Welcome to the International Institute of Tropical Agriculture Research Repository
What would you like to view today?
Development and validation of near-infrared spectroscopy procedures for prediction of cassava root dry matter and amylose contents in Ugandan cassava germplasm
View/ Open
Date
2023-09-04Author
Nuwamanya, E.
Wembabazi, E.
Kanaabi, M.
Namakula, F.B.
Katungisa, A.
Lyatumi, I.
Ezuma, W.
Alamu, E.O.
Dufour, D.
Kawuki, R.
Davrieux, F.
Type
Review Status
Peer ReviewTarget Audience
Scientists
Metadata
Show full item recordAbstract/Description
Background Cassava utilization for food and/or industrial products depends on inherent properties of root dry matter content (DMC) and the starch fraction of amylose content (AC). Accordingly, in this study, NIRS models were developed to aid breeding and selection of DMC and AC as critical industrial traits taking care of root sample preparation and cassava germplasm diversity available in Uganda. Results Upon undertaking calibrations and cross-validations, best models were adopted for validation. DMC in calibration samples ranged from 20 to 45g kg^-1 while for amylose content it ranged from 14 to 33g kg^-1. In the validation set average DMC was 29.5g kg^-1 while for the amylose content it was 24.64g kg^-1. For DMC, Modified Partial least square (MPLS) regression model had regression coefficients (R2) of 0.98 and 0.96 respectively, in the calibration and validation set. These were also associated with low bias (-0.018) and ratio of performance deviation that ranged from 4.7 to 5.0. In addition, standard error of prediction values ranged from 0.9g kg^-1 to 1.06g kg^-1. For AC, the regression coefficient was 0.91 for the calibration set and 0.94 for the validation set. A bias equivalent to -0.03 and ratio of performance deviation of 4.23 were observed. Conclusions These findings confirm the robustness of NIRS in estimation of dry matter content and amylose content in cassava roots and thus justify its use in routine cassava breeding operations.
https://doi.org/10.1002/jsfa.12966
Multi standard citation
Permanent link to this item
https://hdl.handle.net/20.500.12478/8294IITA Authors ORCID
Alamu Emmanuel Oladejihttps://orcid.org/0000-0001-6263-1359
Digital Object Identifier (DOI)
https://doi.org/10.1002/jsfa.12966