Welcome to the International Institute of Tropical Agriculture Research Repository
What would you like to view today?
Improving genomic prediction in cassava field experiments using spatial analysis
Date
2017Author
Elias, A.A.
Rabbi, Ismail Y
Kulakow, P.A.
Jannink, Jean-Luc
Type
Target Audience
Scientists
Metadata
Show full item recordAbstract/Description
Cassava (Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant.
http://dx.doi.org/10.1534/g3.117.300323
Multi standard citation
Permanent link to this item
https://hdl.handle.net/20.500.12478/2394Digital Object Identifier (DOI)
http://dx.doi.org/10.1534/g3.117.300323