climate projections

for 2050 and 2070 under RCP 2.6 and RCP 8.5. The choice of ACCESS1-0 was predicated on

its widespread application in climate research and its suitability for the spatial and temporal

scales of our study.
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Results

Development time

The duration of S. frugiperda development was significantly influenced by temperatures

(Table 2). The maturity time decreased from low to high temperatures until 32˚C, after which

development became non-linear. All phases of the development proceeded faster at 32˚C than

at 20˚C. A logit distribution model was used to characterize the variation in maturation dura-

tions throughout all phases of the organism’s life cycle (Table 2). Coefficient of determination

(R2) values varied from 0.97 at the adult male stage with a slope of 8.63 to 1.0; at the egg stage

this quantity varied with a slope of 139.46. Across the board, R2 and slope values dropped as

senescence ages increased (this was true for both sexes).

Development rate

Temperature greatly affected S. frugiperda immature stage development (Table 3 and Fig 3).

The linear model fitted all immature phases’ development effectively (R2 between 0.95 and

0.99). Logan-5, Hilber & logan 2, and Logan-6 were best for egg, larval, and pupal stages,

respectively, among the 59 non-linear models fitted to temperature-dependent development

rate (Table 3 and Fig 3A–3C). The best-fit model was the larva stage with a R2of0.99(Table 3

and Fig 3B).

Mortality rate

Temperature had a major impact on the mortality rate of the different S. frugiperda life stages

(Table 4 and Fig 4). At 32˚C and 20˚C, death rates were found to be the highest and lowest

across the board, respectively (Fig 4). Wang1 and Wang 2functions for egg and larval stages

accurately predicted the temperature dependence of mortality in FAW immature stages

(Table 4 and Fig 4). Using this function, we calculated the optimal temperature (Topt), i.e., the

lowest mortality rate for the egg (at 21.64˚C), the larva (at 24.79˚C), and the pupa (at 18.09˚C)

(Table 4 and Fig 4).

Female fertility and adult senescence

Exponential modified function1(R2 = 0.82, AIC = -29.29) accurately predicted S. frugiperda
females’ cumulative fecundity based on age (Table 5 and Fig 5C). Temperature greatly affected

FAW fecundity (Table 6), with most eggs per female (851.58) yielded at25˚C (Table 6 and

Table 2. Mean development times (days) of immature stages and senescence times (days) of adult life stages of S. frugiperda at different constant temperatures in

the lab. R2—Coefficient of determination and AIC -Akaike Information Criterion.

Intercept (a) Temperature(˚C) Egg Larva Pupa Female Male

Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed

20 2.449 3 17.891 18 15.720 16 10.262 11 8.402 9

25 1.414 2 11.446 12 10.696 11 9.105 10 9.294 10

28 0.805 0 9.641 10 7.680 8 6.961 8 5.737 7

30 0.805 0 9.255 10 6.526 7 5.789 6 4.895 5.5

32 0.805 0 9.531 10 6.237 7 4.444 5 4.112 5

Statistics

Slope (b) 139.46 169.36 21.70 10.63 8.63

R2 1.0 0.98 0.99 0.99 0.97

AIC 12 169.36 21.70 190.93 250.85

https://doi.org/10.1371/journal.pone.0299154.t002
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Fig 5D). Simple gaussian function achieved the best fit temperature-dependent fecundity

model (R2 = 0.99; AIC = 30.87). The function suggested that S. frugiperda oviposition was best

around 22–23˚C (Fig 5D). Temperature affected FAW senescence in both sexes (Table 7).

Exponential simple function and Hilber &Logan 3well-described temperature-dependent

senescence in both females and males, respectively (Fig 5A and 5B).

Life table parameters

Temperature greatly affected S. frugiperda life table parameters. At constant 20–28˚C, the

intrinsic rate of increase (rm) was much larger than at other measured temperatures (Table 8).

With 420.6and 115.6 daughters per female the gross reproductive rate (GRR) was highest and

lowest at 25˚C and 32˚C, respectively (Table 8). At 20 and 25˚C, the net reproduction rate

(Ro) increased dramatically from 184.64 to 211.68, while at 30˚C it declined drastically to 22.9

(Table 8). As the temperature increased, the mean generation time (Tc) dropped. FAW popu-

lation doubling time (Dt), which is the time required for the pest to double, followed a differ-

ent trend compared to GRR, Ro, and Tc, in that the Dt was shortest with3.28at 28˚C. The

finite rate of growth (λ) varied from 1.11 at 32˚C to 1.23 at 28˚C (Table 8). FAW developed,

survived, and reproduced best between 25and 28˚C, with strong population growth, short gen-

eration times, and rapid population doubling (Fig 6). These results indicate that there are sta-

tistically significant differences in the means of each parameter across different temperature

groups, as evidenced by the low p-values and high F-statistics for each parameter. This signifi-

cance is especially strong for the mean generation time (T_lambda), which shows an excep-

tionally high F-statistic, indicating a very significant difference in means across temperatures.

Model validation

Fig 6 and Table 9 show immature stage development and mortality of FAW, as well as life

table parameters from the experiment at varying temperatures and those predicted from the

fitted phenology model. The development, mortality, and population growth characteristics

Table 3. Estimated parameters of the Logan-5, Hilber & logan 2, and Logan 1 models that were used to estimate how temperature affects the rate of development of

immature S. frugiperda that were raised at different constant temperatures. R2—Coefficient of determination, AIC—Akaike Information Criterion and df–degree of

freedom.

Stage Function Model parameters df P-value R2 AIC

Egg Logan5 alph 9.72767 ± 0.1441 4 <0.0001 0.952 5.98

k 939.4538 ± 0.00484

b 0.18416 ± 0.01101

Tmax 37.56302 ± 1.20556

Dt 2.9495 ± 1.34378

Larva Hilber & logan 2 trid 22598.24822 ± 0.02562 3 <0.0001 0.985 -30.68

D 157157056.08524 ± 1e-05

Tmax 67.76324 ± 2.89286

Dt 2.71287 ± 0.21605

Pupa Logan 1 Y 0.00976 ± 1e-05 3 <0.0001 0.985 -24.198

Tmax 33.23127 ± 1e-05

p 0.09202 ± 1e-05

v 0.58139 ± 1e-05

K—Degree-day (DD) requirements; Y, p and v: Constants values; “P” refers to the number of model parameters while “n” and “m” are constants values; Tmax—The

maximum lethal temperature; Dt–the thermal time required for development to be completed.

https://doi.org/10.1371/journal.pone.0299154.t003
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matched observed and modeled values (Table 6). The simulated development times were 1.99,

16.22, and 25.06 days, compared to the observed 1.0, 16.0, and 25.18 days for egg, larva, and

pupa, respectively (Table 9). Observed and simulated life table parameters were also very com-

parable (Table 9). The fitted models were satisfactory since the observed S. frugiperda develop-

mental stage frequencies matched simulated values (Fig 6).

Mapping of the potential distribution of S. frugiperda under current

climate scenarios

Activity index. The Activity Index (AI) is depicted in Fig 7, illustrating the potential activ-

ity levels of the fall armyworm on the African continent. In the current scenario, the AI reaches

its peak in the equatorial regions, signifying substantial activity in areas where climatic condi-

tions are most favourable for the pest. Projected data for 2050 under the RCP 2.6 scenario indi-

cate a notable decline in AI, particularly in central Africa. This suggests that with aggressive

climate mitigation, the activity of fall armyworms could see a significant reduction.

Fig 3. Spodoptera frugiperda (a) egg, (b) larva, and (c) pupa development rates as a function of temperature,

respectively fitted by Logan-5, Hilber & logan 2, and Logan 1, respectively, at each developmental stage. The standard

deviation is depicted by the blue bars, while the blue points indicate the experimental data. The red broken lines

represent the fitted linear models, whereas the solid lines represent the fitted non-linear models. Upper and lower 95%

confidence intervals are depicted by the broken blue lines above and below, respectively.

https://doi.org/10.1371/journal.pone.0299154.g003
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Conversely, under the RCP 8.5 scenario for the same year, high AI levels persist, implying the

possibility of ongoing or exacerbated pest activity in the absence of substantial climate action.

Moving ahead to 2070, the AI projections diverge more starkly between the two scenarios:

RCP 2.6 forecasts a substantial decrease in high AI areas, underscoringg the long-term benefits

of climate mitigation. In contrast, RCP 8.5 anticipates the persistence of high AI levels across a

broader region, emphasizing the potential for increased fall armyworm activity if current emis-

sion trends continue.

Establishment risk index. Fig 8 represents The Establishment Risk Index (ERI) map,

offering insights into the potential areas where the fall armyworm may establish populations.

Currently, the highest risk of establishment is concentrated in the equatorial belt. In the year

2050, within the optimistic RCP 2.6 scenario, there is a significant shift towards lower risk cate-

gories, particularly evident in central Africa. This shift suggests that proactive climate measures

could reduce the regions susceptible to FAW permanent occurrence. However, under the RCP

8.5 scenario, the risk of permanent occurrence remains persistently high and, in fact, expands.

This expansion implies an increases prevalence of suitable habitats for the pest’s establishment,

driven by warmer conditions and inadequate mitigation efforts. Fast forwarding to 2070,

under RCP 2.6 scenario, the trend of diminishing high-risk areas persists, underscoring the

continued significance of sustained climate mitigation efforts. In contrast, the RCP 8.5 sce-

nario shows an expansion of high-risk zones, suggesting the potential for an increased preva-

lence of fall armyworm occurrence with ongoing climate change.

Generational index. Fig 9 portrays the Generation Index (GI), which projects the

potential number of fall armyworm generations across Africa, considering both current and

projected climate conditions. In the current scenario, medium to high GI values are pre-

dominantly observed in the equatorial regions, indicating a conducive environment for the

pest’s reproduction. Looking ahead to the year 2050 under the RCP 2.6 scenario, there is a

noticeable reduction in areas with high GI values, primarily in central Africa. This suggests

that proactive climate mitigation measures could lead to reduction in the number of fall

armyworm generations. However, under the RCP 8.5 scenario, the reduction in high GI

areas is less pronounced, indicating that without sufficient climate action, the fall army-

worm may continue to thrive. Moving to 2070, projections under RCP 2.6 suggest a contin-

ued decrease in regions with high GI, emphasizing the positive impact of long-term climate

Table 4. Estimated parameters of the Wang 2, Wang 1, and Gaussian with log models that were used to estimate how temperature affects the mortality rate of

immature S. frugiperda raised at different constant temperatures. R2—Coefficient of determination, AIC—Akaike Information Criterion and df–degree of freedom.

Stage Function Model parameters df P-value R2 AIC

Egg Wang 2 Tl 21.64409 ± 6.44452 3 0.46 0.86 -6.47

Th 21.64362 ± 6.44489

B 3.43643 ± 2.00857

H 0.02341 ± 0.01904

Larva Wang 1 Topt 24.7892 ± 0.08442 2 < 0.0001 0.99 -24.49

B 1.75891 ± 0.06445

H 0.01712 ± 0.00184

Pupa Gaussian with log y0 0.8559± 2.16577 3 < 0.0001 0.89 -24.95

a -0.8503± 2.15051

x0 18.0909± 2.26521

b 0.8041± 1.33022

Where, (Tl) is the minimum lethal temperature, (Th) is the maximum lethal temperature, Topt is the optimal temperature for survival, while B and H are constant

values of model parameters.

https://doi.org/10.1371/journal.pone.0299154.t004
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strategies. Meanwhile, RCP 8.5 indicates an increase in regions with high GI, underlining

the possible repercussions of inadequate climate policies on the reproductive cycles of fall

armyworms.

Fig 4. Temperature-dependent death rates of S. frugiperda immature stages fitted to Wang1, Wang 2 and Gaussian with log

models: (a) egg; (b) larva; (c) pupa. The experimental data is blue. Solid red lines represent non-linear models and broken blue

lines the upper and lower 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0299154.g004

Table 5. Estimated parameters of the relative oviposition of S. frugiperda. R2—Coefficient of determination, AIC—Akaike Information Criterion, and df–degree of

freedom.

Analysis Formular Model parameters df P-value R2 AIC

Relative oviposition O(E) = 1-exp(-aE-bE^2-cE^3)) a -0.11825 2 < 0.0001 0.82 -29.29

b 1.17905

c 0.76887

Where, parameter ’a’ describes the rate of increase in oviposition as temperature increases, ’b’ describes the temperature at which maximum oviposition occurs, and ’c’

describes the rate of decrease in oviposition as temperature increases above the maximum.

https://doi.org/10.1371/journal.pone.0299154.t005
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Fig 5. Model fitting to determine the relationship between temperature and S. frugiperda female fecundity, and adult senescence:

(a) female senescence rates fitted to Exponential simple function; (b) male senescence rates fitted to Hilber &Logan 3 function; c)

cumulative fecundity fitted to Simple gaussian; and (d) mean fecundity per female fitted to Taylor function 1. The blue points

represent the experimental data with bars representing the standard deviation. The solid red lines represent non-linear models. The

broken blue lines above and below represent the upper and lower 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0299154.g005

Table 6. Estimated parameters of the total oviposition of S. frugiperda. R2—Coefficient of determination, AIC—Akaike Information Criterion and df–degree of

freedom.

Analysis Formular Fecundity (temp) Model parameters df P-value R2 AIC

Total oviposition f(T) = y0+a�exp(-0.5((x-x0)/b) 2) 20: 776.3889 y0–88.5085 3 0.016 0.99 35.8692

25: 851.5870 a 1005.384

28: 581.5806 b 5.4884

30: 353.7500 x0 23.0144

32: 176.4444

Where, parameter ’y0’ describes the minimum oviposition rate, ’a’ describes the rate of increase in oviposition as temperature increases, ’b’ describes the temperature at

which maximum oviposition occurs and ’x0’ describes the temperature below which oviposition does not occur.

https://doi.org/10.1371/journal.pone.0299154.t006

PLOS ONE Predicting fall armyworm distribution in African maize zones

PLOS ONE | https://doi.org/10.1371/journal.pone.0299154 May 6, 2024 14 / 25

https://doi.org/10.1371/journal.pone.0299154.g005
https://doi.org/10.1371/journal.pone.0299154.t006
https://doi.org/10.1371/journal.pone.0299154


1. Activity index

2. Establishment risk index

3. Generation index

Fig 8. Illustration of the Establishment Risk Index (ERI) of the fall armyworm in Africa for

the current scenario, 2050 and 2070, under two contrasting climate change scenarios: RCP 2.6

(more ambitious climate mitigation) and RCP 8.5 (more pessimistic climate change). The

value ranges from high (blue), medium (green) and low (orange).

The area of the indicies was represented in square kilometers unit (sqkm)

Complementing the spatial trends illustrated in Figs 7–9 and Table 9 quantifies the changes in

suitable habitat areas for the Fall Armyworm (FAW) risk indices under current and projected cli-

mate scenarios. The area changes, expressed in square kilometers, reflect the potential increase or

decrease in FAW risk across the African continent. Under the RCP 2.6 scenario, we observe a gen-

eral decrease in High-risk areas for all indices by 2070, indicating the efficacy of climate mitigation

strategies. Conversely, under RCP 8.5, the persistence or increase in High-risk areas for AI and GI

by 2070 suggests that without substantial climate action, FAW could maintain or expand its pres-

ence. These quantitative changes align with the spatial patterns depicted in the figures and under-

score the significant implications of climate action for FAW management.

Table 7. Estimated parameters of Hilber & Logan3 and Exponential simple fitted to determine the relationship between temperature and adult senescence S. frugi-
perda reared at different constant temperatures. R2—Coefficient of determination, AIC—Akaike Information Criterion, and df–degree of freedom.

Life stage Function Model parameters df P-value R2 AIC

Female Hilber & logan 3 trid 992834.7 5 < 0.0001 0.95 -11.956

Tmax 38.567

Tmin 21.6748

D 8.27E+08

Dt 0.0172

Smin 0.0949

Male Exponential simple b1 0.02 1 0.01 0.88 -20.04

b2 0.0773

Where, Tmin: the minimum temperature required for development to occur; Tmax: maximum temperature above which development is not possible; Trid: the thermal

time required to initiate development; Dt: Doubling time; D: the proportion of the development time that has already occurred; b1: the thermal time constant for

development; and b2: the baseline temperature for development.

https://doi.org/10.1371/journal.pone.0299154.t007

Table 8. Simulated life table parameters of S. frugiperda reared at five constant temperatures. The intrinsic rate of increase (rm), gross reproduction rate (GRR), net

reproduction rate (Ro), mean generation time (Tc in days), doubling time (Dt) in days, and finite rate of increase (λ).

Temperature rm Ro GRR Tc λ Dt

20 0.121059 184.64 370.0843 43.10626 1.128692 5.725690

25 0.189055 211.68 420.6051 28.32548 1.208107 3.666377

28 0.210968 125.68 378.9192 22.91217 1.234873 3.285553

30 0.157310 22.90 131.2514 19.90422 1.170359 4.406245

32 0.108643 8.62 115.4717 19.82727 1.114764 6.380070

Statistics F: 57.80 p < 0.001 F: 87.76 p < 0.001 F: 30.51 p < 0.001 F: 3536

p < 0.001

F: 57.80

p < 0.001

F: 14.98, p < 0.001

https://doi.org/10.1371/journal.pone.0299154.t008
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Discussion

The impact of global warming extends to insect pests, host plants, and their natural enemies

[31,32]. A critical aspect in assessing the effects of climate change on pest populations is under-

standing their phenology. Several studies have delved into the phenology of S. frugiperda’s and

its response to temperature variations. For instance, in He et al. [22], the authors examined the

influence of temperature on various stages S. frugiperda’s including incubation, larval

Fig 6. Observed and simulated S. frugiperda life stage frequencies to test temperature-dependent development

models for development, survival, and reproduction. The lines reflect phenology model-simulated values for each

life stage, whereas the dots represent experimental values from variable temperatures.

https://doi.org/10.1371/journal.pone.0299154.g006

Table 9. Comparative analysis of area changes for fall armyworm risk indices under current, RCP 2.6, and RCP 8.5 climate scenarios for 2050 and 2070.

Year Index Scenario Change Low Class Change (sqkm) Medium Class Change (sqkm) High Class Change (sqkm)

2070

2050

2070

2050

2070

2050

2070

2050

2070

2050

2070

2050

GI

GI

GI

GI

AI

AI

AI

AI

ERI

ERI

ERI

ERI

Current Vs RCP 2.6

Current Vs RCP 2.6

Current Vs RCP 8.5

Current Vs RCP 8.5

Current Vs RCP 2.6

Current Vs RCP 2.6

Current Vs RCP 8.5

Current Vs RCP 8.5

Current Vs RCP 2.6

Current Vs RCP 2.6

Current Vs RCP 8.5

Current Vs RCP 8.5

-2,187,491

-516,099

-1,081,615

-1,828,710

-2,607,380

-1,258,143

-1,405,622

-230,7233

1,064,055

-766,372

326,874

665,854

1,321,666

-187,627

734,988

1,436,525

715,680

-67,913

973,613

1,118,572

-2,152,764

-426,204

-1,026,818

-1,332,984

325,578

163,479

346,627

392,185

1,351,796

122,090

432,328

1,808,958

548,463

652,329

699,944

667,129

https://doi.org/10.1371/journal.pone.0299154.t009
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Fig 7. Illustration of the activity index (AI) of the fall armyworm in Africa for the current scenario, 2050 and

2070, under two contrasting climate change scenarios: RCP 2.6 (more ambitious climate mitigation) and RCP 8.5

(more pessimistic climate change). The value ranges from high (blue), medium (green) and low (orange).

https://doi.org/10.1371/journal.pone.0299154.g007
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Fig 8. Illustration of the Establishment Risk Index (ERI) of the fall armyworm in Africa for the current scenario,

2050 and 2070, under two contrasting climate change scenarios: RCP 2.6 (more ambitious climate mitigation)

and RCP 8.5 (more pessimistic climate change). The value ranges from high (blue), medium (green) and low

(orange).

https://doi.org/10.1371/journal.pone.0299154.g008
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Fig 9. Illustration of the Generation Index (GI) of the fall armyworm in Africa for the current scenario, 2050 and

2070, under two contrasting climate change scenarios: RCP 2.6 (more ambitious climate mitigation) and RCP 8.5

(more pessimistic climate change). The value ranges from high (blue), medium (green) and low (orange).

https://doi.org/10.1371/journal.pone.0299154.g009
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development, and pupation. Meanwhile, Ashok et al. [21] examined how temperature affects

multiple aspects of FAW’s, including its growth, survival, reproduction, distribution, abun-

dance, and overall population dynamics. Despite these valuable contributions, previous studies

did not fully simulate the entire life cycle of S. frugiperda’s under varying temperature condi-

tions, as demonstrated in Chen et al. [5].

The study utilized the ILCYM software to analyze how temperature affects S. frugiperda’s

life cycle, population growth rate, and range extension in different African climates. Thus, we

simulated FAW’s whole life history using phenology modeling and determined the thermal

requirements of its different life stages, including mapping the current pest phenology in dif-

ferent agro-ecological zones in Africa, unlike prior studies that merely simulated the species’

development time and development rate at constant temperatures [21–23]. ILCYM, and non-

linear models (Logan 5 and Hilbert & Logan 2 functions) fitted the data to estimate the devel-

opment upper threshold. This study demonstrated that Fall armyworm’s (FAW) life cycle

depends on temperature and that different phases have varied thermal needs. ILCYM allowed

us to model the whole life history of S. frugiperda at different temperatures, unlike earlier

research [22,23]. The pupal stage of the S. frugiperda life cycle requires a temperature range

between 20˚C and 32˚C. Extreme temperatures killed immature stages, and fecundity peaked

at 23–25˚C. This shows the importance of temperature requirements for pest management

and species dispersion projections under climatic change across Africa. Prasad et al. [33] simu-

lated S. frugiperda’s phenology using ILCYM, but only in India.

The results for S. frugiperda egg and larval development align with the findings of Ashok

et al. [21] and He et al. [22], but they differ from those reported by Du Plessis et al. [23] for lar-

vae and pupae. Experimental procedures and maize varietal choice likely explain these dispari-

ties [22]. Logan 5 and Hilbert & Logan 2 functions [8] fit egg and larva development best,

while Logan 1 fits pupal development best. Logan has two advantages. First, it considers tem-

peratures above and below ideal. Second, it estimates the upper development threshold [34]. S.

frugiperda mortality rates were highest at 32˚C and lowest at 20˚C because temperature affects

insect physiology, biochemistry, and metabolism [9]. We used the Wang 1 and Wang 2 func-

tions to accurately forecast S. frugiperda immature stage mortality and calculate the optimal

temperature (Topt) for each life stage, where mortality was lowest. The study indicated that

the egg had the lowest mortality rate at 21.64˚C, the larva at 24.79˚C, and the pupa at 18.09˚C.

Other research examined FAW’s phenological stage mortality using the Wang model. Prasad

et al. [33] predicted FAW first to fifth instar mortality and reported greater rates at earlier

developmental stages and higher temperatures. The Wang model observed that higher temper-

atures accelerated development and increased mortality, notably at the egg and pupal phases

[35]. These studies found that cooler locations and higher elevations had greater FAW phenol-

ogy and mortality rates. These studies show that the Wang model can forecast pest mortality

rates in different phenological stages and regions, which might inform pest management

techniques.

S. frugiperda fecundity was high at 23–25˚C and dramatically dropped at 32˚C. High tem-

peratures reduce female lifespan and maturity, which lowers fertility [36]. Schlemmer [37]

found that FAW reproduction was optimum at 22˚C. Temperature affects S. frugiperda bio-

nomics and life table parameters like intrinsic rate of natural increase (rm). rm (0.10) at 32˚C

inhibited S. frugiperda population growth. Xie et al. [38] discovered a mean generation time of

40.92 days for S. frugiperda larvae fed maize leaves, whereas He et al. [22] and Ashok [21]

found 35.47 and 36.63 days at 25˚C and 27˚C, respectively. Our study reported a mean genera-

tion period of 28.32 days at 25˚C, similar to Sotelo-Cardona et al. [39] and Wang et al. [28].

Wang et al. [28] showed greater net reproductive values and rm (0.2056) and (1.2283) of S. fru-
giperda when fed maize. Russianzi et al. [40] found a 4.49-day FAW doubling time on maize,
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similar to our 4.40-day finding. However, due to its shorter development time and higher net

reproduction rate, S. frugiperda can rapidly increase its population and potentially more than

double its numbers [41].

In our analysis of the potential expansion of suitable habitats for FAW under RCP 2.5 and

8.5 scenarios for 2050 and 2070, we observed significant contrasts in Activity Index (AI) val-

ues, reflecting the profound influence of emission trajectories on pest dynamics. Under the

conservative RCP 2.6 scenario, we note a potential reduction in FAW threats, particularly in

Central Africa, emphasizing the benefits of aggressive climate mitigation efforts. Conversely,

the RCP 8.5 scenario warns of increased FAW prevalence, highlighting the dire consequences

of insufficient climate action. These findings, resonating with the works of Ramasamy et al.

[42], Susheela et al. [43], and Choudhary et al. [44], underscore the critical interplay between

climate policies, pest dynamics, and food security, advocating for urgent and robust climate

strategies to mitigate the burgeoning pest-related challenges in a changing climatic landscape.

Nevertheless, it’s important to note that biotic factors, such as interactions with other host

plants, migratory events, natural enemy activity, biological control measures, and adaptations

to new cropping systems, can have a significant impact on pest dynamics and abundance.

Therefore, current prediction models come with inherent uncertainties. Previous research has

indicated that temperatures above 30˚C can decrease fall armyworm populations [19,45].

Higher temperatures may also boost FAW predators and parasitoid wasps, which can control

their population. Chen et al. [46] found parasitoid wasp activity increases at high temperatures.

However, temperature determines S. frugiperda’s spread and prevalence. The insect thrives in

warm, humid circumstances, however, the temperature range in North Africa may be less

favorable than in sub-Saharan Africa [19]. Yan et al. [45] found that climate change may affect

fall armyworm distribution and population dynamics. As a result, the risk of FAW infestation

may decrease in some locations while persisting in others.

In light of our findings, it is imperative to understand that the relationship between temper-

ature and the population dynamics of S. frugiperda is multifaceted and not uniformly linear.

While our study underscores the significant role of temperature in influencing the life history

and distribution of S. frugiperda, it is crucial to recognize that higher temperatures do not nec-

essarily guarantee an increase in their populations. Indeed, beyond certain thresholds, high

temperatures may exert detrimental effects, either through direct physiological stress on the

pest or indirectly by enhancing the efficacy of natural predators. This intricate interplay under-

scores that in some scenarios, especially at temperatures exceeding the pest’s optimal range, we

might observe a reduction in population levels. Therefore, our study emphasizes the need for

pest management strategies that consider the complex and sometimes counterintuitive inter-

actions between S. frugiperda, temperature, and other environmental factors. [35,47]. Thus,

successful pest management must address FAW’s intricate interactions with its environment,

including temperature and natural enemies. These findings will help create effective FAW

management techniques to lessen its impact on maize output and increase food security in

affected African regions.

Conclusion

The study demonstrates the crucial role of temperature in the life history of S. frugiperda. It

highlights the importance of determining thermal requirements for accurate pest management

and species distribution predictions under climatic change. By incorporating the concept of

degree days into our analysis, we have gained a more nuanced understanding of how tempera-

ture influences the development and spread of FAW. Our findings underscore the critical

importance of comprehending temperature’s impact on insect population dynamics, which, in
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turn, will facilitate the development of more effective pest management strategies. Detailed

information on the thermal requirements of different life stages of FAW can be used to predict

its distribution and occurrence under different temperature conditions across many important

maize-producing regions of Africa. Our findings also underline how important it is to properly

understand the impact temperature has on insect population dynamics and which as a result

will facilitate the development of effective pest management strategies.
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