Show simple item record

dc.contributor.authorStasiewicz, Matthew
dc.contributor.authorFalade, T.D.O.
dc.contributor.authorMutuma, M.
dc.contributor.authorMutiga, Samuel
dc.contributor.authorHarvey, Jagger J.W.
dc.contributor.authorFox, Glen
dc.contributor.authorPearson, T.C.
dc.contributor.authorMuthomi, J.W.
dc.contributor.authorNelson, Rebecca
dc.date.accessioned2019-12-04T11:07:48Z
dc.date.available2019-12-04T11:07:48Z
dc.date.issued2017-08-15
dc.identifier.citationStasiewicz, M.J., Falade, T.D.O., Mutuma, M., Mutiga, S.K., Harvey, J.J.W., Fox, G., Pearson, T.C., Muthomi, J.W. and Nelson, R.J. 2017. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize. Food Control 78:203–214.
dc.identifier.issn0956-7135
dc.identifier.urihttps://hdl.handle.net/20.500.12478/1597
dc.description.abstractMaize, a staple food in many African countries including Kenya, is often contaminated by toxic and carcinogenic fungal secondary metabolites such as aflatoxins and fumonisins. This study evaluated the potential use of a low-cost, multi-spectral sorter in identification and removal of aflatoxin- and fumonisin-contaminated single kernels from a bulk of mature maize kernels. The machine was calibrated by building a mathematical model relating reflectance at nine distinct wavelengths (470–1550 nm) to mycotoxin levels of single kernels collected from small-scale maize traders in open-air markets and from inoculated maize field trials in Eastern Kenya. Due to the expected skewed distribution of mycotoxin contamination, visual assessment of putative risk factors such as discoloration, moldiness, breakage, and fluorescence under ultra-violet light (365 nm), was used to enrich for mycotoxin-positive kernels used for calibration. Discriminant analysis calibration using both infrared and visible spectra achieved 77% sensitivity and 83% specificity to identify kernels with aflatoxin >10 ng g−1 and fumonisin >1000 ng g−1, respectively (measured by ELISA or UHPLC). In subsequent sorting of 46 market maize samples previously tested for mycotoxins, 0–25% of sample mass was rejected from samples that previously tested toxin-positive and 0–1% was rejected for previously toxin-negative samples. In most cases where mycotoxins were detected in sorted maize streams, accepted maize had lower mycotoxin levels than the rejected maize (21/25 accepted maize streams had lower aflatoxin than rejected streams, 25/27 accepted maize streams had lower fumonisin than rejected streams). Reduction was statistically significant (p < 0.001), achieving an 83% mean reduction in each toxin. With further development, this technology could be used to sort maize at local hammer mills to reduce human mycotoxin exposure in Kenya, and elsewhere in the world, while at once reducing food loss, and improving food safety and nutritional status.
dc.description.sponsorshipSwedish International Development Cooperation Agency
dc.language.isoen
dc.subjectAflatoxins
dc.subjectFood Safety
dc.titleMulti-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize
dc.typeJournal Article
dc.description.versionPeer Review
cg.contributor.crpAgriculture for Nutrition and Health
cg.contributor.affiliationCornell University
cg.contributor.affiliationUniversity of Queensland
cg.contributor.affiliationUniversity of Nairobi
cg.contributor.affiliationInternational Livestock Research Institute
cg.contributor.affiliationUnited States Department of Agriculture
cg.coverage.regionAfrica
cg.coverage.regionEast Africa
cg.coverage.countryKenya
cg.isijournalISI Journal
cg.authorship.typesCGIAR and developing country institute
cg.authorship.typesCGIAR and advanced research institute
cg.journalFood Control
cg.howpublishedFormally Published
cg.accessibilitystatusLimited Access
local.dspaceid82322
cg.targetaudienceScientists
cg.identifier.doihttp://dx.doi.org/10.1016/j.foodcont.2017.02.038


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record