• Contact Us
    • Send Feedback
    • Login
    View Item 
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Whole Repository
    CollectionsIssue DateRegionCountryHubAffiliationAuthorsTitlesSubject
    This Sub-collection
    Issue DateRegionCountryHubAffiliationAuthorsTitlesSubject

    My Account

    Login

    Welcome to the International Institute of Tropical Agriculture Research Repository

    What would you like to view today?

    The native shrub, Piliostigma reticulatum, as an ecological “resource island” for mango trees in the Sahel

    Thumbnail
    Date
    2015
    Author
    Hernández, R.R.
    Debenport, S.J.
    Leewis, M.C.C.
    Ndoye, F.
    Soumare, A.
    Thuita, M.
    Gueye, M.
    Miambi, E.
    Chapuis-Lardy, L.
    Diedhiou, I.
    Dick, R.P.
    Type
    Journal Article
    Metadata
    Show full item record
    Abstract/Description
    African farmers are increasingly adopting sustainable agricultural practices including use of native shrub intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum). Anecdotal information and qualitative observations suggested that the presence of P. reticulatum promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P. reticulatum would be significantly improved over soils associated with mango growing outside the influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH, and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P. reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF infection rates, and greater potential to perform decomposition and mineralize nutrients.African farmers are increasingly adopting sustainable agricultural practices including use of native shrub intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum). Anecdotal information and qualitative observations suggested that the presence of P. reticulatum promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P. reticulatum would be significantly improved over soils associated with mango growing outside the influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH, and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P. reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF infection rates, and greater potential to perform decomposition and mineralize nutrients.African farmers are increasingly adopting sustainable agricultural practices including use of native shrub intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum). Anecdotal information and qualitative observations suggested that the presence of P. reticulatum promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P. reticulatum would be significantly improved over soils associated with mango growing outside the influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH, and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P. reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF infection rates, and greater potential to perform decomposition and mineralize nutrients.African farmers are increasingly adopting sustainable agricultural practices including use of native shrub intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum). Anecdotal information and qualitative observations suggested that the presence of P. reticulatum promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P. reticulatum would be significantly improved over soils associated with mango growing outside the influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH, and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P. reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF infection rates, and greater potential to perform decomposition and mineralize nutrients.
    https://dx.doi.org/10.1016/j.agee.2015.02.009
    Multi standard citation
    Permanent link to this item
    https://hdl.handle.net/20.500.12478/920
    Digital Object Identifier (DOI)
    https://dx.doi.org/10.1016/j.agee.2015.02.009
    IITA Subjects
    Agroforestry; Farming System
    Agrovoc Terms
    Agroforestry; Enzymes; Microbial Ecology; Microbial Biomass
    Regions
    Africa South Of Sahara
    Countries
    Senegal
    Journals
    Agriculture, Ecosystems & Environment
    Collections
    • Journal and Journal Articles4835
    copyright © 2019  IITASpace. All rights reserved.
    IITA | Open Access Repository