dc.contributor.author | Yonis, B.O. |
dc.contributor.author | del Carpio, D.P. |
dc.contributor.author | Wolfe, M. |
dc.contributor.author | Jannink, J.L. |
dc.contributor.author | Kulakow, P. |
dc.contributor.author | Rabbi, I. |
dc.date.accessioned | 2022-08-16T09:20:33Z |
dc.date.available | 2022-08-16T09:20:33Z |
dc.date.issued | 2020-05-14 |
dc.identifier.citation | Yonis, B.O., del Carpio, D.P., Wolfe, M., Jannink, J.L., Kulakow, P. & Rabbi, I. (2020). Improving root characterisation for genomic prediction in cassava. Scientific Reports, 10(1):8003. 1-12. |
dc.identifier.issn | 2045-2322 |
dc.identifier.uri | https://hdl.handle.net/20.500.12478/7646 |
dc.description.abstract | Cassava is cultivated due to its drought tolerance and high carbohydrate-containing storage roots. The lack of uniformity and irregular shape of storage roots poses constraints on harvesting and post-harvest processing. Here, we phenotyped the Genetic gain and offspring (C1) populations from the International Institute of Tropical Agriculture (IITA) breeding program using image analysis of storage root photographs taken in the field. In the genome-wide association analysis (GWAS), we detected for most shape and size-related traits, QTL on chromosomes 1 and 12. In a previous study, we found the QTL on chromosome 12 to be associated with cassava mosaic disease (CMD) resistance. Because the root uniformity is important for breeding, we calculated the standard deviation (SD) of individual root measurements per clone. With SD measurements we identified new significant QTL for Perimeter, Feret and Aspect Ratio on chromosomes 6, 9 and 16. Predictive accuracies of root size and shape image-extracted traits were mostly higher than yield trait prediction accuracies. This study aimed to evaluate the feasibility of the image phenotyping protocol and assess GWAS and genomic prediction for size and shape image-extracted traits. The methodology described and the results are promising and open up the opportunity to apply high-throughput methods in cassava. |
dc.description.sponsorship | Bill & Melinda Gates Foundation |
dc.description.sponsorship | Department for International Development, United Kingdom |
dc.format.extent | 1-12 |
dc.language.iso | en |
dc.subject | Cassava |
dc.subject | African Cassava Mosaic Virus |
dc.subject | Processing |
dc.subject | Plant Diseases |
dc.subject | Nigeria |
dc.title | Improving root characterisation for genomic prediction in cassava |
dc.type | Journal Article |
cg.contributor.crp | Roots, Tubers and Bananas |
cg.contributor.affiliation | Montpellier SupAgro |
cg.contributor.affiliation | Cornell University |
cg.contributor.affiliation | United States Department of Agriculture |
cg.contributor.affiliation | International Institute of Tropical Agriculture |
cg.coverage.region | Africa |
cg.coverage.region | West Africa |
cg.coverage.country | Nigeria |
cg.coverage.hub | Headquarters and Western Africa Hub |
cg.researchtheme | Biotech and Plant Breeding |
cg.identifier.bibtexciteid | YONIS:2020 |
cg.isijournal | ISI Journal |
cg.authorship.types | CGIAR and advanced research institute |
cg.iitasubject | Agronomy |
cg.iitasubject | Cassava |
cg.iitasubject | Disease Control |
cg.iitasubject | Food Security |
cg.iitasubject | Plant Breeding |
cg.iitasubject | Plant Diseases |
cg.iitasubject | Plant Production |
cg.journal | Scientific Reports |
cg.notes | Published online: 14 May 2020 |
cg.accessibilitystatus | Open Access |
cg.reviewstatus | Peer Review |
cg.usagerightslicense | Creative Commons Attribution 4.0 (CC BY 0.0) |
cg.targetaudience | Scientists |
cg.identifier.doi | https://dx.doi.org/10.1038/s41598-020-64963-9 |
cg.iitaauthor.identifier | Jean-Luc Jannink: 0000-0003-4849-628X |
cg.iitaauthor.identifier | Peter Kulakow: 0000-0002-7574-2645 |
cg.iitaauthor.identifier | Ismail Rabbi: 0000-0001-9966-2941 |
cg.futureupdate.required | No |
cg.identifier.issue | 1 |
cg.identifier.volume | 10 |