Show simple item record

dc.contributor.authorKaranja, E.N.
dc.contributor.authorFliessbach, A.
dc.contributor.authorAdamtey, N.
dc.contributor.authorKambura, A.K.
dc.contributor.authorMusyoka, M.
dc.contributor.authorFiaboe, K.
dc.contributor.authorMwirichia, R.
dc.date.accessioned2022-08-25T13:39:39Z
dc.date.available2022-08-25T13:39:39Z
dc.date.issued2020
dc.identifier.citationKaranja, E.N., Fliessbach, A., Adamtey, N., Kambura, A.K., Musyoka, M., Fiaboe, K. & Mwirichia, R. (2020). Diversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya. PloS ONE, 15(8): e0236574, 1-17.
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/20.500.12478/7692
dc.description.abstractManagement practices such as tillage, crop rotation, irrigation, organic and inorganic inputs application are known to influence diversity and function of soil microbial populations. In this study, we investigated the effect of conventional versus organic farming systems at low and high input levels on structure and diversity of prokaryotic microbial communities. Soil samples were collected from the ongoing long-term farming system comparison trials established in 2007 at Chuka and Thika in Kenya. Physicochemical parameters for each sample were analyzed. Total DNA and RNA amplicons of variable region (V4—V7) of the 16S rRNA gene were generated on an Illumina platform using the manufacturer’s instructions. Diversity indices and statistical analysis were done using QIIME2 and R packages, respectively. A total of 29,778,886 high quality reads were obtained and assigned to 16,176 OTUs at 97% genetic distance across both 16S rDNA and 16S rRNA cDNA datasets. The results pointed out a histrionic difference in OTUs based on 16S rDNA and 16S rRNA cDNA. Precisely, while 16S rDNA clustered by site, 16S rRNA cDNA clustered by farming systems. In both sites and systems, dominant phylotypes were affiliated to phylum Actinobacteria, Proteobacteria and Acidobacteria. Conventional farming systems showed a higher species richness and diversity compared to organic farming systems, whilst 16S rRNA cDNA datasets were similar. Physiochemical factors were associated differently depending on rRNA and rDNA. Soil pH, electrical conductivity, organic carbon, nitrogen, potassium, aluminium, zinc, iron, boron and micro-aggregates showed a significant influence on the observed microbial diversity. The observed higher species diversity in the conventional farming systems can be attributed to the integration of synthetic and organic agricultural inputs. These results show that the type of inputs used in a farming system not only affect the soil chemistry but also the microbial population dynamics and eventually the functional roles of these microbes.
dc.description.sponsorshipBiovision Foundation
dc.description.sponsorshipSwiss Coop Sustainability Fund
dc.description.sponsorshipLiechtenstein Development Service
dc.description.sponsorshipSwiss Agency for Development and Cooperation
dc.description.sponsorshipUKAid
dc.description.sponsorshipSwedish International Development Cooperation Agency
dc.description.sponsorshipFederal Democratic Republic of Ethiopia
dc.description.sponsorshipKenyan Government
dc.format.extent1-17
dc.language.isoen
dc.subjectFarming Systems
dc.subjectOrganic Agriculture
dc.subjectCrop Rotation
dc.subjectSoil Fertility
dc.subjectKenya
dc.titleDiversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya
dc.typeJournal Article
cg.contributor.crpRoots, Tubers and Bananas
cg.contributor.affiliationUniversity of Embu
cg.contributor.affiliationInternational Centre of Insect Physiology and Ecology
cg.contributor.affiliationTaita Taveta University
cg.contributor.affiliationInternational Institute of Tropical Agriculture
cg.coverage.regionAfrica
cg.coverage.regionEast Africa
cg.coverage.countryKenya
cg.coverage.hubCentral Africa Hub
cg.researchthemeNatural Resource Management
cg.identifier.bibtexciteidKARANJA:2020a
cg.isijournalISI Journal
cg.authorship.typesCGIAR and developing country institute
cg.iitasubjectAgronomy
cg.iitasubjectCrop Systems
cg.iitasubjectFarming Systems
cg.iitasubjectSoil Fertility
cg.journalPLOS ONE
cg.notesPublished online: 13 Aug 2020
cg.accessibilitystatusOpen Access
cg.reviewstatusPeer Review
cg.usagerightslicenseCreative Commons Attribution 4.0 (CC BY 0.0)
cg.targetaudienceScientists
cg.identifier.doihttps://dx.doi.org/10.1371/journal.pone.0236574
cg.futureupdate.requiredNo
cg.identifier.issue8
cg.identifier.volume15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record