Show simple item record

dc.contributor.authorOngom, P.O.
dc.contributor.authorAjibade, Y.A.
dc.contributor.authorMohammed, S.B.
dc.contributor.authorDieng, I.
dc.contributor.authorFatokun, C.
dc.contributor.authorBoukar, O.
dc.date.accessioned2024-10-14T09:04:23Z
dc.date.available2024-10-14T09:04:23Z
dc.date.issued2024-09-26
dc.identifier.citationOngom, P.O., Ajibade, Y.A., Mohammed, S.B., Dieng, I., Fatokun, C. & Boukar, O. (2024). HybridQC: A SNP-Based quality control application for rapid hybridity verification in diploid plants. Genes, 15(10):1252.
dc.identifier.issn2073-4425
dc.identifier.urihttps://hdl.handle.net/20.500.12478/8594
dc.description.abstractBackground/Objectives: Hybridity authentication is an important component of quality assurance and control (QA/QC) in breeding programs. Here, we introduce HybridQC v1.0, a QA/QC software program specially designed for parental purity and hybridity determination. HybridQC rapidly detects molecular marker polymorphism between parents of a cross and utilizes only the informative markers for hybridity authentication. Methods HybridQC is written in Python and designed with a graphical user interface (GUI) compatible with Windows operating systems. We demonstrated the QA/QC analysis workflow and functionality of HybridQC using Kompetitive allele-specific PCR (KASP) SNP genotype data for cowpea (Vigna unguiculata). Its performance was validated in other crop data, including sorghum (Sorghum bicolor) and maize (Zea mays). Results The application efficiently analyzed low-density SNP data from multiple cowpea bi-parental crosses embedded in a single Microsoft Excel file. HybridQC is optimized for the auto-generation of key summary statistics and visualization patterns for marker polymorphism, parental heterozygosity, non-parental alleles, missing data, and F1 hybridity. An added graphical interface correctly depicted marker efficiency and the proportions of true F1 versus self-fertilized progenies in the data sets used. The output of HybridQC was consistent with the results of manual hybridity discernment in sorghum and maize data sets. Conclusions This application uses QA/QC SNP markers to rapidly verify true F1 progeny. It eliminates the extensive time often required to manually curate and process QA/QC data. This tool will enhance the optimization efforts in breeding programs, contributing to increased genetic gain.
dc.description.sponsorshipBill & Melinda Gates Foundation
dc.format.extent1-13
dc.language.isoen
dc.subjectQuality Assurance
dc.subjectQuality Control
dc.subjectHybrids
dc.subjectSingle Nucleotide Polymorphisms
dc.titleHybridQC: A SNP-Based quality control application for rapid hybridity verification in diploid plants
dc.typeJournal Article
cg.contributor.crpAgriculture for Nutrition and Health
cg.contributor.crpGrain Legumes
cg.contributor.affiliationInternational Institute of Tropical Agriculture
cg.coverage.regionAfrica
cg.coverage.regionWest Africa
cg.coverage.countryNigeria
cg.coverage.hubHeadquarters and Western Africa Hub
cg.researchthemeBiotech and Plant Breeding
cg.isijournalISI Journal
cg.authorship.typesCGIAR Single Centre
cg.iitasubjectAgronomy
cg.iitasubjectCrop Systems
cg.iitasubjectFood Security
cg.iitasubjectPlant Breeding
cg.iitasubjectPlant Production
cg.journalGenes
cg.notesOpen Access Journal
cg.accessibilitystatusOpen Access
cg.reviewstatusInternal Review
cg.usagerightslicenseCreative Commons Attribution 4.0 (CC BY 0.0)
cg.targetaudienceScientists
cg.identifier.doihttps://doi.org/10.3390/genes15101252
cg.iitaauthor.identifierPatrick Ongom: 0000-0002-5303-3602
cg.iitaauthor.identifierYakub Adebare Ajibade: 0009-0004-6523-7313
cg.iitaauthor.identifierSaba Mohammed: 0000-0002-1796-5955
cg.iitaauthor.identifierIbnou Dieng: 0000-0002-1051-9143
cg.iitaauthor.identifierChristian Fatokun: 0000-0002-8428-7939
cg.iitaauthor.identifierOusmane: 0000-0003-0234-4264
cg.futureupdate.requiredNo
cg.identifier.issue10:1252
cg.identifier.volume15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record