• Contact Us
    • Send Feedback
    • Login
    View Item 
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Whole Repository
    CollectionsIssue DateRegionCountryHubAffiliationAuthorsTitlesSubject
    This Sub-collection
    Issue DateRegionCountryHubAffiliationAuthorsTitlesSubject

    My Account

    Login

    Welcome to the International Institute of Tropical Agriculture Research Repository

    What would you like to view today?

    Genetic analysis of drought-adaptive traits at seedling stage in early-maturing maize inbred lines and field performance under stress conditions

    Thumbnail
    View/Open
    S18ArtAdewaleGeneticInthomDev.pdf (593.5Kb)
    Date
    2018-08
    Author
    Adewale, S.A.
    Akinwale, R.O.
    Fakorede, M.A.B.
    Badu-Apraku, B.
    Type
    Journal Article
    Target Audience
    Scientists
    Metadata
    Show full item record
    Abstract/Description
    Maize hybrids that are tolerant to drought at the seedling stage are needed to boost productivity in the rainforest agro-ecology of West Africa. Genetics of tolerance of maize seedling to drought stress is not well understood and is poorly documented. The objectives of this study were to screen early-maturing maize lines for seedling drought tolerance, determine the inheritance and the combining ability of selected inbred lines, and evaluate the performance of seedling drought-tolerant hybrids under field conditions. Forty-nine early maize lines were screened for drought tolerance at the seedling stage. Ten drought-tolerant and two susceptible inbred lines were selected and used in diallel crosses to generate 66 hybrids. The twelve inbred lines and their hybrids were evaluated under induced drought at seedling stage in the screen house and under marginal growing conditions on the field for two seasons. Data collected were subjected to analysis of variance using the DIALLEL-SAS program. Mean squares for both GCA and SCA were significant for most traits in all research environments, indicating that additive and non-additive gene actions are controlling seedling traits under stress conditions. However, for most traits, SCA was preponderant over GCA in all environments, indicating overdominating effect of non-additive gene action. Which in turn implied that the best improvement method for the traits is hybridization. Inbred TZEI 7 had the best GCA effect for seedling traits under screenhouse conditions and for grain yield and other agronomic traits under drought conditions in the field. Hybrids TZEI 357 × TZEI 411 and TZEI 380 × TZEI 410 showed superior SCA effects under screen house conditions. In conclusion, the study established wide genetic variability for drought tolerance at seedling stage among tropical early-maturing maize germplasm however, the non-additive gene action was more important for most seedling traits.
    https://dx.doi.org/10.1007/s10681-018-2218-z
    Multi standard citation
    Permanent link to this item
    https://hdl.handle.net/20.500.12478/4376
    Non-IITA Authors ORCID
    BAFFOUR BADU-APRAKUhttps://orcid.org/0000-0003-0113-5487
    Digital Object Identifier (DOI)
    https://dx.doi.org/10.1007/s10681-018-2218-z
    Research Themes
    BIOTECH & PLANT BREEDING
    IITA Subjects
    Plant Breeding
    Agrovoc Terms
    Combining Ability; Hybridization; Maize; Inbred Lines; Drought Tolerance
    Regions
    Africa; West Africa
    Countries
    Nigeria
    Journals
    Euphytica
    Collections
    • Journal and Journal Articles4469
    copyright © 2019  IITASpace. All rights reserved.
    IITA | Open Access Repository