Show simple item record

dc.contributor.authorHankoua, B.
dc.contributor.authorTaylor, N.
dc.contributor.authorNg, S.
dc.contributor.authorFawole, I.
dc.contributor.authorPuonti-Kaerlas, J.
dc.contributor.authorPadmanabhan, C.
dc.contributor.authorYadav, J.S.
dc.contributor.authorFauquet, Claude M.
dc.contributor.authorDixon, A.
dc.contributor.authorFondong, V.N.
dc.date.accessioned2019-12-04T11:18:06Z
dc.date.available2019-12-04T11:18:06Z
dc.date.issued2006
dc.identifier.citationHankoua, B., Taylor, N., Ng, S., Fawole, I., Puonti-Kaerlas, J., Padmanabhan, C., ... & Fondong, V.N. (2006). Production of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. African Journal of Biotechnology, 5(19), 1700-1712.
dc.identifier.issn1684-5315
dc.identifier.urihttps://hdl.handle.net/20.500.12478/3045
dc.description.abstractThe impact of cassava transformation technologies for agricultural development in Africa will depend largely on how successfully these capabilities are transferred and adapted to the African environment and local needs. Here we report on the first successful establishment of cassava regeneration and transformation capacity in Africa via organogenesis, somatic embryogenesis and friable embryogenic callus (FEC). As a prerequisite for genetic engineering, we evaluated six African cassava genotypes for the ability of a) induction of FEC b) hygromycin sensitivity and c) T-DNA integration potential by different Agrobacterium strains. FEC was induced in genotypes TMS 60444, TME 1 and TMS 91/02327. Potential tissues for FEC formation were induced in TMS 91/02324, TME 12 and TME 13. Pure and proliferating FEC was obtained and maintained only in TMS 60444. FEC growth and shoot organogenesis were completely suppressed when hygromycin was used at a concentration of 20 mg/l in all tissue types and genotypes. With somatic cotyledons, statistically significant differences (p 0.05) were observed between Agrobacterium strains and genotypes with respect to T-DNA transfer efficiency. Using somatic cotyledons, TME 8 was found to be the most amenable to transformation with maximum blue spots per GUS-positive explants, and Agrobacterium GV3101 proved to be superior to EHA105, LBA4404, and AGl-1 for T-DNA transfer based on transient assays with a reporter gene (GUS). With FEC, Agrobacterium LBA4404 was superior to other strains. This study also identified EHA105 as a new virus helper strain to recover transgenic cassava plants. PCR and Southern hybridization of genomic DNA of the hygromycin-resistant cassava plants to a hpt probe confirmed the integration of hpt with integration events varying between 1 and 2 insertions. The benefit of combining the FEC and shoot organogenesis systems for recovering transgenic cassava plants is described. The contributions of this report to enhancing the development and deployment of genetic engineering of cassava for agricultural biotechnology development in Africa are discussed.
dc.description.sponsorshipSwiss Agency for Development and Cooperation
dc.language.isoen
dc.subjectCassava
dc.subjectLandraces
dc.subjectEmbryogenic Suspension
dc.subjectAgrobacterium Tumefaciens
dc.subjectHygromycin
dc.subjectShoot Organogenesis
dc.titleProduction of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos
dc.typeJournal Article
dc.description.versionPeer Review
cg.contributor.affiliationDelaware State University
cg.contributor.affiliationInternational Institute of Tropical Agriculture
cg.contributor.affiliationDonald Danforth Plant Science Center
cg.contributor.affiliationUniversity of Ibadan
cg.contributor.affiliationEuropean Patent Office, Germany
cg.coverage.regionAcp
cg.coverage.regionAfrica
cg.coverage.regionAsia
cg.coverage.regionNorth Africa
cg.coverage.regionWest Africa
cg.coverage.regionSoutheast Asia
cg.coverage.regionEurope
cg.coverage.countryUnited States
cg.coverage.countryNigeria
cg.coverage.countryThailand
cg.coverage.countryGermany
cg.isijournalISI Journal
cg.authorship.typesCGIAR and developing country institute
cg.iitasubjectGenetic Improvement
cg.iitasubjectPlant Genetic Resources
cg.iitasubjectPlant Diseases
cg.iitasubjectResearch Method
cg.iitasubjectDisease Control
cg.iitasubjectFarm Management
cg.iitasubjectPests Of Plants
cg.iitasubjectPlant Breeding
cg.iitasubjectLivelihoods
cg.iitasubjectCassava
cg.iitasubjectPost-Harvesting Technology
cg.iitasubjectFarming Systems
cg.iitasubjectPlant Health
cg.iitasubjectPlant Production
cg.iitasubjectHandling, Transport, Storage And Protection Of Agricultural Products
cg.accessibilitystatusOpen Access
local.dspaceid94511


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record