dc.contributor.author | Bennett, K.L. |
dc.contributor.author | Shija, F. |
dc.contributor.author | Linton, Y. |
dc.contributor.author | Misinzo, G. |
dc.contributor.author | Kaddumukasa, M. |
dc.contributor.author | Djouaka, R.F. |
dc.contributor.author | Anyaele, O. |
dc.contributor.author | Harris, Angela |
dc.contributor.author | Irish, S. |
dc.contributor.author | Hlaing, T. |
dc.contributor.author | Prakash, A. |
dc.contributor.author | Lutwama, J. |
dc.contributor.author | Walton, C. |
dc.date.accessioned | 2019-12-04T11:04:02Z |
dc.date.available | 2019-12-04T11:04:02Z |
dc.date.issued | 2016-08-10 |
dc.identifier.citation | Bennett, K.L., Shija, F., Linton, Y., Misinzo, G., Kaddumukasa, M., Djouaka, R.F., ... & Anyaele, O. (2016). Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? Molecular Ecology, 1-11. |
dc.identifier.issn | 0962-1083 |
dc.identifier.uri | https://hdl.handle.net/20.500.12478/1319 |
dc.description | Article Purchased |
dc.description.abstract | Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human-modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make-up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out-of-Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti. |
dc.description.sponsorship | Natural Environment Research Council, United Kingdom |
dc.description.sponsorship | Leverhulme Trust |
dc.format.extent | 1-18 |
dc.language.iso | en |
dc.subject | Arbovirus |
dc.subject | Domestication |
dc.subject | Forest Fragmentation |
dc.subject | Invasive Species |
dc.subject | Climate Change |
dc.subject | Aedes Aegypti |
dc.subject | Mosquitoes |
dc.subject | Genotypes |
dc.subject | Dna |
dc.title | Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? |
dc.type | Journal Article |
dc.description.version | Peer Review |
cg.contributor.crp | Genebanks |
cg.contributor.crp | Climate Change, Agriculture and Food Security |
cg.contributor.affiliation | University of Manchester |
cg.contributor.affiliation | Smithsonian Institution Museum Support Center |
cg.contributor.affiliation | Sokoine University of Agriculture |
cg.contributor.affiliation | Uganda Virus Research Institute |
cg.contributor.affiliation | International Institute of Tropical Agriculture |
cg.contributor.affiliation | University of Ibadan |
cg.contributor.affiliation | Cayman Islands Government |
cg.contributor.affiliation | London School of Hygiene and Tropical Medicine |
cg.contributor.affiliation | Ministry of Health, Myanmar |
cg.contributor.affiliation | National Institute for Research in Environmental Health, India |
cg.coverage.region | Central Africa |
cg.coverage.region | East Africa |
cg.coverage.region | West Africa |
cg.isijournal | ISI Journal |
cg.authorship.types | CGIAR and developing country institute |
cg.iitasubject | Climate Change |
cg.iitasubject | Genetic Improvement |
cg.journal | Molecular Ecology |
cg.howpublished | Formally Published |
cg.accessibilitystatus | Open Access |
local.dspaceid | 79048 |
cg.targetaudience | Scientists |
cg.identifier.doi | https://dx.doi.org/10.1111/mec.13762 |