dc.contributor.author | Muthoni, Francis K. |
dc.contributor.author | Baijukya, Frederick P. |
dc.contributor.author | Bekunda, Mateete A. |
dc.contributor.author | Sseguya, H. |
dc.contributor.author | Kimaro, Anthony A. |
dc.contributor.author | Alabi, T. |
dc.contributor.author | Mruma, S. |
dc.contributor.author | Hoeschle-Zeledon, Irmgard |
dc.date.accessioned | 2019-12-04T11:11:28Z |
dc.date.available | 2019-12-04T11:11:28Z |
dc.date.issued | 2017 |
dc.identifier.citation | Muthoni, F.K., Baijukya, F., Bekunda, M., Sseguya, H., Kimaro, A., Alabi, T., ... and Hoeschle-Zeledon, I. 2017. Accounting for correlation among environmental covariates improves delineation of extrapolation suitability index for agronomic technological packages. Geocarto International, 1-23. |
dc.identifier.issn | 1010-6049 |
dc.identifier.uri | https://hdl.handle.net/20.500.12478/2435 |
dc.description | Article purchased; Published online: 01 Dec 2017 |
dc.description.abstract | This paper generates an extrapolation suitability index (ESI) to guide scaling-out of improved maize varieties and inorganic fertilizers. The best-bet technology packages were selected based on yield gap data from trial sites in Tanzania. A modified extrapolation detection algorithm was used to generate maps on two types of dissimilarities between environmental conditions at the reference sites and the outlying projection domain. The two dissimilarity maps were intersected to generate ESI. Accounting for correlation structure among covariates improved estimate of risk of extrapolating technologies. The covariate that highly limited the suitability of specific technology package in each pixel was identified. The impact based spatial targeting index (IBSTI) identified zones that should be prioritized to maximize the potential impacts of scaling-out technology packages. The proposed indices will guide extension agencies in targeting technology packages to suitable environments with high potential impact to increase probability of adoption and reduce risk of failure. |
dc.description.sponsorship | United States Agency for International Development |
dc.format.extent | 1-23 |
dc.language.iso | en |
dc.subject | Maize |
dc.subject | Food Security |
dc.subject | Sustainable Agriculture |
dc.subject | Big Data |
dc.subject | Novel Correlation |
dc.subject | Priority Setting |
dc.subject | Risk Of Failure |
dc.subject | Spatial Targeting |
dc.title | Accounting for correlation among environmental covariates improves delineation of extrapolation suitability index for agronomic technological packages |
dc.type | Journal Article |
dc.description.version | Peer Review |
cg.contributor.crp | Maize |
cg.contributor.crp | Grain Legumes |
cg.contributor.crp | Integrated Systems for the Humid Tropics |
cg.contributor.crp | Water, Land and Ecosystems |
cg.contributor.affiliation | International Institute of Tropical Agriculture |
cg.contributor.affiliation | World Agroforestry Centre |
cg.contributor.affiliation | ACDI/VOCA |
cg.coverage.region | Africa |
cg.coverage.region | East Africa |
cg.coverage.country | Tanzania |
cg.isijournal | ISI Journal |
cg.authorship.types | CGIAR and advanced research institute |
cg.iitasubject | Agronomy |
cg.iitasubject | Food Security |
cg.iitasubject | Maize |
cg.iitasubject | Value Chains |
cg.journal | Geocarto International |
cg.howpublished | Formally Published |
cg.accessibilitystatus | Open Access |
local.dspaceid | 93002 |
cg.targetaudience | Scientists |
cg.identifier.doi | http://dx.doi.org/10.1080/10106049.2017.1404144 |