Show simple item record

dc.contributor.authorAdan, M.
dc.contributor.authorTonnang, H.E.
dc.contributor.authorGreve, K.
dc.contributor.authorBorgemeister, C.
dc.contributor.authorGoergen, G.
dc.date.accessioned2024-09-09T10:02:37Z
dc.date.available2024-09-09T10:02:37Z
dc.date.issued2023-03-08
dc.identifier.citationAdan, M., Tonnang, H.E., Greve, K., Borgemeister, C. & Goergen, G. (2023). Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa. Geocarto International, 38(1): 2186492, 1-15.
dc.identifier.issn1010-6049
dc.identifier.urihttps://hdl.handle.net/20.500.12478/8520
dc.description.abstractFall armyworm (FAW) Spodoptera frugiperda (J.E. Smith), damage was monitored at a regional scale using time series data in Western and Southern African countries. The study employed the normalized difference vegetation index (NDVI) computed from Landsat 8 imagery using the Google Earth Engine (GEE) using image composites for the years 2013 to 2020 for the study areas. The index was then reclassified based on the NDVI threshold values into low, sparse, moderate, and dense classes. FAW prevalence data were then utilized to validate the correlation between the FAW infestation and NDVI values. FAW was associated with a decrease in vegetation productivity between the years 2016, 2017, and 2018 when the pest infestation was reported in the study areas. The validation results showed that there is a correlation between FAW infestation and NDVI (R20.83). Our study highlighted that NDVI can be used as a proxy to quantify pest damage to vegetation productivity.
dc.description.sponsorshipFederal Ministry for Economic Cooperation and Development, Germany
dc.format.extent1-15
dc.language.isoen
dc.subjectImagery
dc.subjectVegetation
dc.subjectProductivity
dc.subjectFall Armyworm
dc.subjectMaize
dc.titleUse of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
dc.typeJournal Article
cg.contributor.affiliationUniversity of Bonn
cg.contributor.affiliationInternational Center of Insect Physiology and Ecology
cg.contributor.affiliationInternational Institute of Tropical Agriculture
cg.coverage.regionAfrica
cg.coverage.regionSouthern Africa
cg.coverage.regionWest Africa
cg.coverage.countryBenin (Dahomey)
cg.coverage.countryMalawi
cg.coverage.countrySouth Africa
cg.coverage.countryTogo
cg.coverage.countryZambia
cg.coverage.hubHeadquarters and Western Africa Hub
cg.researchthemePlant Production and Health
cg.identifier.bibtexciteidADAN:2023
cg.isijournalISI Journal
cg.authorship.typesCGIAR and advanced research institute
cg.iitasubjectAgronomy
cg.iitasubjectDisease Control
cg.iitasubjectFood Security
cg.iitasubjectMaize
cg.iitasubjectPests of Plants
cg.iitasubjectPlant Breeding
cg.iitasubjectPlant Health
cg.iitasubjectPlant Production
cg.journalGeocarto International
cg.notesOpen Access Journal
cg.accessibilitystatusOpen Access
cg.reviewstatusPeer Review
cg.usagerightslicenseCreative Commons Attribution 4.0 (CC BY 0.0)
cg.targetaudienceScientists
cg.identifier.doihttps://doi.org/10.1080/10106049.2023.2186492
cg.iitaauthor.identifierGeorg Goergen: 0000-0003-4496-0495
cg.futureupdate.requiredNo
cg.identifier.issue1: 2186492
cg.identifier.volume38
cg.contributor.acknowledgementsThe authors are grateful to the Data management modeling and monitoring unit DMMG at ICIPE for their assistance with the FAW occurrence data.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record