dc.contributor.author | Bandyopadhyay, Ranajit |
dc.contributor.author | Ortega-Beltran, A. |
dc.contributor.author | Akande, A. |
dc.contributor.author | Mutegi, C. |
dc.contributor.author | Atehnkeng, J. |
dc.contributor.author | Kaptoge, L. |
dc.contributor.author | Senghor, A.L. |
dc.contributor.author | Adhikari, B.N. |
dc.contributor.author | Cotty, P.J. |
dc.date.accessioned | 2019-12-04T11:04:34Z |
dc.date.available | 2019-12-04T11:04:34Z |
dc.date.issued | 2016 |
dc.identifier.citation | Bandyopadhyay, R., Ortega-Beltran, A., Akande, A., Mutegi, C., Atehnkeng, J., Kaptoge, L., ... & Cotty, P.J. (2016). Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. World Mycotoxin Journal, 1-20. |
dc.identifier.issn | 1875-0710 |
dc.identifier.uri | https://hdl.handle.net/20.500.12478/1457 |
dc.description | Article purchased; in Press |
dc.description.abstract | Aflatoxin contamination of crops is frequent in warm regions across the globe, including large areas in sub-Saharan Africa. Crop contamination with these dangerous toxins transcends health, food security, and trade sectors. It cuts across the value chain, affecting farmers, traders, markets, and finally consumers. Diverse fungi within Aspergillus section Flavi contaminate crops with aflatoxins. Within these Aspergillus communities, several genotypes are not capable of producing aflatoxins (atoxigenic). Carefully selected atoxigenic genotypes in biological control (biocontrol) formulations efficiently reduce aflatoxin contamination of crops when applied prior to flowering in the field. This safe and environmentally friendly, effective technology was pioneered in the US, where well over a million acres of susceptible crops are treated annually. The technology has been improved for use in sub-Saharan Africa, where efforts are under way to develop biocontrol products, under the trade name Aflasafe, for 11 African nations. The number of participating nations is expected to increase. In parallel, state of the art technology has been developed for large-scale inexpensive manufacture of Aflasafe products under the conditions present in many African nations. Results to date indicate that all Aflasafe products, registered and under experimental use, reduce aflatoxin concentrations in treated crops by >80% in comparison to untreated crops in both field and storage conditions.
Benefits of aflatoxin biocontrol technologies are discussed along with potential challenges, including climate change, likely to be faced during the scaling-up of Aflasafe products. Lastly, we respond to several apprehensions expressed in the literature about the use of atoxigenic genotypes in biocontrol formulations. These responses relate to the following apprehensions: sorghum as carrier, distribution costs, aflatoxin-conscious markets, efficacy during drought, post-harvest benefits, risk of allergies and/or aspergillosis, influence of Aflasafe on other mycotoxins and on soil microenvironment, dynamics of Aspergillus genotypes, and recombination between atoxigenic and toxigenic genotypes in natural conditions. |
dc.description.sponsorship | Bill & Melinda Gates Foundation |
dc.description.sponsorship | United States Agency for International Development |
dc.description.sponsorship | Federal Ministry for Economic Cooperation and Development, Germany |
dc.description.sponsorship | Department of Foreign Affairs and Trade, Australia |
dc.description.sponsorship | Department for International Development, United Kingdom |
dc.description.sponsorship | Global Affairs Canada |
dc.description.sponsorship | United States Department of Agriculture |
dc.description.sponsorship | Austrian Development Agency |
dc.format.extent | 1-20 |
dc.language.iso | en |
dc.subject | Maize |
dc.subject | Groundnuts |
dc.subject | Climate Change |
dc.subject | Food Security |
dc.subject | Aspergillus Flavus |
dc.subject | Aflasafe |
dc.subject | Commercialisation |
dc.title | Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change |
dc.type | Journal Article |
dc.description.version | Peer Review |
cg.contributor.crp | Climate Change, Agriculture and Food Security |
cg.contributor.affiliation | International Institute of Tropical Agriculture |
cg.contributor.affiliation | Direction de la Protection des Végétaux, Burundi |
cg.contributor.affiliation | University of Arizona |
cg.coverage.region | Africa |
cg.coverage.region | West Africa |
cg.coverage.country | Kenya |
cg.coverage.country | Nigeria |
cg.coverage.country | Senegal |
cg.isijournal | ISI Journal |
cg.authorship.types | CGIAR and developing country institute |
cg.iitasubject | Aflatoxin |
cg.iitasubject | Climate Change |
cg.iitasubject | Food Security |
cg.journal | World Mycotoxin Journal |
cg.howpublished | Formally Published |
cg.accessibilitystatus | Open Access |
local.dspaceid | 80277 |
cg.targetaudience | Scientists |
cg.identifier.doi | https://dx.doi.org/10.3920/wmj2016.2130 |