• Contact Us
    • Send Feedback
    • Login
    View Item 
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    •   Home
    • Journal and Journal Articles
    • Journal and Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Whole Repository
    CollectionsIssue DateRegionCountryHubAffiliationAuthorsTitlesSubject
    This Sub-collection
    Issue DateRegionCountryHubAffiliationAuthorsTitlesSubject

    My Account

    Login

    Welcome to the International Institute of Tropical Agriculture Research Repository

    What would you like to view today?

    Founding weaver ant queens (Oecophylla longinoda) increase production and nanitic worker size when adopting nonnestmate pupae

    Thumbnail
    View/Open
    U15ArtOuagoussounonFoundingNothomDev (213.1Kb)
    Date
    2015
    Author
    Ouagoussounon, I.
    Offenberg, J.
    Sinzogan, A.A.C.
    Adandonon, A.
    Kossou, D.
    Vayssières, J.F.
    Type
    Journal Article
    Metadata
    Show full item record
    Abstract/Description
    Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.
    https://dx.doi.org/10.1186/2193-1801-4-6
    Multi standard citation
    Permanent link to this item
    https://hdl.handle.net/20.500.12478/926
    Digital Object Identifier (DOI)
    https://dx.doi.org/10.1186/2193-1801-4-6
    Agrovoc Terms
    Biological Control; Entomophagy; Oecophylla
    Regions
    Africa; West Africa
    Countries
    Nigeria
    Journals
    SpringerPlus
    Collections
    • Journal and Journal Articles4835
    copyright © 2019  IITASpace. All rights reserved.
    IITA | Open Access Repository